
1-1

Similarity Search in High

Dimensional Spaces: Application

to Multimedia

Vincent Oria

New Jersey Institute of Technology

Newark, NJ 07102

USA

1-2

Acknowledgement

 Michael Houle (NII, Tokyo)

 Search in high dimensional spaces

 Image annotation through face tag propagation

 Shin’ichi Satoh (NII, Tokyo)

 Image annotation through face tag propagation

 Jichao Sun (NJIT, USA)

 Image annotation through face tag propagation

1-3

Outline
 Multimedia

 Motivating application

Knowledge Propagation in Large Image Databases

 Similarity Search and Intrinsic Dimensionality

 Similarity Search and the Curse of Dimensionality

 Locality Sensitive Hashing (LSH)

 Cover Tree (CT)

 Rank Cover Tree (RCT)

 Conclusion

1-4

Multimedia Data

 Multimedia in principle means data of more than

one medium

 Commonly used forms of data are numbers,

alphanumeric, text, images, audio, and video

 Multimedia denotes a combination of text, audio,

and video

1-5

Chronology of Data Types in Computer

Science

 Numeric Data: scientific computations, early stages of

computing

 Alphanumerical Data: Business Applications

 large volumes of data

 RDBMS, E-R Model

 Multimedia Data: Novel Applications

 Text

 Image

 Video

 Audio

1-6

Similarity Searches in Multimedia

1) extract from each object N numerical features

and map objects into points of a N-dimensional space

2) use a suitable distance (e.g., Euclidean) over such a

space, and search for “close” objects using a multi-

dimensional (“spatial”) index

* Slide borrowed from Paolo Ciaccia

1-7

Vector-based Similarity

Searches*

 Using the same distance function is not always

appropriate

Example: retrieve (only) black points

* Slide borrowed From Paolo Ciaccia

1-8

Outline

 Multimedia

 Introduction

 Motivating applications

An Example of Music Search Application

 Similarity Search and Intrinsic Dimensionality

 Similarity Search and the Curse of Dimensionality

 Experiments

 Conclusion

1-9

KProp: Knowledge Propagation in Large Image

Databases Using Neighborhood Information

Michael Houle, Vincent Oria, Shin’ichi Satoh,

Jichao Sun

(ACM MM 2011)

1-10

A query-based baseline -- Bestmatch

Bestmatch is a simple greedy algorithm which:

• Computes pairwise visual distances of detected objects;

• For each unlabeled object u, find its nearest labeled object
v;

• Assign label t to u, where t is the label attached to v.

1-11

Building the influence graph

•

1-12

Sample images of the datasets

 ALOI-100

• Google-23

1-13

Feature Descriptor and Distance Measure

 Google-23 Face Set

 Frontal faces are detected by the face detector of OpenCV 1.0

 Feature descriptors are computed by the Oxford Matlab code:

 13 (9 detected +4 inferred) interest points

 149-D vector computed around each interest point

 1937-D vector for each face

 Euclidean distance (L2) is used as distance measure

 ALOI

 Each image is represented by a 641-D vector

based on color and texture histograms

 Again L2 distance is used as distance measure

1-14

Experimental results – ALOI-100

1-15

Experimental results – Google-23

1-16

Discussion

 All four methods perform better on ALOI-100 than on
Google-23.

 LapSVM is not consistently better than SVM --- it beats
SVM on ALOI-100 but loses to SVM on Google-23 ---
since it is sensible to labeled data and usually needs to be
well tuned.

 KProp has much better performance than all other methods
especially when the number of labeled sample is small (say
1, 2 or 3). It is always better than SVM on ALOI-100 but
SVM overtakes KProp on Google-23 when more than 3
faces are labeled per person. This can be explained by the
transitivity of object relationships.

1-17

Discussion (cont’d)

• Distance distributions of the two datasets (from left to
right: ALOI-100 and Google-23).

• It can be seen from the figures that, it is much difficult to
tell whether two faces belong to a same person by their
distance.

17

1-18

Outline

 Multimedia

 Motivating application

Knowledge Propagation in Large Image Databases

 Similarity Search and Intrinsic Dimensionality

 Similarity Search and the Curse of Dimensionality

 Locality Sensitive Hashing (LSH)

 Cover Tree (CT)

 Rank Cover Tree (RCT)

 Conclusion

1-19

■ Traditional approaches:

● Data drawn from a real vector space Rm.

● Distance function d: Rm  R.

● Structure makes use of data representation.

● Organization often depends on hierarchical decomposition
of the domain  costs typically exponential in m.

● Triangle inequality used for pruning of search paths.

■ Examples:

● R-tree (Guttman 1984).

● SR-tree (Katayama & Satoh 1997).

● Quadtree (Finkel & Bentley 1974), Octree.

● k-d tree (Bentley 1975).

● Many, many more…

Spatial Indexing

1-20

Spatial Indexing
 Traditional approaches:

 Data drawn from a real vector space Rm.

 Distance function d: Rm R.

 Structure makes use of data representation.

 Organization often depends on hierarchical

decomposition of the domain costs typically

exponential in m

 Examples:

 R-tree (Guttman 1984).

 SR-tree (Katayama & Satoh 1997).

 Quadtree (Finkel & Bentley 1974), Octree.

 k-d tree (Bentley 1975).

 Many, many more…

1-21

The Curse of Dimensionality

 Spatial effect of dimensionality:

Exponential increase in volume associated with increase in
dimensionality.

Distances concentrate around their mean values  indistinguishable.

Variances tend to zero as a proportion of the mean.

Points tend to concentrate along region boundaries.

d
d

d

dd

d

r
d

VB

rVS

)21(

2

2

2








 Implications for search:

Search paths begin to look identical.

Modelling of data becomes more difficult.

1-22

The Curse of

Dimensionality

Searching high-dimensional data:

 Exact similarity queries require close
to linear time.

 Data organization is a major
challenge.

 2D and 3D intuition does not apply!

But!... This doesn’t mean that
neighborhoods are meaningless!

Example: LA-Times 127738x6590 text
data set, vector angle metric

1-23

23

Intrinsic Dimension and Search

 Idea: performance analysis in terms of a characterization of the data,

not the space.

 Question: what dimension does the data appear to be in?

 Many measures have been proposed, including:

 Fractal dimension.

 Doubling dimension.

 Expansion dimension.

 We will look at two approaches with analysis based on expansion

dimension:

 Distance-based: Cover Tree [Beygelzimer et al, 2006].

 Rank-based: Rank Cover Tree [H. and Nett, submitted].

1-24

Expansion Dimension
 Expansion rate of set S:

 Introduced by Karger & Ruhl (2002).

 Used to measure of the cost of an

expanding search in the vicinity of a

query point q.

 Maximum ratio d of the number of

points in two balls centered at q.

 Expansion dimension:

 Measure of intrinsic dimensionality of

S.

 If representational dimension is m…

 Doubling the radius of a sphere 

volume increases by factor 2m.

),()2,(

),(

rqBrqB

brqB

SS

S







),(rqBS

)2,(rqBS

3

q r

r2

2logD

1-25

Generalization of expansion dimension
 Generalization of expansion dimension.

 Choose any two spheres of positive,

unequal radii.

 If volumes are known, can compute

representational dimension.

 Volumes are not known, so...

 ...estimate using numbers of points

captured by the spheres.

 Two sets of measurements allows for

assessment of local intrinsic

dimensionality.

 Can characterize data sets according to

average stereological dimension.

1

2

1

2

log

log

r

r

V

V

d 

1V
242 k

q 1r

2r

1

2

1

2

log

log

r

r

k

k

D 

242 k

81 k

1-26

Coping with the Curse:

k-NN Approximation Methods

 Trade exactness of similarity query for efficiency.

 Older approximation methods of mainly
theoretical interest.

 Performance typically depends on:

● Dimension.

● Relative distance error.

● Probability of correctness.

 Distance error approximation is much less
effective in high dimensions!

1-27

k-NN Approximation Methods

 Several results claiming speedups of 1-2 orders of magnitude, over

sequential search:

● Metric data: M-Tree (Zezula et al., 1998).

● Vector data: LSH (Indyk and Motwani, 1998; with Gionis, 1999).

● Vector data: clustering based approximation (Ferhatosmanoglu et al.,

2001).

● ...

 Data sets typically of the order of 103 -105 elements and 50-200 attributes.

 Time / accuracy tradeoff difficult to manage in practice.

 No consensus on how to measure accuracy.

1-28

Some Measures of Accuracy

 U = {u1,u2,…} : approx NN set.

 U ’ : subset of some

(unknown) exact k-NN set.

 ri : (unknown) distance from q

to exact i-th NN.

||

|'|
),(max

' U

U
UqA

UU 



















||

1

2

||

1

||

1
1

) ,(

||

1
),(

) ,(

),(

U

i i

i

U

i

i

U

i

i

r

uqdist

U
UqA

r

uqdist

UqA

Distance Based Rank Based

Definitions

1-29

Outline

 Multimedia

 Motivating application

Knowledge Propagation in Large Image Databases

 Similarity Search and Intrinsic Dimensionality

 Similarity Search and the Curse of Dimensionality

 Locality Sensitive Hashing (LSH)

 Cover Tree (CT)

 Rank Cover Tree (RCT)

 Conclusion

1-30

 Indyk and Motwani (1998), with Gionis (1999)

 “Locality-sensitive” hashing technique.

 Hash data so that similar items are mapped to the same bucket with
high probability.

 Data modeled as vectors

 Hamming distance with bit sampling.

 Advantages

 1-2 orders of magnitude speedup possible, for n ~ 105, d ~ 60.

 General technique extensible – very popular!

 Drawbacks

 Accuracy measured according to distances but not rank..

Locality Sensitive Hashing

1-31

LSH Families

■ LSH family F of hash functions for metric space M :

• Distance function d : M  R 0.

• Hash table T.

• Hash functions h  F : M  T.

• Distance threshold r.

• Approximation factor c > 1.

• Randomly-selected hash function h  F .

■ F is a (r,cr,p,q)-sensitive family when:

• Close points likely map to the same bucket:
d (x,y)  r  h (x) = h (y) with probability at least p.

• Far points likely map to different buckets:
d (x,y)  cr  h (x) = h (y) with probability at most q.

• Interesting when p > q.

h

1-32

Examples of LSH Families

■ Bit-sampling LSH:

• Each point represented as an m-dimensional bit vector.

• Hamming distance d : {0,1}m  R 0, number of differing bits.

• LSH family: hi (x) selects i -th bit of x.

• Choose some distance threshold r and approximation factor c > 1.

• (r,cr,p,q)-sensitive for p = 1 – r /m and q = 1 – cr /m.

000
001

010

100

110

011 111

h

1 0

i =1

1-33

Examples of LSH Families

■ Separating hyperplanes (random projections):

● LSH family: h (x) associated with hyperplane with normal vector v.

● Random hash function h (x) = sign (v • x) = ±1 , for random v.

● Depends on which side of the hyperplane x lies.

● For uniformly distributed data:

● Sensitive LSH family for vector angle distance metric arccos.

    yxyhxh  arccos1)()(Pr

v x

y
 yx  arccos

1-34

■ Basic idea:

● Start with any LSH family F.

● Construct a new LSH family G by concatenation of w hash functions
from F.

● Choose u random hash functions from G .

● Preprocessing step: hash all points of the dataset into the u hash
tables.

 )(,),()(1 xhxhxg w

■ Processing of query q :

● For each hash function g, search through the buckets indexed
by g (q).

● Stop once we find a point x for which d (q,x)  cr .

Approximate 1-NN Search Using

LSH

1-35

35

 Performance:

 th : time to evaluate hash functions of F.

 td : time to evaluate distance function.

 n : number of points in the data set.

Other design choices:

Preprocessing time:

Additional space:

Query time:

Prob. of finding neighbour within distance cr :

)()(1

hh wtnOnuwtO 

)()(dhd

w

h tnwtnOtnuquwtO  

)1()( wup

q

n
wnu

q

p

1log

log
;;

log

log
 

)()(1  nOnuO

Approximate 1-NN Search Using LSH

1-36

Approximate 1-NN Search Using

LSH
 Requirements for scalability:

Small approximation factor c.

Probability p must be much
larger than probability q.

 If the representational
dimension is high, the
distance computation time td
must not depend on it.

 Conclusion:

LSH has intriguing possibilities for data mining, but ...

 ... the family of hash functions must be quite sensitive!

Hashing typically depends on the representational dimension.

Better practical performance by abandoning theoretical guarantees 
heuristics!

p q  = log p / log q

0.80 0.20 0.1386

0.70 0.30 0.2962

0.60 0.40 0.5575

0.55 0.45 0.7487

0.50 0.50 1.0000

1-37

Outline
 Multimedia

 Motivating application

Knowledge Propagation in Large Image Databases

 Similarity Search and Intrinsic Dimensionality

 Similarity Search and the Curse of Dimensionality

 Locality Sensitive Hashing (LSH)

 Cover Tree (CT)

 Rank Cover Tree (RCT)

 Experiments

 Conclusion

1-38

38

Cover Tree

 Introduced by Beygelzimer, Kakade & Langford (2006).

 Tree index for exact similarity search.

 (1+e)-distance approximation also possible using early termination.

 Metric space data

 Triangle inequality satisfied.

 No assumed knowledge of data representation or dimension.

 Worst-case performance optimal in n:

 O (n log n) construction, O (log n) search, insertion, deletion.

 No explicit dependence on representational dimension, BUT...

 Strong dependence on a measure of intrinsic dimensionality.

1-39

Cover Tree Properties

 Let u be a node at level i-1.

 Let v be the parent of u at level i.

 Let w be another node at level i.

 Covering tree condition:

 Separation condition:

 Closest pair assumed to have

distance 1.

2

2 3 4 5 6 7 8 9 10 11

6 7 9 10 4

6 9

6

1

5
4

7

2
1

3

8

9 11

10

i = 0

i = 1

i = 2

i = 3

6 20

21

22

ivud 2),(

iwvd 2),(

1-40

Cover Sets

 Assume that we have:

 Query item q.

 At level i > 0, a set of nodes Vi containing

ancestors of every k-NN u of q (Cover Set).

 Let V* be the set of all children of Vi.

 Distance to k-th NN of V*:

 Implication:

 Can form new cover set at level i -1 as

 All children of v are within distance 2i of v, so

no ancestor of neighbor u is discarded.

}2),(),(:{ **1

i

ki VqdvqdVvV 

),(*Vqdk

w

2i-2

2i-1

i
i

j

jvud 22),(
1

 




v

20

q u
),(*Vqdk

1-41

Cover Tree Search

 Find k-Nearest (cover tree T, query point q, number of neighbors k):

 Set Vh=Lh to be the initial cover set (all nodes are descendants).

 For i = h-1 down to 1:

 Set V* be the set of all children of Vi.

 Form new cover set
 Return the k items of V0 closest to q.

 Insertion and deletion resemble search:

 Insertion by local modification of tree structure after search.

 Only the highest-level copy of the item is explicitly inserted.

 Deletion slightly more complex.

 Construction by successive insertion.

}2),(),(:{ **1

i

ki VqdvqdVvV 

1-42

Cover Tree Performance

 Let the expansion dimension be D = log2 d.

Operation WC Cost (in ) WC Cost (in D)

Construction (Space) n n

Construction (Time) 6 n log2 n 26D n log2 n

Insert / Delete 6 log2 n 26D log2 n

1-NN Query 12 log2 n 212D log2 n

■ Practical speedups over sequential search: variable!

• Datasets from KDD and UCI machine learning archives (among others).

• Speedups of between 10-100 times is common.

• Some sets achieved 1000 times speedup, others essentially no speedup.

• Substantial speedups coincide with smallest expansion dimensions (< 20).

• However, very large real datasets can have expansion dimensions in the thousands.

1-43

Outline
 Multimedia

 Motivating application

Knowledge Propagation in Large Image Databases

 Similarity Search and Intrinsic Dimensionality

 Similarity Search and the Curse of Dimensionality

 Locality Sensitive Hashing (LSH)

 Cover Tree (CT)

 Rank Cover Tree (RCT)

 Experiments

 Conclusion

1-44

 Rank Cover Tree

 New tree index for similarity search based on the Cover Tree.

 Design based on neighborhood ranks to the query, instead of distances

to the query.

 Computes exact k-NN similarity queries with extremely high probability.

 Can accelerate performance at the expense of exactness.

 Metric space data

 Triangle inequality satisfied.

 No assumed knowledge of data representation or dimension.

1-45

Rank Cover Tree

 Random leveling.

 Copy promoted to higher
level with probability 1/Δ.

 Expected number of nodes
at level L is n / ΔL.

 Expected height of the tree
is ~ logΔn.

 Similar to skip list index.

 Well-formed condition:

 For each node u at level L-
1, its parent v is the
nearest neighbor of u from
level L.

2

2 3 4 5 6 7 8 9 10 11

6 7 9 10 4

6 9

6

1

5
4

7

2
1

3

8

9 11

10

L=0

L=1

L=2

L=3

6

4

1-46

RCT Strategy

2

2 3 4 5 6 7 8 9 10 11

6 7 9 10 4

6 9

6

1

5
4

7

2
1

3

8

9 11

10

L=0

L=1

L=2

L=3

6

4

q

 Cover Tree vs RCT.
● As search descends the CT, cover

distance drops by a factor of 2.

● In the RCT a random leveling, the
1-NN neighbor within the current
level has an expected NN rank
with respect to the full set, AND...

● Expected rank drops by factor of 2.

 Implication :
● Can form sets at each level that

cover all k-NNs with very high
probability.

● The cardinality of the cover set
does not depend on 2k, and only
sublinearly on n.

1-47

RCT Search
 Find k-Nearest (RCT T, query point q, number of neighbors k, coverage

parameter ):

 Set Vh-1=Lh-1 to be the initial cover set (all nodes are descendants).

 For j = h-2 down to 0:

 Set V* be the set of all children of Vj+1.

 Let the cover set size quota at level j be:

 Set Vj to be the set of items of V* attaining the smallest kj
distances from q (or all items of V* if its size is less than kj).

 Return the k items of V0 closest to q.

 Construction by level-order insertion – parent of u is the 1-NN from
among the items of the level immediately above u.










 1,max

jj

k
k 

1-48

Coverage Parameter
 How should we choose the coverage parameter ?

 Can show: if  is chosen to be sufficiently large, the query is exact with
high probability.

 Smaller choices allow for speedup at the expense of accuracy.

 Expected time cost of queries can be controlled through the choice of .

 Outcome of analysis:

 Assume that the coverage parameter is chosen as:

 Then with probability at least

 ... RCT construction produces a well-formed tree in expected time
at most

 ... when the tree is well-formed, RCT similarity search produces a
correct result in expected time at most   hkO 

cn11

 nhO 

     h
ehch

5log
,2max  

1-49

Complexities

 If the sampling rate  is fixed:
 h = log n.

 Construction time is in

 Search time is in

 If the tree height h is fixed:
  = n 1/h.

 Construction time is in

 Search time is in

 All with very high probability cn11

 nncO
n 2loglog441.168.2

log2 

 nnkcO
n

log)log(
loglog441.168.2 2 

 )/2(1log441.168.2 2 hh
ncO 


 hh
kncO /2log441.168.2 2 



1-50

50

Operation CT Cost RCT Cost

(h=3)

RCT Cost

(h=4)

RCT Cost

(h=8)

1-NN

Query

Comparison of RCT with CT

 CT is exact, RCT is correct with very high probability.

 RCT achieves much smaller dependence on the intrinsic dimensionality

while still being sublinear in n.

 CT real cost involves keeping track of nodes that lie in regions of

diameters of very large length (exponential in 2)  for some distance

measures, all data points could lie in these bounds until the very lowest

levels of the search!

 RCT real costs are decided through the explicit choice of the coverage

parameter .

n2

12 log 3/297.4 n 2/157.5 n 4/101.7 n

1-51

Outline

 Multimedia

 Introduction

 Motivating applications

An Example of Music Search Application

Knowledge Propagation in Large Image Databases

 Similarity Search and Intrinsic Dimensionality

 Similarity Search and the Curse of Dimensionality

 Locality Sensitive Hashing (LSH)

 Cover Tree (CT)

 Rank Cover Tree (RCT)

 Experiments

 Conclusion

1-52

Experimental Results

 100-NN queries, averaged over 100 different query points & 10 builds.

 RCT and SASH: time versus accuracy plots.

 Cover Tree: exact time.

 LSH:

 E2LSH tool – implementation performs range queries.

 For k-NN queries, must expand range until the desired number of

neighbors is obtained

 In our experimentations, we give it the true k-NN distance.

 Tremendous advantage over RCT, SASH, Cover Tree!

1-53

Experimental Results

■ ALOI (Amsterdam
Library of Object
Images)

■ 110,250 images, 641
features (data
prepared by INRIA-
Rocquencourt).

■ Average expansion
dimension (up to
k=200): 6.7

1-54

■ Chess

■ Database of 28,056
endgame positions
(King + Rook vs. King).

■ 6 features.

Experimental Results

1-55

■ Covertype

■ Topographical
information on forest
cover.

■ 580,012 forest cells of
900 sq. meters each.

■ 54 attributes.

Experimental Results

1-56

■ Gisette

■ 13,500 recordings of
hand-written digits 4
and 9.

■ 5,000 numerical
attributes.

Experimental Results

1-57

■ Isolet

■ 7797 recordings of
spoken letters.

■ 617 attributes (spectral
coefficients, contour
features, sonorant
features, etc.)

■ Average stereological
dimension (up to
k=200): 11.9

Experimental Results

1-58

58

■ MNIST

■ Database of hand-
written digits.

■ 70,000 instances
written by 500
individuals.

■ 784 feature
dimensions.

Experimental Results

1-59

59

■ Poker

■ 1,025,100 hands of 5
cards.

■ 10 attributes.

Experimental Results

1-60

60

■ Reuters

■ 487,000 news articles
(roughly half the data
set).

■ Approx. 300,000
keywords, no
dimensional reduction.

■ Bag-of-words vectors
with TF-IDF weighting.

■ Average stereological
dimension (up to
k=200): 21.6

Experimental Results

1-61

61

■ Spambase

■ E-mail spam,
frequency of certain
words.

■ 4601 messages.

■ 57 attributes
(keywords).

Experimental Results

1-62

62

■ Wikimedia Commons
faces.

■ 200,000 faces, 2580
feature dimensions.

■ Vectorization performed
by Toshiba.

■ Sequential search
performance is excellent.

Experimental Results

?

1-63

63

■ Wikimedia Commons
faces.

■ 200,000 faces, 2580
feature dimensions.

■ Vectorization performed
by Toshiba.

■ Sequential search
performance is excellent.

■ All indices failed
miserably!

■ Average stereological
dimension (up to k=200):
150.1

Experimental Results

