
1-1

Similarity Search in High

Dimensional Spaces: Application

to Multimedia

Vincent Oria

New Jersey Institute of Technology

Newark, NJ 07102

USA

1-2

Acknowledgement

 Michael Houle (NII, Tokyo)

 Search in high dimensional spaces

 Image annotation through face tag propagation

 Shin’ichi Satoh (NII, Tokyo)

 Image annotation through face tag propagation

 Jichao Sun (NJIT, USA)

 Image annotation through face tag propagation

1-3

Outline
 Multimedia

 Motivating application

Knowledge Propagation in Large Image Databases

 Similarity Search and Intrinsic Dimensionality

 Similarity Search and the Curse of Dimensionality

 Locality Sensitive Hashing (LSH)

 Cover Tree (CT)

 Rank Cover Tree (RCT)

 Conclusion

1-4

Multimedia Data

 Multimedia in principle means data of more than

one medium

 Commonly used forms of data are numbers,

alphanumeric, text, images, audio, and video

 Multimedia denotes a combination of text, audio,

and video

1-5

Chronology of Data Types in Computer

Science

 Numeric Data: scientific computations, early stages of

computing

 Alphanumerical Data: Business Applications

 large volumes of data

 RDBMS, E-R Model

 Multimedia Data: Novel Applications

 Text

 Image

 Video

 Audio

1-6

Similarity Searches in Multimedia

1) extract from each object N numerical features

and map objects into points of a N-dimensional space

2) use a suitable distance (e.g., Euclidean) over such a

space, and search for “close” objects using a multi-

dimensional (“spatial”) index

* Slide borrowed from Paolo Ciaccia

1-7

Vector-based Similarity

Searches*

 Using the same distance function is not always

appropriate

Example: retrieve (only) black points

* Slide borrowed From Paolo Ciaccia

1-8

Outline

 Multimedia

 Introduction

 Motivating applications

An Example of Music Search Application

 Similarity Search and Intrinsic Dimensionality

 Similarity Search and the Curse of Dimensionality

 Experiments

 Conclusion

1-9

KProp: Knowledge Propagation in Large Image

Databases Using Neighborhood Information

Michael Houle, Vincent Oria, Shin’ichi Satoh,

Jichao Sun

(ACM MM 2011)

1-10

A query-based baseline -- Bestmatch

Bestmatch is a simple greedy algorithm which:

• Computes pairwise visual distances of detected objects;

• For each unlabeled object u, find its nearest labeled object
v;

• Assign label t to u, where t is the label attached to v.

1-11

Building the influence graph

•

1-12

Sample images of the datasets

 ALOI-100

• Google-23

1-13

Feature Descriptor and Distance Measure

 Google-23 Face Set

 Frontal faces are detected by the face detector of OpenCV 1.0

 Feature descriptors are computed by the Oxford Matlab code:

 13 (9 detected +4 inferred) interest points

 149-D vector computed around each interest point

 1937-D vector for each face

 Euclidean distance (L2) is used as distance measure

 ALOI

 Each image is represented by a 641-D vector

based on color and texture histograms

 Again L2 distance is used as distance measure

1-14

Experimental results – ALOI-100

1-15

Experimental results – Google-23

1-16

Discussion

 All four methods perform better on ALOI-100 than on
Google-23.

 LapSVM is not consistently better than SVM --- it beats
SVM on ALOI-100 but loses to SVM on Google-23 ---
since it is sensible to labeled data and usually needs to be
well tuned.

 KProp has much better performance than all other methods
especially when the number of labeled sample is small (say
1, 2 or 3). It is always better than SVM on ALOI-100 but
SVM overtakes KProp on Google-23 when more than 3
faces are labeled per person. This can be explained by the
transitivity of object relationships.

1-17

Discussion (cont’d)

• Distance distributions of the two datasets (from left to
right: ALOI-100 and Google-23).

• It can be seen from the figures that, it is much difficult to
tell whether two faces belong to a same person by their
distance.

17

1-18

Outline

 Multimedia

 Motivating application

Knowledge Propagation in Large Image Databases

 Similarity Search and Intrinsic Dimensionality

 Similarity Search and the Curse of Dimensionality

 Locality Sensitive Hashing (LSH)

 Cover Tree (CT)

 Rank Cover Tree (RCT)

 Conclusion

1-19

■ Traditional approaches:

● Data drawn from a real vector space Rm.

● Distance function d: Rm R.

● Structure makes use of data representation.

● Organization often depends on hierarchical decomposition
of the domain costs typically exponential in m.

● Triangle inequality used for pruning of search paths.

■ Examples:

● R-tree (Guttman 1984).

● SR-tree (Katayama & Satoh 1997).

● Quadtree (Finkel & Bentley 1974), Octree.

● k-d tree (Bentley 1975).

● Many, many more…

Spatial Indexing

1-20

Spatial Indexing
 Traditional approaches:

 Data drawn from a real vector space Rm.

 Distance function d: Rm R.

 Structure makes use of data representation.

 Organization often depends on hierarchical

decomposition of the domain costs typically

exponential in m

 Examples:

 R-tree (Guttman 1984).

 SR-tree (Katayama & Satoh 1997).

 Quadtree (Finkel & Bentley 1974), Octree.

 k-d tree (Bentley 1975).

 Many, many more…

1-21

The Curse of Dimensionality

 Spatial effect of dimensionality:

Exponential increase in volume associated with increase in
dimensionality.

Distances concentrate around their mean values indistinguishable.

Variances tend to zero as a proportion of the mean.

Points tend to concentrate along region boundaries.

d
d

d

dd

d

r
d

VB

rVS

)21(

2

2

2

 Implications for search:

Search paths begin to look identical.

Modelling of data becomes more difficult.

1-22

The Curse of

Dimensionality

Searching high-dimensional data:

 Exact similarity queries require close
to linear time.

 Data organization is a major
challenge.

 2D and 3D intuition does not apply!

But!... This doesn’t mean that
neighborhoods are meaningless!

Example: LA-Times 127738x6590 text
data set, vector angle metric

1-23

23

Intrinsic Dimension and Search

 Idea: performance analysis in terms of a characterization of the data,

not the space.

 Question: what dimension does the data appear to be in?

 Many measures have been proposed, including:

 Fractal dimension.

 Doubling dimension.

 Expansion dimension.

 We will look at two approaches with analysis based on expansion

dimension:

 Distance-based: Cover Tree [Beygelzimer et al, 2006].

 Rank-based: Rank Cover Tree [H. and Nett, submitted].

1-24

Expansion Dimension
 Expansion rate of set S:

 Introduced by Karger & Ruhl (2002).

 Used to measure of the cost of an

expanding search in the vicinity of a

query point q.

 Maximum ratio d of the number of

points in two balls centered at q.

 Expansion dimension:

 Measure of intrinsic dimensionality of

S.

 If representational dimension is m…

 Doubling the radius of a sphere

volume increases by factor 2m.

),()2,(

),(

rqBrqB

brqB

SS

S

),(rqBS

)2,(rqBS

3

q r

r2

2logD

1-25

Generalization of expansion dimension
 Generalization of expansion dimension.

 Choose any two spheres of positive,

unequal radii.

 If volumes are known, can compute

representational dimension.

 Volumes are not known, so...

 ...estimate using numbers of points

captured by the spheres.

 Two sets of measurements allows for

assessment of local intrinsic

dimensionality.

 Can characterize data sets according to

average stereological dimension.

1

2

1

2

log

log

r

r

V

V

d

1V
242 k

q 1r

2r

1

2

1

2

log

log

r

r

k

k

D

242 k

81 k

1-26

Coping with the Curse:

k-NN Approximation Methods

 Trade exactness of similarity query for efficiency.

 Older approximation methods of mainly
theoretical interest.

 Performance typically depends on:

● Dimension.

● Relative distance error.

● Probability of correctness.

 Distance error approximation is much less
effective in high dimensions!

1-27

k-NN Approximation Methods

 Several results claiming speedups of 1-2 orders of magnitude, over

sequential search:

● Metric data: M-Tree (Zezula et al., 1998).

● Vector data: LSH (Indyk and Motwani, 1998; with Gionis, 1999).

● Vector data: clustering based approximation (Ferhatosmanoglu et al.,

2001).

● ...

 Data sets typically of the order of 103 -105 elements and 50-200 attributes.

 Time / accuracy tradeoff difficult to manage in practice.

 No consensus on how to measure accuracy.

1-28

Some Measures of Accuracy

 U = {u1,u2,…} : approx NN set.

 U ’ : subset of some

(unknown) exact k-NN set.

 ri : (unknown) distance from q

to exact i-th NN.

||

|'|
),(max

' U

U
UqA

UU

||

1

2

||

1

||

1
1

) ,(

||

1
),(

) ,(

),(

U

i i

i

U

i

i

U

i

i

r

uqdist

U
UqA

r

uqdist

UqA

Distance Based Rank Based

Definitions

1-29

Outline

 Multimedia

 Motivating application

Knowledge Propagation in Large Image Databases

 Similarity Search and Intrinsic Dimensionality

 Similarity Search and the Curse of Dimensionality

 Locality Sensitive Hashing (LSH)

 Cover Tree (CT)

 Rank Cover Tree (RCT)

 Conclusion

1-30

 Indyk and Motwani (1998), with Gionis (1999)

 “Locality-sensitive” hashing technique.

 Hash data so that similar items are mapped to the same bucket with
high probability.

 Data modeled as vectors

 Hamming distance with bit sampling.

 Advantages

 1-2 orders of magnitude speedup possible, for n ~ 105, d ~ 60.

 General technique extensible – very popular!

 Drawbacks

 Accuracy measured according to distances but not rank..

Locality Sensitive Hashing

1-31

LSH Families

■ LSH family F of hash functions for metric space M :

• Distance function d : M R 0.

• Hash table T.

• Hash functions h F : M T.

• Distance threshold r.

• Approximation factor c > 1.

• Randomly-selected hash function h F .

■ F is a (r,cr,p,q)-sensitive family when:

• Close points likely map to the same bucket:
d (x,y) r h (x) = h (y) with probability at least p.

• Far points likely map to different buckets:
d (x,y) cr h (x) = h (y) with probability at most q.

• Interesting when p > q.

h

1-32

Examples of LSH Families

■ Bit-sampling LSH:

• Each point represented as an m-dimensional bit vector.

• Hamming distance d : {0,1}m R 0, number of differing bits.

• LSH family: hi (x) selects i -th bit of x.

• Choose some distance threshold r and approximation factor c > 1.

• (r,cr,p,q)-sensitive for p = 1 – r /m and q = 1 – cr /m.

000
001

010

100

110

011 111

h

1 0

i =1

1-33

Examples of LSH Families

■ Separating hyperplanes (random projections):

● LSH family: h (x) associated with hyperplane with normal vector v.

● Random hash function h (x) = sign (v • x) = ±1 , for random v.

● Depends on which side of the hyperplane x lies.

● For uniformly distributed data:

● Sensitive LSH family for vector angle distance metric arccos.

 yxyhxh arccos1)()(Pr

v x

y
 yx arccos

1-34

■ Basic idea:

● Start with any LSH family F.

● Construct a new LSH family G by concatenation of w hash functions
from F.

● Choose u random hash functions from G .

● Preprocessing step: hash all points of the dataset into the u hash
tables.

)(,),()(1 xhxhxg w

■ Processing of query q :

● For each hash function g, search through the buckets indexed
by g (q).

● Stop once we find a point x for which d (q,x) cr .

Approximate 1-NN Search Using

LSH

1-35

35

 Performance:

 th : time to evaluate hash functions of F.

 td : time to evaluate distance function.

 n : number of points in the data set.

Other design choices:

Preprocessing time:

Additional space:

Query time:

Prob. of finding neighbour within distance cr :

)()(1

hh wtnOnuwtO

)()(dhd

w

h tnwtnOtnuquwtO

)1()(wup

q

n
wnu

q

p

1log

log
;;

log

log

)()(1 nOnuO

Approximate 1-NN Search Using LSH

1-36

Approximate 1-NN Search Using

LSH
 Requirements for scalability:

Small approximation factor c.

Probability p must be much
larger than probability q.

 If the representational
dimension is high, the
distance computation time td
must not depend on it.

 Conclusion:

LSH has intriguing possibilities for data mining, but ...

 ... the family of hash functions must be quite sensitive!

Hashing typically depends on the representational dimension.

Better practical performance by abandoning theoretical guarantees
heuristics!

p q = log p / log q

0.80 0.20 0.1386

0.70 0.30 0.2962

0.60 0.40 0.5575

0.55 0.45 0.7487

0.50 0.50 1.0000

1-37

Outline
 Multimedia

 Motivating application

Knowledge Propagation in Large Image Databases

 Similarity Search and Intrinsic Dimensionality

 Similarity Search and the Curse of Dimensionality

 Locality Sensitive Hashing (LSH)

 Cover Tree (CT)

 Rank Cover Tree (RCT)

 Experiments

 Conclusion

1-38

38

Cover Tree

 Introduced by Beygelzimer, Kakade & Langford (2006).

 Tree index for exact similarity search.

 (1+e)-distance approximation also possible using early termination.

 Metric space data

 Triangle inequality satisfied.

 No assumed knowledge of data representation or dimension.

 Worst-case performance optimal in n:

 O (n log n) construction, O (log n) search, insertion, deletion.

 No explicit dependence on representational dimension, BUT...

 Strong dependence on a measure of intrinsic dimensionality.

1-39

Cover Tree Properties

 Let u be a node at level i-1.

 Let v be the parent of u at level i.

 Let w be another node at level i.

 Covering tree condition:

 Separation condition:

 Closest pair assumed to have

distance 1.

2

2 3 4 5 6 7 8 9 10 11

6 7 9 10 4

6 9

6

1

5
4

7

2
1

3

8

9 11

10

i = 0

i = 1

i = 2

i = 3

6 20

21

22

ivud 2),(

iwvd 2),(

1-40

Cover Sets

 Assume that we have:

 Query item q.

 At level i > 0, a set of nodes Vi containing

ancestors of every k-NN u of q (Cover Set).

 Let V* be the set of all children of Vi.

 Distance to k-th NN of V*:

 Implication:

 Can form new cover set at level i -1 as

 All children of v are within distance 2i of v, so

no ancestor of neighbor u is discarded.

}2),(),(:{ **1

i

ki VqdvqdVvV

),(*Vqdk

w

2i-2

2i-1

i
i

j

jvud 22),(
1

v

20

q u
),(*Vqdk

1-41

Cover Tree Search

 Find k-Nearest (cover tree T, query point q, number of neighbors k):

 Set Vh=Lh to be the initial cover set (all nodes are descendants).

 For i = h-1 down to 1:

 Set V* be the set of all children of Vi.

 Form new cover set
 Return the k items of V0 closest to q.

 Insertion and deletion resemble search:

 Insertion by local modification of tree structure after search.

 Only the highest-level copy of the item is explicitly inserted.

 Deletion slightly more complex.

 Construction by successive insertion.

}2),(),(:{ **1

i

ki VqdvqdVvV

1-42

Cover Tree Performance

 Let the expansion dimension be D = log2 d.

Operation WC Cost (in) WC Cost (in D)

Construction (Space) n n

Construction (Time) 6 n log2 n 26D n log2 n

Insert / Delete 6 log2 n 26D log2 n

1-NN Query 12 log2 n 212D log2 n

■ Practical speedups over sequential search: variable!

• Datasets from KDD and UCI machine learning archives (among others).

• Speedups of between 10-100 times is common.

• Some sets achieved 1000 times speedup, others essentially no speedup.

• Substantial speedups coincide with smallest expansion dimensions (< 20).

• However, very large real datasets can have expansion dimensions in the thousands.

1-43

Outline
 Multimedia

 Motivating application

Knowledge Propagation in Large Image Databases

 Similarity Search and Intrinsic Dimensionality

 Similarity Search and the Curse of Dimensionality

 Locality Sensitive Hashing (LSH)

 Cover Tree (CT)

 Rank Cover Tree (RCT)

 Experiments

 Conclusion

1-44

 Rank Cover Tree

 New tree index for similarity search based on the Cover Tree.

 Design based on neighborhood ranks to the query, instead of distances

to the query.

 Computes exact k-NN similarity queries with extremely high probability.

 Can accelerate performance at the expense of exactness.

 Metric space data

 Triangle inequality satisfied.

 No assumed knowledge of data representation or dimension.

1-45

Rank Cover Tree

 Random leveling.

 Copy promoted to higher
level with probability 1/Δ.

 Expected number of nodes
at level L is n / ΔL.

 Expected height of the tree
is ~ logΔn.

 Similar to skip list index.

 Well-formed condition:

 For each node u at level L-
1, its parent v is the
nearest neighbor of u from
level L.

2

2 3 4 5 6 7 8 9 10 11

6 7 9 10 4

6 9

6

1

5
4

7

2
1

3

8

9 11

10

L=0

L=1

L=2

L=3

6

4

1-46

RCT Strategy

2

2 3 4 5 6 7 8 9 10 11

6 7 9 10 4

6 9

6

1

5
4

7

2
1

3

8

9 11

10

L=0

L=1

L=2

L=3

6

4

q

 Cover Tree vs RCT.
● As search descends the CT, cover

distance drops by a factor of 2.

● In the RCT a random leveling, the
1-NN neighbor within the current
level has an expected NN rank
with respect to the full set, AND...

● Expected rank drops by factor of 2.

 Implication :
● Can form sets at each level that

cover all k-NNs with very high
probability.

● The cardinality of the cover set
does not depend on 2k, and only
sublinearly on n.

1-47

RCT Search
 Find k-Nearest (RCT T, query point q, number of neighbors k, coverage

parameter):

 Set Vh-1=Lh-1 to be the initial cover set (all nodes are descendants).

 For j = h-2 down to 0:

 Set V* be the set of all children of Vj+1.

 Let the cover set size quota at level j be:

 Set Vj to be the set of items of V* attaining the smallest kj
distances from q (or all items of V* if its size is less than kj).

 Return the k items of V0 closest to q.

 Construction by level-order insertion – parent of u is the 1-NN from
among the items of the level immediately above u.

 1,max

jj

k
k

1-48

Coverage Parameter
 How should we choose the coverage parameter ?

 Can show: if is chosen to be sufficiently large, the query is exact with
high probability.

 Smaller choices allow for speedup at the expense of accuracy.

 Expected time cost of queries can be controlled through the choice of .

 Outcome of analysis:

 Assume that the coverage parameter is chosen as:

 Then with probability at least

 ... RCT construction produces a well-formed tree in expected time
at most

 ... when the tree is well-formed, RCT similarity search produces a
correct result in expected time at most hkO

cn11

 nhO

 h
ehch

5log
,2max

1-49

Complexities

 If the sampling rate is fixed:
 h = log n.

 Construction time is in

 Search time is in

 If the tree height h is fixed:
 = n 1/h.

 Construction time is in

 Search time is in

 All with very high probability cn11

 nncO
n 2loglog441.168.2

log2

 nnkcO
n

log)log(
loglog441.168.2 2

)/2(1log441.168.2 2 hh
ncO

 hh
kncO /2log441.168.2 2

1-50

50

Operation CT Cost RCT Cost

(h=3)

RCT Cost

(h=4)

RCT Cost

(h=8)

1-NN

Query

Comparison of RCT with CT

 CT is exact, RCT is correct with very high probability.

 RCT achieves much smaller dependence on the intrinsic dimensionality

while still being sublinear in n.

 CT real cost involves keeping track of nodes that lie in regions of

diameters of very large length (exponential in 2) for some distance

measures, all data points could lie in these bounds until the very lowest

levels of the search!

 RCT real costs are decided through the explicit choice of the coverage

parameter .

n2

12 log 3/297.4 n 2/157.5 n 4/101.7 n

1-51

Outline

 Multimedia

 Introduction

 Motivating applications

An Example of Music Search Application

Knowledge Propagation in Large Image Databases

 Similarity Search and Intrinsic Dimensionality

 Similarity Search and the Curse of Dimensionality

 Locality Sensitive Hashing (LSH)

 Cover Tree (CT)

 Rank Cover Tree (RCT)

 Experiments

 Conclusion

1-52

Experimental Results

 100-NN queries, averaged over 100 different query points & 10 builds.

 RCT and SASH: time versus accuracy plots.

 Cover Tree: exact time.

 LSH:

 E2LSH tool – implementation performs range queries.

 For k-NN queries, must expand range until the desired number of

neighbors is obtained

 In our experimentations, we give it the true k-NN distance.

 Tremendous advantage over RCT, SASH, Cover Tree!

1-53

Experimental Results

■ ALOI (Amsterdam
Library of Object
Images)

■ 110,250 images, 641
features (data
prepared by INRIA-
Rocquencourt).

■ Average expansion
dimension (up to
k=200): 6.7

1-54

■ Chess

■ Database of 28,056
endgame positions
(King + Rook vs. King).

■ 6 features.

Experimental Results

1-55

■ Covertype

■ Topographical
information on forest
cover.

■ 580,012 forest cells of
900 sq. meters each.

■ 54 attributes.

Experimental Results

1-56

■ Gisette

■ 13,500 recordings of
hand-written digits 4
and 9.

■ 5,000 numerical
attributes.

Experimental Results

1-57

■ Isolet

■ 7797 recordings of
spoken letters.

■ 617 attributes (spectral
coefficients, contour
features, sonorant
features, etc.)

■ Average stereological
dimension (up to
k=200): 11.9

Experimental Results

1-58

58

■ MNIST

■ Database of hand-
written digits.

■ 70,000 instances
written by 500
individuals.

■ 784 feature
dimensions.

Experimental Results

1-59

59

■ Poker

■ 1,025,100 hands of 5
cards.

■ 10 attributes.

Experimental Results

1-60

60

■ Reuters

■ 487,000 news articles
(roughly half the data
set).

■ Approx. 300,000
keywords, no
dimensional reduction.

■ Bag-of-words vectors
with TF-IDF weighting.

■ Average stereological
dimension (up to
k=200): 21.6

Experimental Results

1-61

61

■ Spambase

■ E-mail spam,
frequency of certain
words.

■ 4601 messages.

■ 57 attributes
(keywords).

Experimental Results

1-62

62

■ Wikimedia Commons
faces.

■ 200,000 faces, 2580
feature dimensions.

■ Vectorization performed
by Toshiba.

■ Sequential search
performance is excellent.

Experimental Results

?

1-63

63

■ Wikimedia Commons
faces.

■ 200,000 faces, 2580
feature dimensions.

■ Vectorization performed
by Toshiba.

■ Sequential search
performance is excellent.

■ All indices failed
miserably!

■ Average stereological
dimension (up to k=200):
150.1

Experimental Results

