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Multimedia Data

B Multimedia in principle means data of more than
one medium

B Commonly used forms of data are numbers,
alphanumeric, text, images, audio, and video

m Multimedia denotes a combination of text, audio,
and video




Chronology of Data Types in Computer
Science

B Numeric Data: scientific computations, early stages of
computing
B Alphanumerical Data: Business Applications

® large volumes of data
® RDBMS, E-R Model
B Multimedia Data: Novel Applications
® Text
® Image
® Video
® Audio

Similarity Searches in Multimedia

1) extract from each object N numerical features
and map objects into points of a N-dimensional space

2) use a suitable distance (e.g., Euclidean) over such a
space, and search for “close” objects using a multi-
dimensional (“spatial”) index

\

* Slide borrowed from Paolo Ciaccia 1-6




Vector-based Similarity
Searches™

B Using the same distance function is not always
appropriate

Example: retrieve (only) black points

* Slide borrowed From Paolo Ciaccia
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KProp: Knowledge Propagation in Large Image
Databases Using Neighborhood Information

Michael Houle, Vincent Oria, Shin’ichi Satoh,
Jichao Sun

(ACM MM 2011)

A query-based baseline -- Bestmatch

Bestmatch is a simple greedy algorithm which:
Computes pairwise visual distances of detected objects;

- For each unlabeled object u, find its nearest labeled object
v,

- Assign label t to u, where t is the label attached to v.

- — — =
- Tagged faces "~ g
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Building the influence graph

* Object relationships are modeled
as a directed influence graph --
G(V, E), with the node set
partitioned info V=V, U V,, where
V,and V, represent the initially-
labeled (source) object set and
initially-unlabeled (non-source)
object set, respectively. E is
composed of 3 types of edges:

— VvEV,<vv>EE;

— <vu> € E,wheneverveEV,u €V,
and v influences u; and;

— <u,u’>, <u’,u> € E wheneveru,u’ €
V,, and either u influences u’, or u’
influences u (or both)
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Sample images of the datasets

m ALOI-100
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* Google-23
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Feature Descriptor and Distance Measure

m Google-23 Face Set
@ Frontal faces are detected by the face detector of OpenCV 1.0
@ Feature descriptors are computed by the Oxford Matlab code:
m 13 (9 detected +4 inferred) interest points
m 149-D vector computed around each interest point
w 1937-D vector for each face

@ Euclidean distance (L2) is used as distance measure

m ALOI

@ Each image is represented by a 641-D vector .
based on color and texture histograms ),
1-13

® Again L2 distance is used as distance measure

Experimental results — ALOI-100
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Experimental results — Google-23
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Discussion

All four methods perform better on ALOI-100 than on
Google-23.

LapSVM is not consistently better than SVM --- it beats
SVM on ALOI-100 but loses to SVM on Google-23 ---
since it is sensible to labeled data and usually needs to be
well tuned.

KProp has much better performance than all other methods
especially when the number of labeled sample is small (say
1,2 or 3). It is always better than SVM on ALOI-100 but
SVM overtakes KProp on Google-23 when more than 3
faces are labeled per person. This can be explained by the
transitivity of object relationships.

1-
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Percentage (%)

Discussion (cont’d)

Distance distributions of the two datasets (from left to
right: ALOI-100 and Google-23).

It can be seen from the figures that, it is much difficult to
tell whether two faces belong to a same person by their
distance.
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Spatial Indexing
m Traditional approaches:
e Data drawn from a real vector space R”.
e Distance function d: R” — R.
e Structure makes use of data representation.

e Organization often depends on hierarchical decomposition
of the domain — costs typically exponential in m.

e Triangle inequality used for pruning of search paths.

s Examples:
e R-tree (Guttman 1984).
e SR-tree (Katayama & Satoh 1997).
e Quadtree (Finkel & Bentley 1974), Octree.
e k-d tree (Bentley 1975).
e Many, many more...
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Spatial Indexing

B Traditional approaches:
® Data drawn from a real vector space Rm.
® Distance function d: Rm [J R.
@ Structure makes use of data representation.
® Organization often depends on hierarchical
decomposition of the domain [ costs typically
exponential in m
m Examples:
® R-tree (Guttman 1984).
® SR-tree (Katayama & Satoh 1997).
@ Quadtree (Finkel & Bentley 1974), Octree.
® k-d tree (Bentley 1975).

® Many, many more...
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The Curse of Dimensionality

< Spatial effect of dimensionality:

<> Exponential increase in volume associated with increase in
dimensionality.

<~ Distances concentrate around their mean values — indistinguishable.
<> Variances tend to zero as a proportion of the mean.
<~ Points tend to concentrate along region boundaries.
« Implications for search:
< Search paths begin to look identical.
<> Modelling of data becomes more difficult.

VS, =2%r¢
d/2
Bd = 272-— r‘
rd+d/2)
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The Curse of
Dimensionality

- || Searching high-dimensional data:
e | = Exact similarity queries require close
to linear time.

m Data organization is a major

challenge.
m 2D and 3D intuition does not apply!

g But!... This doesn’t mean that
B - o ; neighborhoods are meaningless!

Sl " | Example: LA-Times 127738x6590 text
e, data set, vector angle metric
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Intrinsic Dimension and Search

m |dea: performance analysis in terms of a characterization of the data,

not the space.

m Question: what dimension does the data appear to be in?
m Many measures have been proposed, including:

@ Fractal dimension.
@ Doubling dimension.
@ Expansion dimension.

m We will look at two approaches with analysis based on expansion

dimension:

@ Distance-based: Cover Tree [Beygelzimer et al, 2006].
® Rank-based: Rank Cover Tree [H. and Nett, submitted].

23
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Expansion Dimension

m Expansion rate of set S:
@ Introduced by Karger & Ruhl (2002).
@ Used to measure of the cost of an
expanding search in the vicinity of a
query point q.
@ Maximum ratio d of the number of
points in two balls centered at q.

m Expansion dimension: |D =log, &

@ Measure of intrinsic dimensionality of
S.

o If representational dimension is m...

@ Doubling the radius of a sphere —
volume increases by factor 2™.

Bs(@.n)[=b
= [B;(a,2r)| <5 [By(a,7)
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Generalization of expansion dimension

m Generalization of expansion dimension. Es Vv, 5 ky
m Choose any”two spheres of positive, d= \r/l > D=~ K,

unequal radii. log 2 |0ng
m If volumes are known, can compute 5 4

representational dimension.
m Volumes are not known, so...

m ...estimate using numbers of points
captured by the spheres.

m Two sets of measurements allows for
assessment of local intrinsic
dimensionality.

m Can characterize data sets according to
average stereological dimension.

1-25

Coping with the Curse:
k-NN Approximation Methods

m Trade exactness of similarity query for efficiency.

m Older approximation methods of mainly
theoretical interest.

m Performance typically depends on: o e
« Dimension. "o R T
« Relative distance error. e 0
« Probability of correctness. NE

m Distance error approximation is much less
effective in high dimensions!

1-26




k-NN Approximation Methods

m Several results claiming speedups of 1-2 orders of magnitude, over
sequential search:

o Metric data: M-Tree (Zezula et al., 1998).
« Vector data: LSH (Indyk and Motwani, 1998; with Gionis, 1999).

« Vector data: clustering based approximation (Ferhatosmanoglu et al.,
2001).

m Data sets typically of the order of 103 -10° elements and 50-200 attributes.
m Time / accuracy tradeoff difficult to manage in practice.
m No consensus on how to measure accuracy.

1-27

Some Measures of Accuracy

Distance Based Rank Based
|U’|
U A(q,U) = =7
Iz';ons.t(q,ui) (@) rUQJXIUI
A@QU)=F—pG—
>, Definitions

m U={uy,u,...}: approx NN set.
m  U’:subsetof some
(unknown) exact k-NN set.

® 7 : (unknown) distance from q
to exact i-th NN.

ii': dist (g, u;)

e TTIP

1-28




Outline

B Multimedia
@ Motivating application
» Knowledge Propagation in Large Image Databases
m Similarity Search and Intrinsic Dimensionality
@ Similarity Search and the Curse of Dimensionality
® Locality Sensitive Hashing (LSH)
® Cover Tree (CT)
® Rank Cover Tree (RCT)

m Conclusion

1-29

Locality Sensitive Hashing

m Indyk and Motwani (1998), with Gionis (1999)
@ “Locality-sensitive” hashing technique.

@ Hash data so that similar items are mapped to the same bucket with

high probability.
@ Data modeled as vectors
@ Hamming distance with bit sampling.
m Advantages
@ 1-2 orders of magnitude speedup possible, for n ~ 105, d ~ 60.
@ General technique extensible — very popular!
m Drawbacks
@ Accuracy measured according to distances but not rank..

1-30




LSH Families

m LSH family F of hash functions for metric space M :
- Distance functiond : M — R =0,
« Hash table T.
 Hash functonshe F:M—>T.
« Distance threshold r.
« Approximation factor ¢ > 1. h
+ Randomly-selected hash function h € F.

m F isa(r.crp,q)-sensitive family when:

« Close points likely map to the same bucket:
d (x,y) < r= h(x) = h (y) with probability at least p.

- Far points likely map to different buckets:
d (x,y) = cr = h (x) = h (y) with probability at most q.
* Interesting when p > q.
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Examples of LSH Families

m Bit-sampling LSH:

- Each point represented as an m-dimensional bit vector.
Hamming distance d : {0,1}" — R =, number of differing bits.
LSH family: h; (x) selects i -th bit of x.

(r.cr,p,q)-sensitive forp=1-rimand q=1-crim.

011 11 ;=1
110 —
010 L

001
00 100 01

Choose some distance threshold r and approximation factor ¢ > 1.
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Examples of LSH Families

m Separating hyperplanes (random projections):
o LSH family: h (x) associated with hyperplane with normal vector v.
e Random hash function h (x) = sign (v * x) = =1, for random v.
e Depends on which side of the hyperplane x lies.
e For uniformly distributed data:

Pr[h(x) =h(y)]=1-arccos(x- y)/ 7

e Sensitive LSH family for vector angle distance metric arccos.

v x
0 =arccos(x- y)

y
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Approximate 1-NN Search Using
LSH

m Basicidea:
o Start with any LSH family F.
e Construct a new LSH family G by concatenation of w hash functions

from F. ‘g(x):[m(x),---,hW(X)]\

e Choose u random hash functions from G .

e Preprocessing step: hash all points of the dataset into the u hash
tables.

m Processing of query q :
e For each hash function g, search through the buckets indexed

by g (q).
o Stop once we find a point x for which d (g,x) <cr.

1-34




Approximate 1-NN Search Using LSH

< Performance:
<~ t, : time to evaluate hash functions of F.
<~ t,: time to evaluate distance function.
<> n: number of points in the data set.

=Iogp; Ve e logn
logq logl/q

<~ Preprocessing time:  |O(nuwt,)) _)O(nupwth)

< Other design choices: |~

< Additional space: O(nu) —O(n**)

< Query time: O(uwt, +nug™t,) > O(n”wt, +n”t,)

< Prob. of finding neighbour within distance cr: | Q(up™) — Q1)

35
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Approximate 1-NN Search Using
LSH

+» Requirements for scalability:
<> Small approximation factor c.

p q | p=logp/logq

<~ Probability p must be much 0.80 | 0.20 0.1386
larger than probability q. 070 10.30 0.2962
<~ If the representational
dimension is high, the 0.60 | 040 0.5575

distance computation time £, 055 | 045 0.7487
__ Mmustnotdependon it 050 |050|  1.0000
% Conclusion:
<> LSH has intriguing possibilities for data mining, but ...
<~ ... the family of hash functions must be quite sensitive!
< Hashing typically depends on the representational dimension.

<~ Better practical performance by abandoning theoretical guarantees —
heuristics!

1-36
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Cover Tree

m Introduced by Beygelzimer, Kakade & Langford (2006).
m Tree index for exact similarity search.
@ (1+e)-distance approximation also possible using early termination.
m Metric space data
@ Triangle inequality satisfied.
@ No assumed knowledge of data representation or dimension.
m Worst-case performance optimal in n:
@ O (nlog n) construction, O (log n) search, insertion, deletion.
@ No explicit dependence on representational dimension, BUT...
@ Strong dependence on a measure of intrinsic dimensionality.

38
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Cover Tree Properties

Let u be a node at level i-1.

Let v be the parent of u at level .
Let w be another node at level i.
Covering tree condition:

Separation condition:

Closest pair assumed to have
distance 1.

1-39

Cover Sets

Assume that we have:
® Queryitemq.

® Atlevel i>0, asetof nodes V; containing
ancestors of every k-NN u of g (Cover Set).

® Let V. be the set of all children of V.

e Distance to kth NN of V.. |d, (g,V.)

Implication:
@ Canform new cover set at level j -1 as

i—1
d(uv)< > 2 <2

j=—0

V., ={veV.:d(q,v)<d,(q,V.)+2'}

@ All children of v are within distance 2/ of v, so

no ancestor of neighbor u is discarded.

1-40




Cover Tree Search

m Find k-Nearest (cover tree T, query point g, number of neighbors k):
e Set V,=L, to be the initial cover set (all nodes are descendants).
® Fori=h-1downto1:

w Set V. be the set of all children of V.
w Form new coverset Vi, ={veV.:d(q,v) <d,(q,V.)+2'}
@ Return the k items of V, closest to g.
m Insertion and deletion resemble search:
@ Insertion by local modification of tree structure after search.
@ Only the highest-level copy of the item is explicitly inserted.
@ Deletion slightly more complex.
m Construction by successive insertion.

1-41

Cover Tree Performance

m Let the expansion dimension be D = log, d.

Operation WC Cost (in 6) WC Cost (in D)
Construction (Space) n n
Construction (Time) &% nlog, n 26D nlog, n
Insert / Delete 3log, n 26DJog, n
1-NN Query 3" log, n 2'2DJog, n

m Practical speedups over sequential search: variable!
+ Datasets from KDD and UCI machine learning archives (among others).
Speedups of between 10-100 times is common.
- Some sets achieved 1000 times speedup, others essentially no speedup.
- Substantial speedups coincide with smallest expansion dimensions (< 20).
- However, very large real datasets can have expansion dimensions in the thousands.

1-42




Outline

B Multimedia
® Motivating application
= Knowledge Propagation in Large Image Databases
B Similarity Search and Intrinsic Dimensionality
@ Similarity Search and the Curse of Dimensionality
® Locality Sensitive Hashing (LSH)
® Cover Tree (CT)
® Rank Cover Tree (RCT)
® Experiments

m Conclusion

1-43

Rank Cover Tree

m New tree index for similarity search based on the Cover Tree.

@ Design based on neighborhood ranks to the query, instead of distances
to the query.

@ Computes exact k-NN similarity queries with extremely high probability.
e Can accelerate performance at the expense of exactness.

m Metric space data

@ Triangle inequality satisfied.
@ No assumed knowledge of data representation or dimension.
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Rank Cover Tree

m Random leveling.

@ Copy promoted to higher ?2® )
level with probability 1/A. @ (T}
@ Expected number of nodes @
atlevel Lisn /AL %@

@ Expected height of the tree
is ~log,n.
@ Similar to skip list index.

m Well-formed condition:
@ For each node v at level L-

1, its parent v is the
nearest neighbor of u from

level L.

1-45

RCT Strategy

m Cover Tree vs RCT.

o As search descends the CT, cover 2®
distance drops by a factor of 2. @ @ (§)
o Inthe RCT a random leveling, the ®) 140
1-NN neighbor within the current 3) (6
level has an expected NN rank ®®
with respect to the full set, AND... @

o Expected rank drops by factor of 2.

= Implication :

o Can form sets at each level that
cover all k-NNs with very high
probability.

e The cardinality of the cover set
does not depend on 2, and only
sublinearly on n.
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RCT Search

m Find k-Nearest (RCT T, query point g, number of neighbors k, coverage
parameter y):
® SetV, =L, 1o be the initial cover set (all nodes are descendants).
® Forj=h-2downto0:
= Set V. be the set of all children of V.
w Let the cover set size quota at level j be:

k
kj :y/-max{g,l}
= Set V; to be the set of items of V. attaining the smallest k;
distances from g (or all items of V. if its size is less than k;).
@ Return the k items of V, closest to g.

m Construction by level-order insertion — parent of u is the 1-NN from
among the items of the level immediately above u.

1-47

Coverage Parameter

m How should we choose the coverage parameter y?

e Can show: if y is chosen to be sufficiently large, the query is exact with

high probability.

@ Smaller choices allow for speedup at the expense of accuracy.

@ Expected time cost of queries can be controlled through the choice of .
m  Outcome of analysis:

@ Assume that the coverage parameter is chosen as:
w = (ch+max{2h,eA)})- Pl
@ Then with probability at least

» ... RCT construction produces a well-formed tree in expected time

at most

» ... when the tree is well-formed, RCT similarity search produces a

correct result in expected time at most |O(yaA(k +h))
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Complexities

m If the sampling rate A is fixed:
® h=log,n.
e Construction time is in O(C52'68+1'4411092|09An -nlog? n)

@ Searchtimeisin O(C52.68+1.44ﬂogz logyn -(k + Iog n) Iog n)

m If the tree height h is fixed:
e A=n'h
e Construction time is in
® Searchtime s in 0(052.6&1.44]Jogzh .kn2/h)

0(052.6&1.4411092h ] n1+(2/h))

m All with very high probability 1_]/nC
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Comparison of RCT with CT

m CTis exact, RCT is correct with very high probability.

m RCT achieves much smaller dependence on the intrinsic dimensionality
while still being sublinear in n.

m CT real cost involves keeping track of nodes that lie in regions of
diameters of very large length (exponential in 2) — for some distance
measures, all data points could lie in these bounds until the very lowest
levels of the search!

m RCT real costs are decided through the explicit choice of the coverage
parameter .

Operation CT Cost RCT Cost RCT Cost RCT Cost
(h=3) (h=4) (h=8)
1-NN 12
Query ) |ng n 54.97n2/3 55.57n1/2 57.01n1/4
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Experimental Results

100-NN queries, averaged over 100 different query points & 10 builds.
RCT and SASH: time versus accuracy plots.

Cover Tree: exact time.

LSH:

@ E2LSH tool — implementation performs range queries.

@ For k-NN queries, must expand range until the desired number of
neighbors is obtained

@ In our experimentations, we give it the true k-NN distance.
e Tremendous advantage over RCT, SASH, Cover Tree!
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Experimental Results

m  ALOI (Amsterdam
Library of Object
Images) T ROT (= )
= 110,250 images, 641 L ROT (n = 8) .
features (data * Cover Tree
prepared by INRIA- .
Rocquencourt). z
. 2 8%
m  Average expansion =
dimension (up to o
k=200): 6.7
2% A I‘X
o
“?zgn‘;““,‘ “ﬂn 0%  953% 100%
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Chess
Database of 28,056 S— i
endgame positions sRoTG=d :
(King + Rook vs. King). L Rer (h = 8
m 6 features. '
::; 0% x
% 40% ‘x'.
30% x
“?En‘/( 55% 60% 65% T0% T5% 80% S86% 90% 95% 100%
accuracy
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Experimental Results

Covertype | .

Topographical —
information on forest + ROT (8 =3

1.4% « RCT (h =5)

cover. o ;egli (h = 8) |
580,012 forest cells of * Cover tree
900 sq. meters each.

54 attributes.

[
]

0.8%

fquer-y/f(‘.:neu.-'
®

0.6%

0.4% E
.
4

0.2%

0% -

50% 55% 60% 65% T0% T5% . 08% 1007
accuracy
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Gisette
13,500 recordings of —
hand-written digits 4 s noron=
and 9. i |imericy :
5,000 numerical b
attributes. S
:; 8% T
6% .' "'IV
“?En'/( 55% 60% 65% 7T0% 75% S0% 86% 90% 93% 100%
accuracy
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Experimental Results

A
Isolet
7797 recordings of B _
spoken letters. “norn =
617 attributes (spectral | "] |irericd
coefficients, contour Cover Tree !
features, sonorant = on
features, etc.) g
Average stereological - L
dimension (up to i
k=200): 11.9 s P
“?z’}l]‘/( 55% G0% 65% T0% 5% 80% 85% 90% 95% 100%
accuracy
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] A
MNIST
Database of hand- —
written digits. * ROT (h =)
70,000 instances T | frerss '
written by 500 Cover Tree
individuals. = so
784 feature % o
dimensions.
20% i
e i g g ;;'u;#;‘x .*’: :-"
“?’3[]‘/: 55% G0% - (wi‘ﬁ TII'/r :.’:'/n 80% 85% 90% 95% 100%
accuracy
58
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Experimental Results

Poker
1,025,100 hands of 5 _
cards. 1 [
10 attributes. o nern S .
::‘;J[)/ .
n‘é”% 55%  60% 65% TO% Th%  BO%  85%  00%  95% 100%
accuracy
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Reuters
487,000 news articles — .
(roughly half the data “ReT (=)
set). L RoT (=
Approx. 300,000
keywords, no S o
dimensional reduction. $ =
Bag-of-words vectors |~ o ‘
with TF-IDF weighting.
Average stereological p.
dimension (up to e
k=200): 21.6 il
' ) “én‘/( 55% G0% 65% T0% T5% 80% 86% 90% 95% 100%
accuracy
60
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Experimental Results

Spambase

E-mail spam,
frequency of certain
words.

4601 messages.

57 attributes
(keywords).

0.28 -
x
t
H
X SASH ‘
« RCT (h = 3) 1
s ROT (h =4) 8
+ RCT (h = 5) f
s RCT (h = 8) £
H
* LSH i
* Cover Tree M
R /4
oy I »
S .
o e x
0.5 accuracy 1
61
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Experimental Results

Wikimedia Commons
faces.

200,000 faces, 2580
feature dimensions.

Vectorization performed
by Toshiba.

Sequential search

performance is excellent.

62
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Experimental Results

Wikimedia Commons
faces.

200,000 faces, 2580
feature dimensions. \

Vectorization performed »\) °
by Toshiba.

Sequential search ?3
performance is excellent.

All indices failed Q

miserably!

Average stereological
dimension (up to k=200):
150.1
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