

CBMI 2012 10th Workshop on Content-Based Multimedia Indexing June 27-29, 2012, Annecy France

Human Action Recognition: the Challenges and Recent Progress

Ivan Laptev

ivan.laptev@inria.fr

INRIA, WILLOW, ENS/INRIA/CNRS UMR 8548 Laboratoire d'Informatique, Ecole Normale Supérieure, Paris Human Actions: Why do we care?

Technology: Access to lots of data

• Huge amount of video is available and growing

B B C Motion Gallery

TV-channels recorded since 60's

>34K hours of video uploads every day

~30M surveillance cameras in US => ~700K video hours/day

Applications

• Video indexing and search is useful for TV production, entertainment, education, social studies, security, special effects...

TV & Web: e.g. *"Fight in a parlament"*

Home videos: e.g. *"My* daughter climbing"

Sociology research:

Manually analyzed smoking actions in 900 movies

Surveillance

suspicious behavior detection

and animation

[Efros, Berg, Mori and Malik, ICCV 2003]

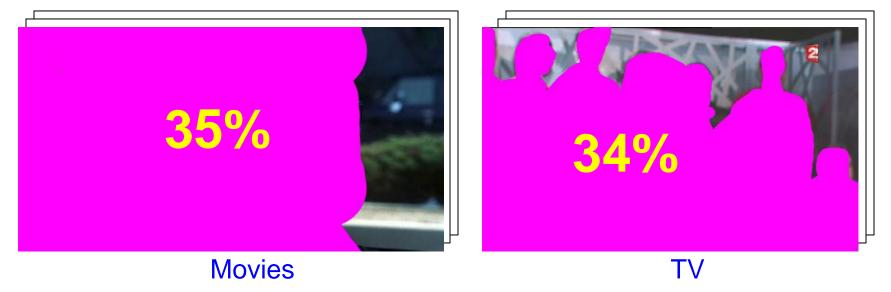
[Efros, Berg, Mori and Malik, ICCV 2003]

How many person pixels are in video?

Movies

YouTube

How many person pixels are in video?



YouTube

Why action recognition is difficult?

Lots of diversity in the data (view-points, appearance, motion, lighting...)

Drinking

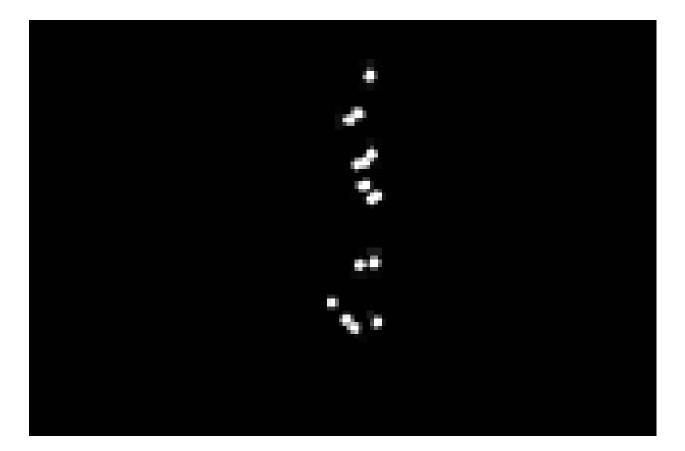
Smoking

Lots of classes and concepts

How to recognize actions: History

Motion perception (1973)

 "Moving Light Displays" (LED) inspired much of early work on human action recognition

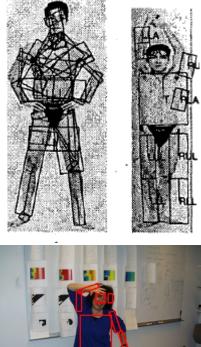


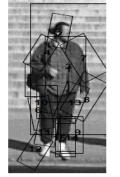
Gunnar Johansson, Perception and Psychophysics, 1973

A HOUGHTON MIFFLIN PRODUCTION

Copyright © 1971 by Heughton Millin Company A Teaching Resource At the Frontiers of Psychological Inquiry

Human pose estimation (1990-2000)



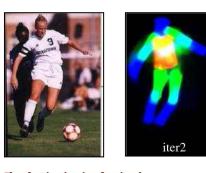


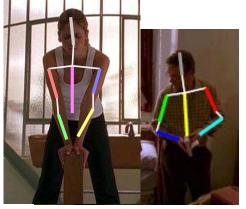
Finding People by Sampling loffe & Forsyth, ICCV 1999

Pictorial Structure Models for Object Recognition Felzenszwalb & Huttenlocher, 2000

Learning to Parse Pictures of People Ronfard, Schmid & Triggs, ECCV 2002

Human pose estimation (2000-2010)





D. Ramanan. Learning to parse images of articulated bodies. NIPS, 2007

Learn image and person-specific unary terms

- initial iteration → edges
- following iterations \rightarrow edges & colour

V. Ferrari, M. Marin-Jimenez, and A. Zisserman. Progressive search space reduction for human pose estimation. In Proc. CVPR, 2008/2009

(Almost) unconstrained images

Person detector & foreground highlighting

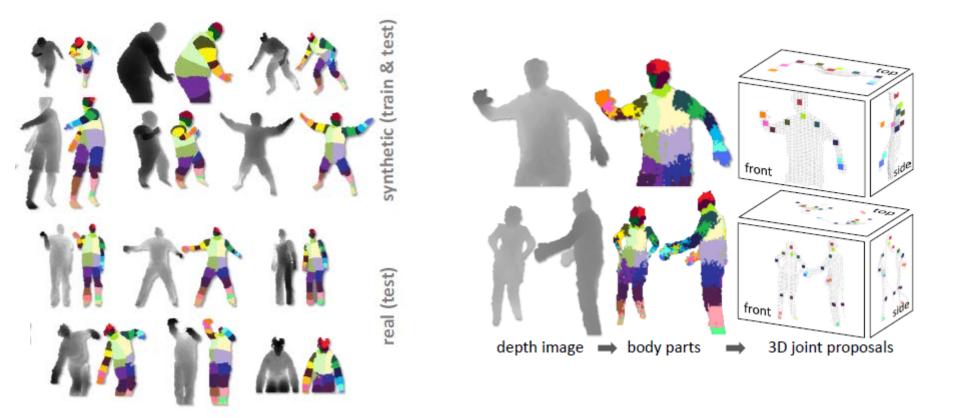
VP. Buehler, M. Everingham and A. Zisserman. Learning sign language by watching TV. In Proc. CVPR 2009

Learns with weak textual annotation

Multiple instance learning

I like the physical side of it, I like trees. It's a great place to work

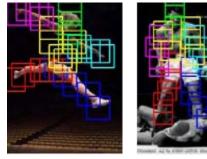
Human pose estimation (2011)



J. Shotton, A. Fitzgibbon, M. Cook, T. Sharp, M. Finocchio, R. Moore, A. Kipman and A. Blake. Real-Time Human Pose Recognition in Parts from Single Depth Images. **Best paper award at CVPR 2011**

Exploits lots of synthesized depth images for training

Human pose estimation (2011)



Y. Yang and D. Ramanan. Articulated pose estimation with flexible mixtures-of-parts. In Proc. **CVPR 2011** Extension of LSVM model of Felzenszwalb et al.

frame t+1

frame t

t+1

t+1

Y. Wang, D. Tran and Z. Liao. Learning Hierarchical Poselets for Human Parsing. In Proc. **CVPR 2011**.

Builds on Poslets idea of Bourdev et al.

S. Johnson and M. Everingham. Learning Effective Human Pose Estimation from Inaccurate Annotation. In Proc. **CVPR 2011**.

Learns from lots of noisy annotations

B. Sapp, D.Weiss and B. Taskar. Parsing Human Motion with Stretchable Models. In Proc. **CVPR 2011**.

Explores temporal continuity

Pose estimation is still a hard problem

Issues: • occlusions

clothing and pose variations

Appearance-based methods: background subtraction

$$\underline{D(x, y, t)} \quad t = 1, \dots, T$$

Idea: summarize motion in video in a *Motion History Image (MHI)*:

$$H_{\tau}(x, y, t) = \begin{cases} \tau & \text{if } D(x, y, t) = 1\\ \max & (0, H_{\tau}(x, y, t - 1) - 1)\\ \text{otherwise} \end{cases}$$

Descriptor: Hu moments of different orders

$$m_{pq} = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x^p y^q \rho(x, y) dx dy$$

[A.F. Bobick and J.W. Davis, PAMI 2001]

Appearance-based methods: shape tracking

[Baumberg and Hogg, ECCV 1994]

Goal: Interpret complex dynamic scenes

Common problems:

Common methods:

 Segmentation using background model -> hard
 Tracking using appearance model ->hard
 Complex & changing BG
 Changing appearance

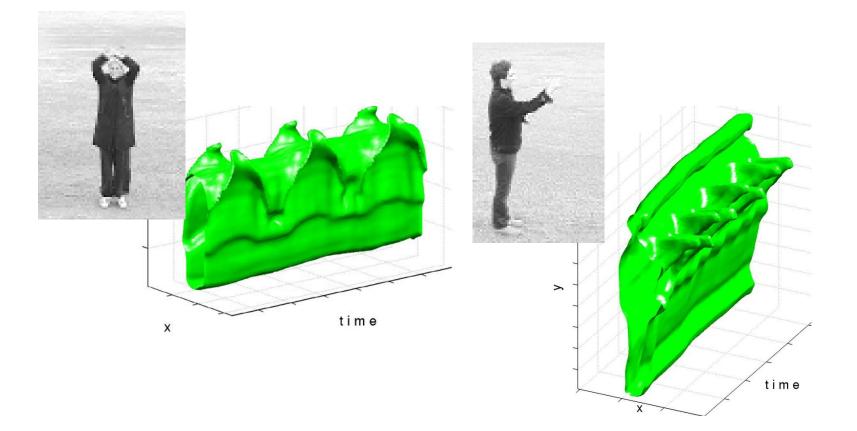
 \Rightarrow Global assumptions about the scene are unreliable

No global assumptions \Rightarrow Consider local spatio-temporal neighborhoods

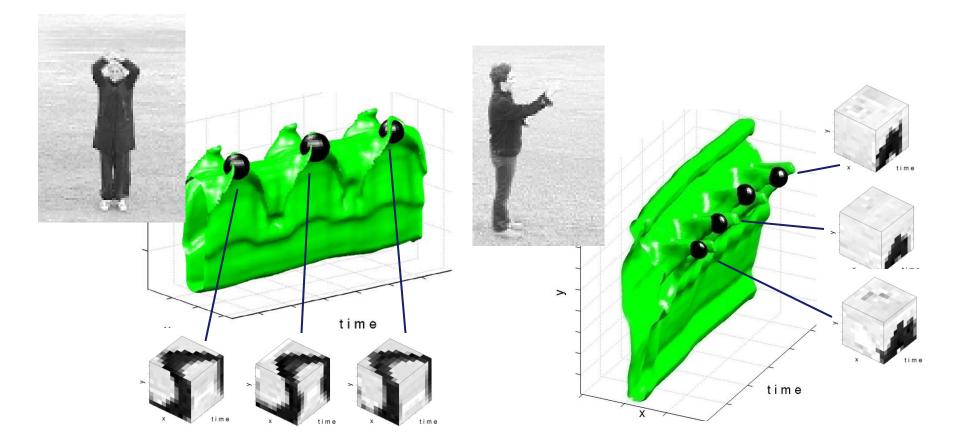
hand waving

boxing

Actions == Space-time objects?



Space-time local features

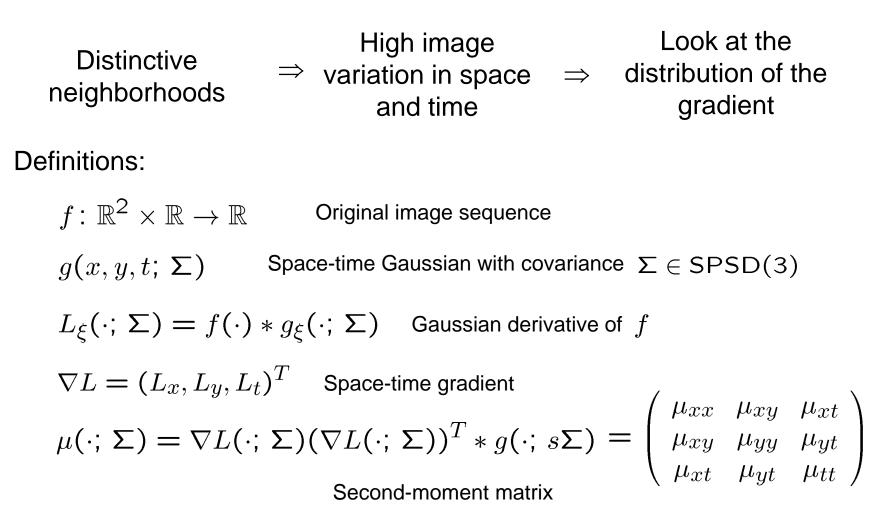


Local approach: Bag of Visual Words

Airplanes	
Motorbikes	
Faces	
Wild Cats	
Leaves	
People	
Bikes	

Space-Time Interest Points: Detection

What neighborhoods to consider?



[Laptev 2005]

Space-Time Interest Points: Detection

Properties of $\mu(\cdot; \Sigma)$

 $\mu(\cdot; \Sigma)$ defines second order approximation for the local distribution of ∇L within neighborhood Σ

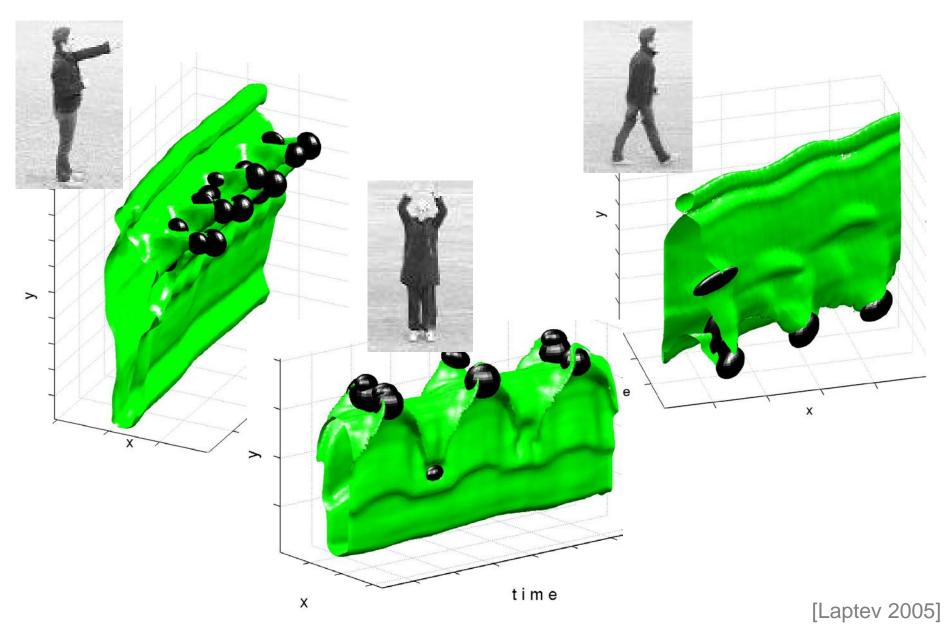
- $rank(\mu) = 1 \implies 1D$ space-time variation of f e.g. moving bar
- $rank(\mu) = 2 \implies 2D$ space-time variation of f e.g. moving ball
- $rank(\mu) = 3 \implies 3D$ space-time variation of f e.g. jumping ball

Large eigenvalues of μ can be detected by the local maxima of H over (x,y,t):

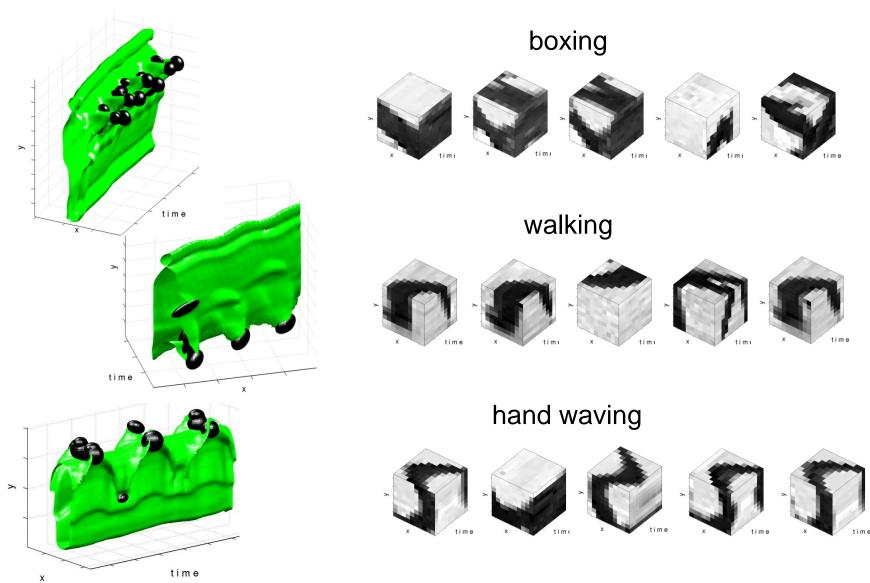
$$H(p; \Sigma) = \det(\mu(p; \Sigma)) + k \operatorname{trace}^{3}(\mu(p; \Sigma))$$
$$= \lambda_{1} \lambda_{2} \lambda_{3} - k(\lambda_{1} + \lambda_{2} + \lambda_{3})^{3}$$

(similar to Harris operator [Harris and Stephens, 1988])

Local features for human actions



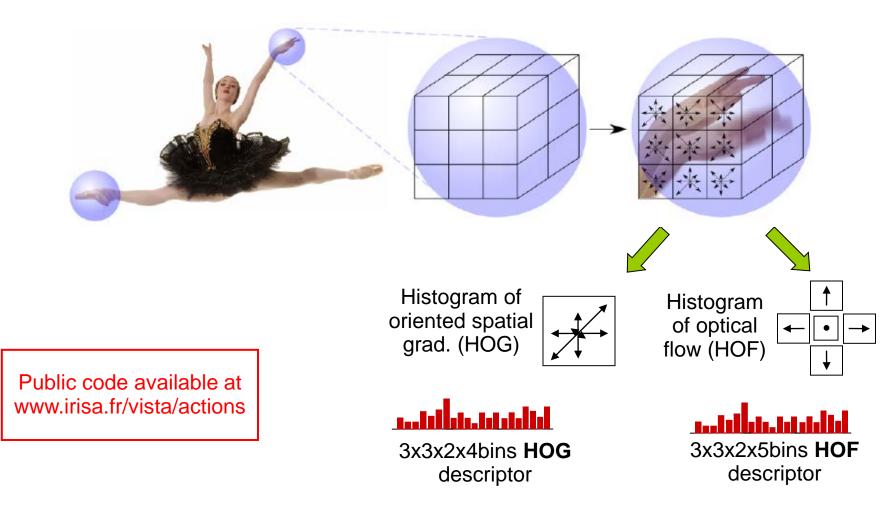
Local features for human actions



[Laptev 2005]

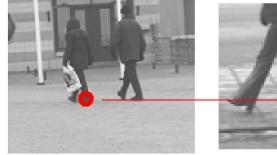
Local space-time descriptor: HOG/HOF

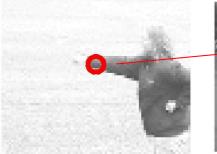
Multi-scale space-time patches

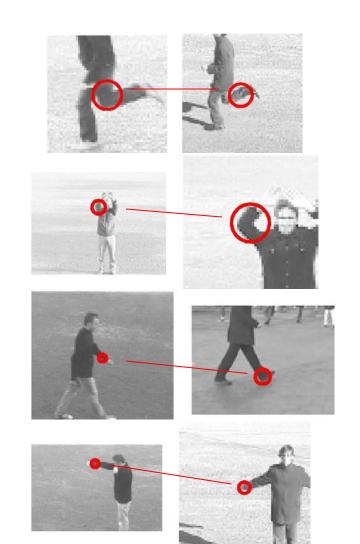


Local Space-time features: Matching

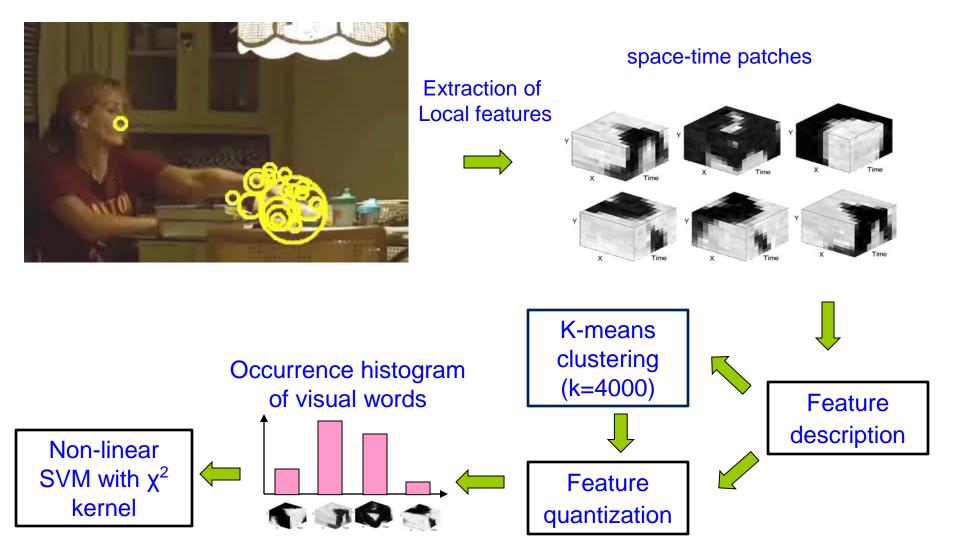
• Find similar events in pairs of video sequences







Bag-of-Features action recognition



[Laptev, Marszałek, Schmid, Rozenfeld 2008]

Action classification (CVPR08)

Test episodes from movies "The Graduate", "It's a Wonderful Life", "Indiana Jones and the Last Crusade"

Evaluation of local feature detectors and descriptors

Four types of detectors:

- Harris3D [Laptev 2003]
- Cuboids [Dollar et al. 2005]
- Hessian [Willems et al. 2008]
- Regular dense sampling

Four types of descriptors:

- HoG/HoF [Laptev et al. 2008]
- Cuboids [Dollar et al. 2005]
- HoG3D [Kläser et al. 2008]
- Extended SURF [Willems'et al. 2008]

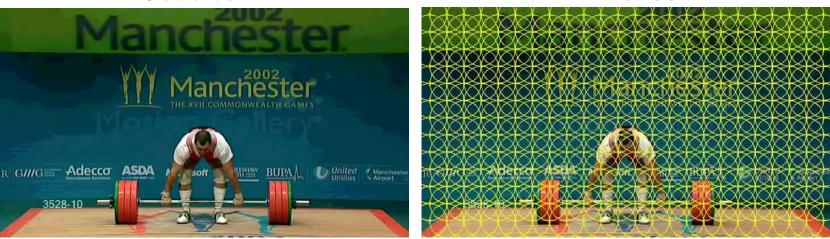
Three human actions datasets:

- KTH actions [Schuldt et al. 2004]
- UCF Sports [Rodriguez et al. 2008]
- Hollywood 2 [Marszałek et al. 2009]

Space-time feature detectors

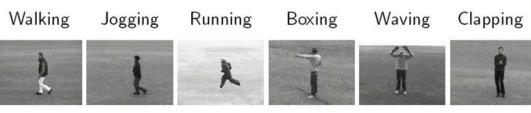
Harris3D

Cuboids



Results on KTH Actions

Descriptors



6 action classes, 4 scenarios, staged

Detectors				
	Harris3D	Cuboids	Hessian	Dense
HOG3D	89.0%	90.0%	84.6%	85.3%
HOG/HOF	91.8%	88.7%	88.7%	86.1%
HOG	80.9%	82.3%	77.7%	79.0%
HOF	92.1%	88.2%	88.6%	88.0%
Cuboids	-	89.1%	-	-
E-SURF	-	-	81.4%	-

(Average accuracy scores)

- Best results for **sparse** Harris3D + HOF
- Dense features perform relatively poor compared to sparse features
 [Wang, Ullah, Kläser, Laptev, Schmid, 2009]

Results on UCF Sports

Descriptors

10 action classes, videos from TV broadcasts

Detectors						
	Harris3D	Cuboids	Hessian	Dense		
HOG3D	79.7%	82.9%	79.0%	85.6%		
HOG/HOF	78.1%	77.7%	79.3%	81.6%		
HOG	71.4%	72.7%	66.0%	77.4%		
HOF	75.4%	76.7%	75.3%	82.6%		
Cuboids	-	76.6%	-	-		
E-SURF	-	-	77.3%	-		

(Average precision scores)

• Best results for **dense** + HOG3D

[Wang, Ullah, Kläser, Laptev, Schmid, 2009]

Results on Hollywood-2

Descriptors

12 action classes collected from 69 movies

Detectors						
	Harris3D	Cuboids	Hessian	Dense		
HOG3D	43.7%	45.7%	41.3%	45.3%		
HOG/HOF	45.2%	46.2%	46.0%	47.4%		
HOG	32.8%	39.4%	36.2%	39.4%		
HOF	43.3%	42.9%	43.0%	45.5%		
Cuboids	-	45.0%	-	-		
E-SURF	-	-	38.2%	-		

(Average precision scores)

• Best results for **dense** + HOG/HOF

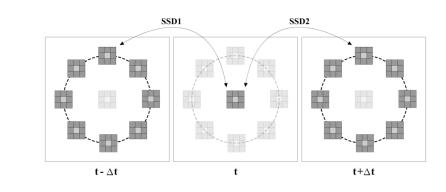
[Wang, Ullah, Kläser, Laptev, Schmid, 2009]

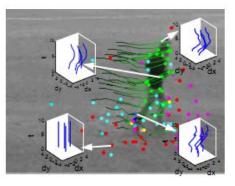
Other recent local representations

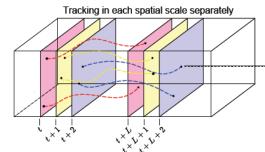
 Y. and L. Wolf, "Local Trinary Patterns for Human Action Recognition ", ICCV 2009

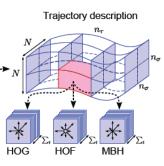
 P. Matikainen, R. Sukthankar and M. Hebert "Trajectons: Action Recognition Through the Motion Analysis of Tracked Features" ICCV VOEC Workshop 2009,

 H. Wang, A. Klaser, C. Schmid, C.-L. Liu, "Action Recognition by Dense Trajectories", CVPR 2011



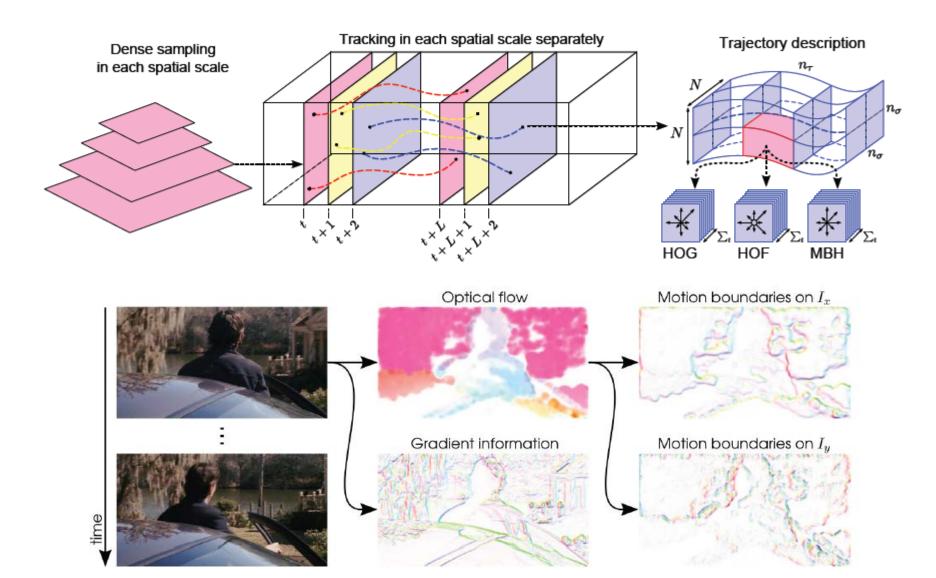






Dense trajectory descriptors

[Wang et al. CVPR'11]



Dense trajectory descriptors

[Wang et al. CVPR'11]

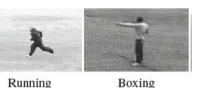
	KTH		YouTube		Hollywood2		UCF sports	
	KLT	Dense trajectories	KLT	Dense trajectories	KLT	Dense trajectories	KLT	Dense trajectories
Trajectory	88.4%	90.2%	58.2%	67.2%	46.2%	47.7%	72.8%	75.2%
HOG	84.0%	86.5%	71.0%	74.5%	41.0%	41.5%	80.2%	83.8%
HOF	92.4%	93.2%	64.1%	72.8%	48.4%	50.8%	72.7%	77.6%
MBH	93.4%	95.0%	72.9%	83.9%	48.6%	54.2%	78.4%	84.8%
Combined	93.4%	94.2%	79.9%	84.2%	54.6%	58.3%	82.1%	88.2%

KTH		YouTube		Hollywood	2	UCF sports	
Laptev et al. [14]	91.8%	Liu et al. [16]	71.2%	Wang et al. [32]	47.7%	Wang et al. [32]	85.6%
Yuan et al. [35]	93.3%	Ikizler-Cinbis et al. [9]	75.21%	Gilbert et al. [8]	50.9%	Kovashka et al. [12]	87.27%
Gilbert et al. [8]	94.5%			Ullah <i>et al</i> . [31]	53.2%	Kläser et al. [10]	86.7%
Kovashka et al. [12]	94.53%			Taylor <i>et al.</i> [29]	46.6%		
[Wang et al.]	94.2%	[Wang et al.]	84.2%	[Wang et al.]	58.3%	[Wang et al.]	88.2%

Where to get the training data?

Action recognition datasets

KTH Actions, 6 classes, 2391 video samples [Schuldt et al. 2004]



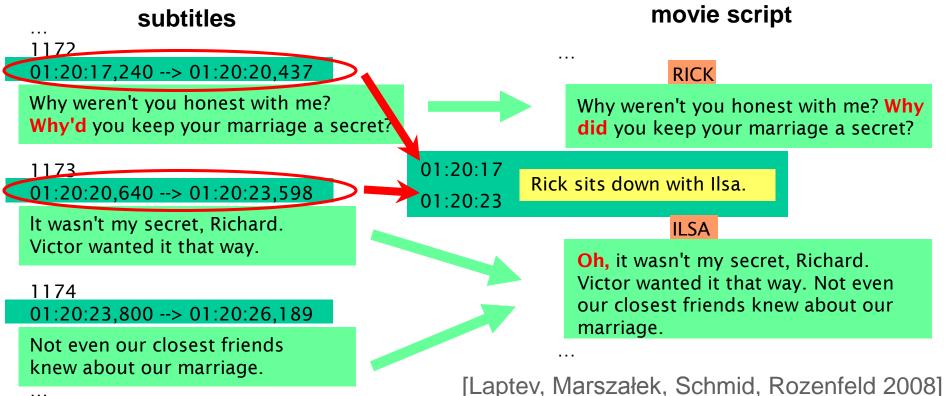
Running

Weizman, 10 classes, 92 video samples, [Blank et al. 2005]

- UCF YouTube, 11 classes, 1168 samples, [Liu et al. 2009]
- Hollywood-2, 12 classes, 1707 samples, [Marszałek et al. 2009]
- UCF Sports, 10 classes, 150 samples, [Rodriguez et al. 2008]
- Olympic Sports, 16 classes, 783 samples, [Niebles et al. 2010]
- HMDB, 51 classes, ~7000 samples, [Kuehne et al. 2011]
- PASCAL VOC 2011 Action Classification Challenge, 10 classes, 3375 image samples

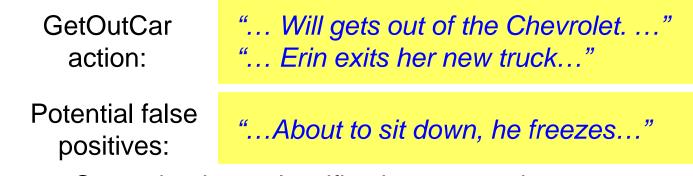
Script-based video annotation

- Scripts available for >500 movies (no time synchronization) www.dailyscript.com, www.movie-page.com, www.weeklyscript.com ...
- Subtitles (with time info.) are available for the most of movies
- Can transfer time to scripts by text alignment

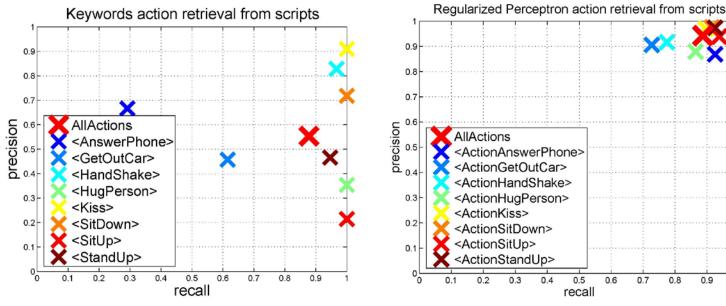


Text-based action retrieval

Large variation of action expressions in text:



=> Supervised text classification approach



[Laptev, Marszałek, Schmid, Rozenfeld 2008]

0.8

0.9

Hollywood-2 actions dataset

Actions						
	Training subset (clean)	Training subset (automatic)	Test subset (clean)			
AnswerPhone	66	59	64			
DriveCar	85	90	102			
Eat	40	44	33			
FightPerson	54	33	70			
GetOutCar	51	40	57			
HandShake	32	38	45			
HugPerson	64	27	66			
Kiss	114	125	103			
Run	135	187	141			
SitDown	104	87	108			
SitUp	24	26	37			
StandUp	132	133	146			
All Samples	823	810	884			

Training and test samples are obtained from 33 and 36 distinct movies respectively.

Hollywood-2 dataset is on-line: http://www.irisa.fr/vista /actions/hollywood2

[Laptev, Marszałek, Schmid, Rozenfeld 2008]

Action classification results

	Cle	ean		Automatic		
	hoghof		\prod	hoghof		Chance
Channel	bof	flat	\prod	bof	flat	
mAP	47.9	50.3	Π	31.9	36.0	9.2
AnswerPhone	15.7	20.9		18.2	19.1	7.2
DriveCar	86.6	84.6		78.2	80.1	11.5
Eat	59.5	67.0		13.0	22.3	3.7
FightPerson	71.1	69.8		52.9	57.6	7.9
GetOutCar	29.3	45.7		13.8	27.7	6.4
HandShake	21.2	27.8		12.8	18.9	5.1
HugPerson	35.8	43.2		15.2	20.4	7.5
Kiss	51.5	52.5		43.2	48.6	11.7
Run	69.1	67.8		54.2	49.1	16.0
SitDown	58.2	57.6		28.6	34.1	12.2
SitUp	17.5	17.2		11.8	10.8	4.2
StandUp	51.7	54.3		40.5	43.6	16.5

Average precision (AP) for Hollywood-2 dataset

Actions in Context

• Human actions are frequently correlated with particular scene classes Reasons: *physical properties* and *particular purposes* of scenes

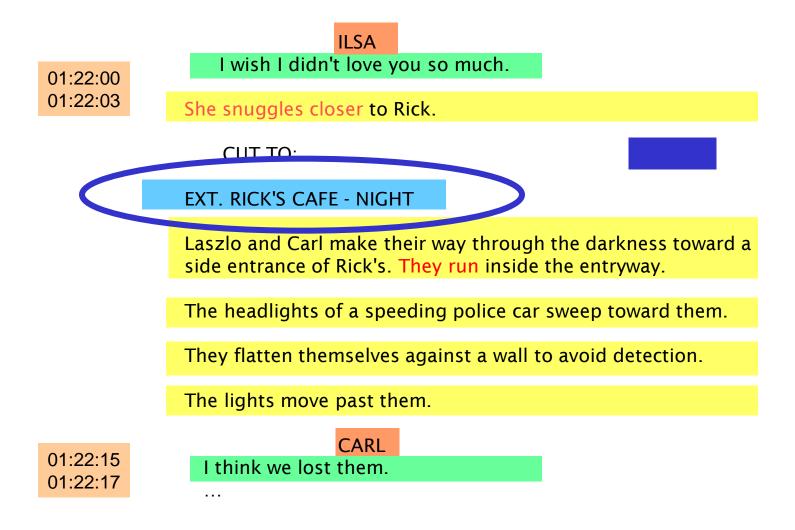
Eating -- kitchen

Eating -- cafe

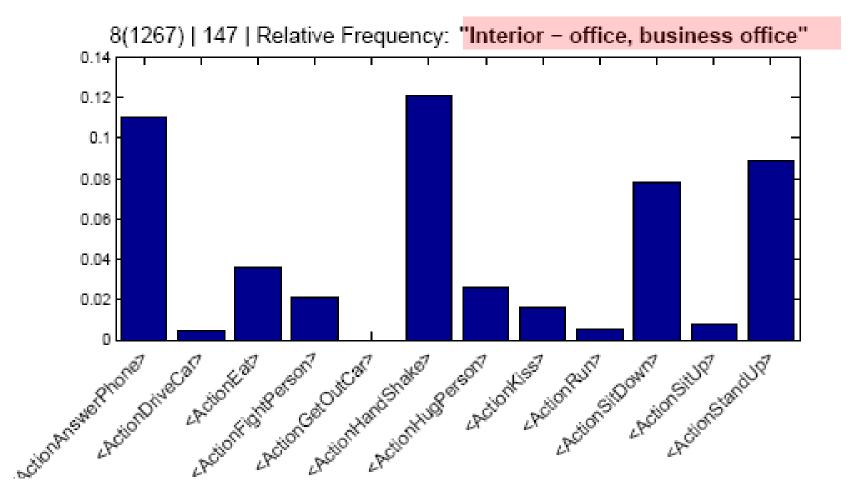
Running -- road

Running -- street

Mining scene captions

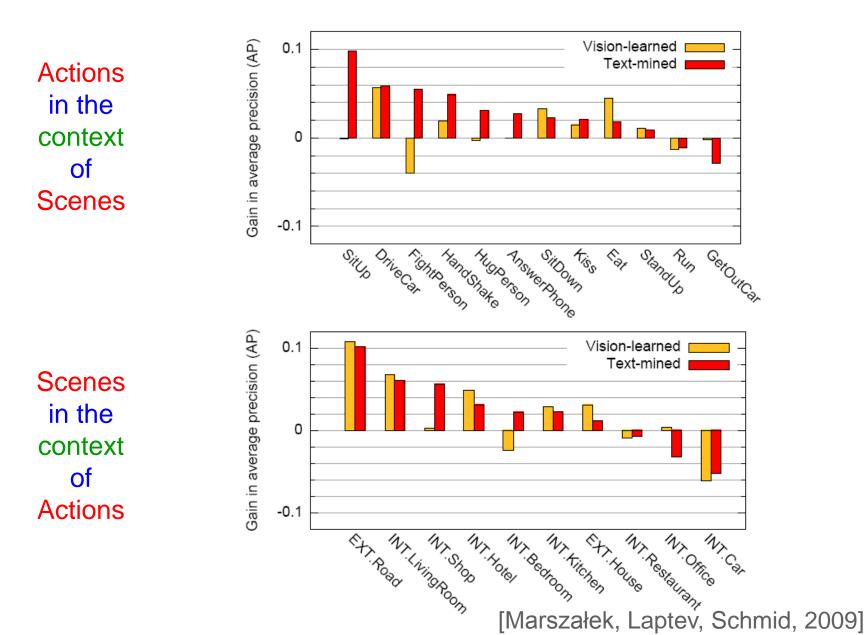


Co-occurrence of actions and scenes in scripts

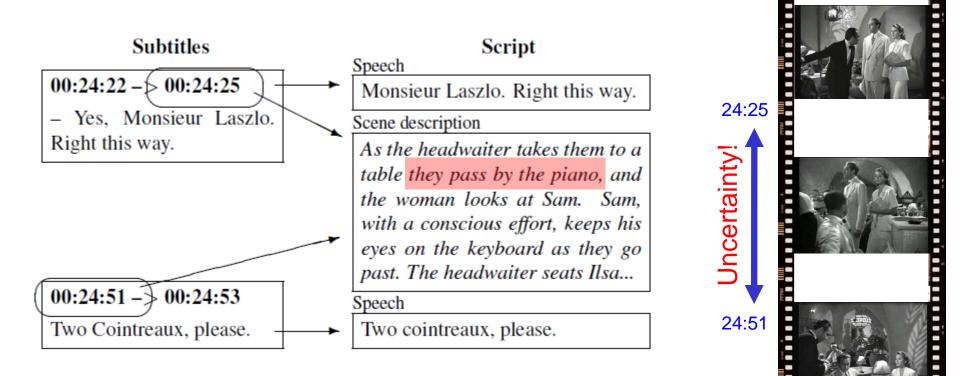


[Marszałek, Laptev, Schmid, 2009]

Results: actions and scenes (jointly)



Handling temporal uncertainty



[Duchenne, Laptev, Sivic, Bach, Ponce, 2009]

Handling temporal uncertainty

Input:

- Action type, e.g.
 Person Opens Door
- Videos + aligned scripts

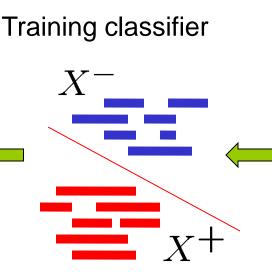
Automatic collection of training clips

... Jane jumps up and opens the door Carolyn opens the front door ...

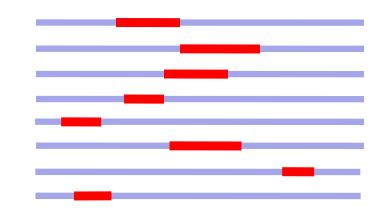
... Jane opens her bedroom door ...

Output:

Slidingwindow-style temporal action localization



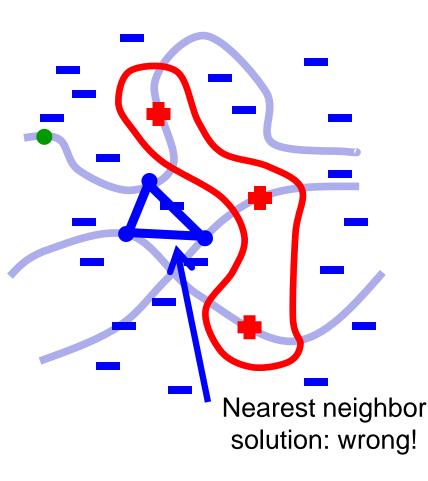
Clustering of positive segments



[Duchenne, Laptev, Sivic, Bach, Ponce, 2009]

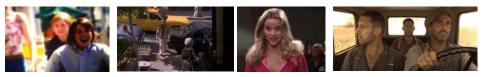
Discriminative action clustering

Feature space



Video space

Negative samples



Random video samples: lots of them, very low chance to be positives

[Duchenne, Laptev, Sivic, Bach, Ponce, 2009]

Action detection: Sliding time window

"Sit Down" and "Open Door" actions in ~5 hours of movies



Temporal detection of "Sit Down" and "Open Door" actions in movies: The Graduate, The Crying Game, Living in Oblivion [Duchenne et al. 09]

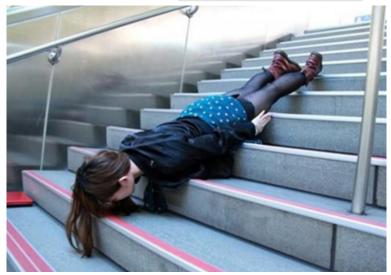
What we have seen so far

Actions understanding in realistic settings:

Action classification

Is classification the final answer?

How to recognize this as unusual?



How to recognize this as dangerous?

Is action vocabulary well-defined ?

Examples of an action "Open"

Is action vocabulary well-defined ?

Source: http://www.youtube.com/watch?v=eYdUZdan5i8

Do we want to learn person-throws-cat-into-trash-bin classifier?

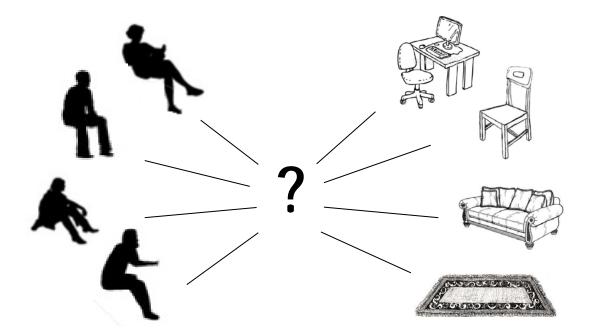
Scene semantics from long-term observation of people

ECCV 2012

V. Delaitre, D. F. Fouhey, I. Laptev, J. Sivic, A. Gupta, A. Efros

Motivation

• Exploit the link between human pose, action and object function.



• Use human actors as active sensors to reason about the surrounding scene.

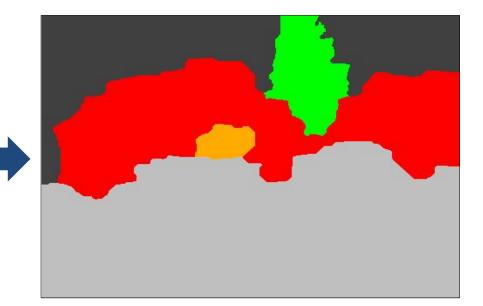
Goal

Recognize objects by the way people interact with them.

Time-lapse "Party & Cleaning" videos

Lots of person-object interactions, many scenes on YouTube

Semantic object segmentation



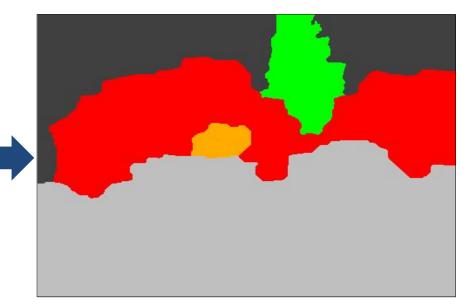
New "Party & Cleaning" dataset

Goal

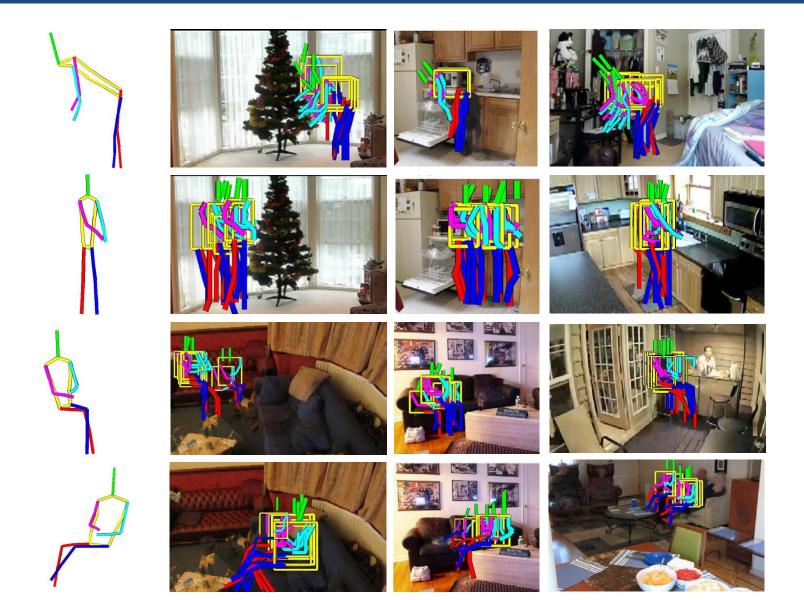
Recognize objects by the way people interact with them.

Time-lapse "Party & Cleaning" videos

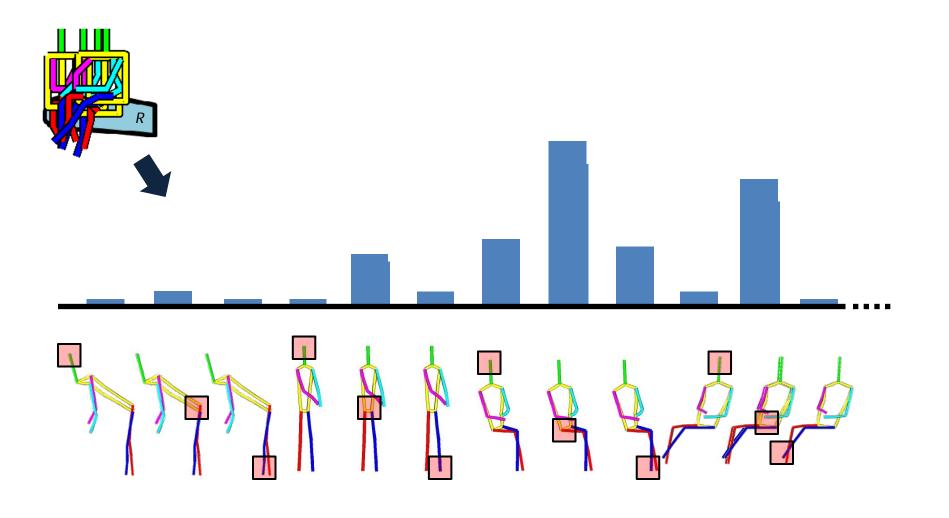
Lots of person-object interactions, many scenes on YouTube Semantic object segmentation



Pose vocabulary

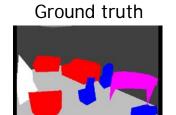


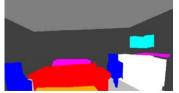
Pose histogram

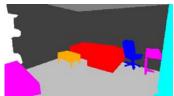


Some qualitative results

Background



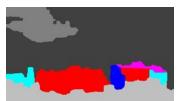




'A+P' soft segm.

'A+L' soft segm.

'A+P' hard segm.



Bed

Chair

CoffeeTable

Cupboard

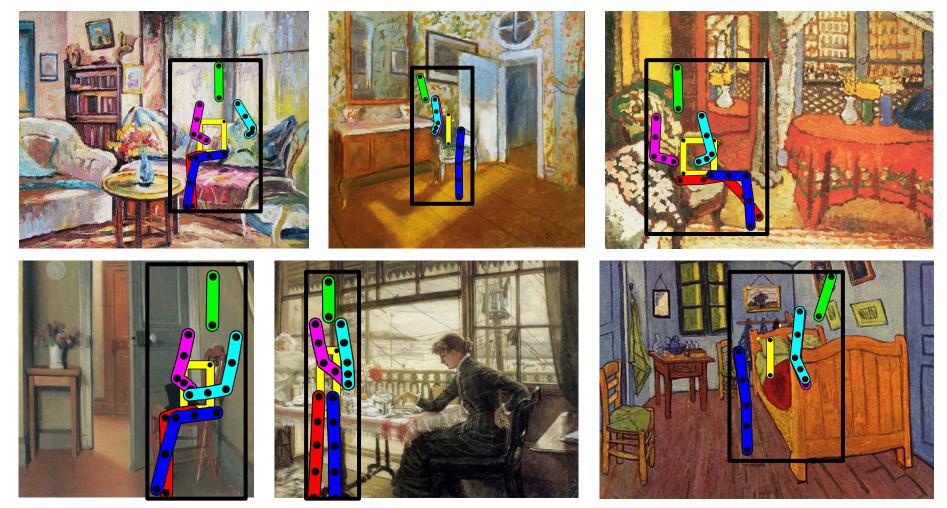
SofaArmchair

Table

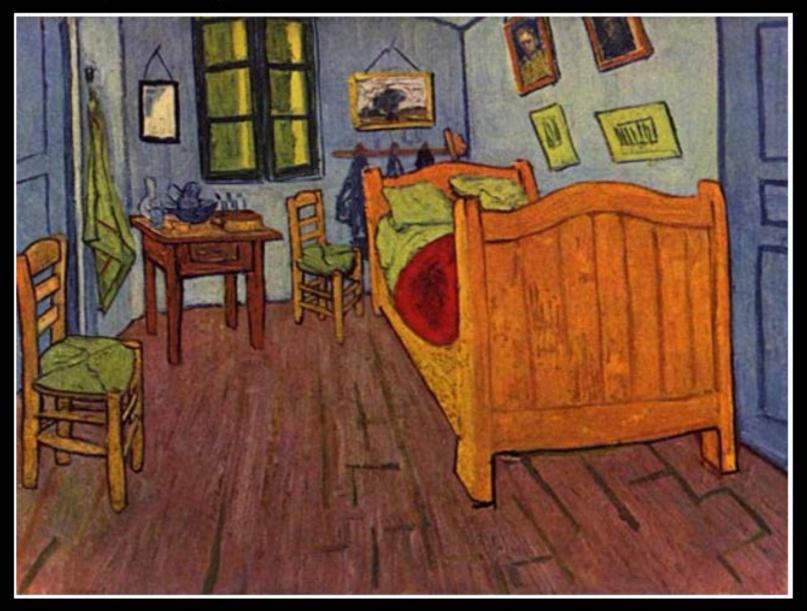
Other

Using our model as pose prior

Given a bounding box and the ground truth segmentation, we fit the pose clusters in the box and score them by summing the joint's weight of the underlying objects.



Input image



Conclusions

- BOF methods give encouraging results for action recognition in realistic data. But better models are needed
- Large-scale readily available annotation provides reach source of supervision for action recognition.
- Action vocabulary is not well-defined. Classifying videos to N labels is not the end of the story. Recognizing object function and human actions should be addressed jointly

Willow, Paris