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Multimedia Data 

 Multimedia in principle means data of more than 

one medium  

 Commonly used forms of data are numbers, 

alphanumeric, text, images, audio, and video  

 Multimedia denotes a combination of text, audio, 

and video  
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Chronology of Data Types in Computer 

Science 

 Numeric Data: scientific computations, early stages of 

computing 

 Alphanumerical Data: Business Applications 

 large volumes of data 

 RDBMS, E-R Model 

 Multimedia Data: Novel Applications 

 Text 

 Image 

 Video 

 Audio 
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Similarity Searches in Multimedia 

1) extract from each object N numerical features  

and map objects into points of a N-dimensional space 

2) use a suitable distance (e.g., Euclidean) over such a 

space, and search for “close” objects using a multi-

dimensional (“spatial”) index 

    

* Slide borrowed from Paolo Ciaccia 
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Vector-based Similarity 

Searches* 

 Using the same distance function is not always 

appropriate 

Example: retrieve (only) black points 

* Slide borrowed From Paolo Ciaccia 
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KProp: Knowledge Propagation in Large Image 

Databases Using Neighborhood Information 

Michael Houle, Vincent Oria, Shin’ichi Satoh, 

Jichao Sun 

(ACM MM 2011) 
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A query-based baseline -- Bestmatch 

Bestmatch is a simple greedy algorithm which: 

• Computes pairwise visual distances of detected objects; 

• For each unlabeled object u, find its nearest labeled object 
v; 

• Assign label t to u, where t is the label attached to v. 



1-11 

Building the influence graph 

•
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Sample images of the datasets 

 ALOI-100 

• Google-23 



1-13 

Feature Descriptor and Distance Measure 

 Google-23 Face Set 

 Frontal faces are detected by the face detector of OpenCV 1.0 

 Feature descriptors are computed by the Oxford Matlab code: 

 13 (9 detected +4 inferred) interest points 

 149-D vector computed around each interest point 

 1937-D vector for each face 

 Euclidean distance (L2) is used as distance measure 

 

 ALOI 

 Each image is represented by a 641-D vector 

based on color and texture histograms 

 Again L2 distance is used as distance measure 
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Experimental results – ALOI-100 
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Experimental results – Google-23 
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Discussion 

 All four methods perform better on ALOI-100 than on 
Google-23. 

 LapSVM is not consistently better than SVM --- it beats 
SVM on ALOI-100 but loses to SVM on Google-23 --- 
since it is sensible to labeled data and usually needs to be 
well tuned. 

 KProp has much better performance than all other methods 
especially when the number of labeled sample is small (say 
1, 2 or 3). It is always better than SVM on ALOI-100 but 
SVM overtakes KProp on Google-23 when more than 3 
faces are labeled per person. This can be explained by the 
transitivity of object relationships. 
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Discussion (cont’d) 

• Distance distributions of the two datasets (from left to 
right: ALOI-100 and Google-23). 

• It can be seen from the figures that, it is much difficult to 
tell whether two faces belong to a same person by their 
distance. 

17 

1-18 

Outline 

 Multimedia  

 Motivating application 

Knowledge Propagation in Large Image Databases 

 Similarity Search and Intrinsic Dimensionality 

 Similarity Search and the Curse of Dimensionality 

 Locality Sensitive Hashing (LSH) 

 Cover Tree (CT) 

 Rank Cover Tree (RCT) 

 Conclusion 



1-19 

■ Traditional approaches: 

● Data drawn from a real vector space Rm. 

● Distance function d: Rm  R. 

● Structure makes use of data representation. 

● Organization often depends on hierarchical decomposition 
of the domain  costs typically exponential in m.  

● Triangle inequality used for pruning of search paths. 

■ Examples: 

● R-tree (Guttman 1984). 

● SR-tree (Katayama & Satoh 1997). 

● Quadtree (Finkel & Bentley 1974), Octree. 

● k-d tree (Bentley 1975). 

● Many, many more… 

Spatial Indexing 
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Spatial Indexing 
 Traditional approaches: 

 Data drawn from a real vector space Rm. 

 Distance function d: Rm  R. 

 Structure makes use of data representation. 

 Organization often depends on hierarchical 

decomposition of the domain  costs typically 

exponential in m 

 Examples: 

 R-tree (Guttman 1984). 

 SR-tree (Katayama & Satoh 1997). 

 Quadtree (Finkel & Bentley 1974), Octree. 

 k-d tree (Bentley 1975). 

 Many, many more… 
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The Curse of Dimensionality 

 Spatial effect of dimensionality: 

Exponential increase in volume associated with increase in 
dimensionality. 

Distances concentrate around their mean values  indistinguishable. 

Variances tend to zero as a proportion of the mean. 

Points tend to concentrate along region boundaries. 
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 Implications for search: 

Search paths begin to look identical. 

Modelling of data becomes more difficult. 
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The Curse of 

Dimensionality 

Searching high-dimensional data: 

 Exact similarity queries require close 
to linear time. 

 Data organization is a major 
challenge. 

 2D and 3D intuition does not apply! 

But!... This doesn’t mean that 
neighborhoods are meaningless! 

 

Example: LA-Times 127738x6590 text 
data set, vector angle metric 
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Intrinsic Dimension and Search 

 Idea: performance analysis in terms of a characterization of the data, 

not the space. 

 Question: what dimension does the data appear to be in? 

 Many measures have been proposed, including: 

 Fractal dimension. 

 Doubling dimension. 

 Expansion dimension. 

 We will look at two approaches with analysis based on expansion 

dimension: 

 Distance-based: Cover Tree [Beygelzimer et al, 2006]. 

 Rank-based: Rank Cover Tree [H. and Nett, submitted]. 
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Expansion Dimension 
 Expansion rate of set S: 

 Introduced by Karger & Ruhl (2002). 

 Used to measure of the cost of an 

expanding search in the vicinity of a 

query point q. 

 Maximum ratio d of the number of 

points in two balls centered at q. 

 Expansion dimension:  

 Measure of intrinsic dimensionality of 

S.  

 If representational dimension is m… 

 Doubling the radius of a sphere  

volume increases by factor 2m. 
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Generalization of expansion dimension 
 Generalization of expansion dimension. 

 Choose any two spheres of positive, 

unequal radii. 

 If volumes are known, can compute 

representational dimension. 

 Volumes are not known, so... 

 ...estimate using numbers of points 

captured by the spheres. 

 Two sets of measurements allows for 

assessment of local intrinsic 

dimensionality. 

 Can characterize data sets according to 

average stereological dimension. 
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Coping with the Curse: 

k-NN Approximation Methods 

 Trade exactness of similarity query for efficiency. 

 

 Older approximation methods of mainly 
theoretical interest. 

 

 Performance typically depends on: 

● Dimension. 

● Relative distance error. 

● Probability of correctness. 

 

 Distance error approximation is much less 
effective in high dimensions! 
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k-NN Approximation Methods 

 Several results claiming speedups of 1-2 orders of magnitude, over 

sequential search: 

● Metric data: M-Tree (Zezula et al., 1998). 

● Vector data: LSH (Indyk and Motwani, 1998; with Gionis, 1999). 

● Vector data: clustering based approximation (Ferhatosmanoglu et al., 

2001). 

● ... 

 Data sets typically of the order of 103 -105 elements and 50-200 attributes. 

 Time / accuracy tradeoff difficult to manage in practice. 

 No consensus on how to measure accuracy. 
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Some Measures of Accuracy 

 U = {u1,u2,…} : approx NN set. 

 U ’ : subset of some 

(unknown) exact k-NN set. 

 ri  : (unknown) distance from q 

to exact i-th NN.  
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 Indyk and Motwani (1998), with Gionis (1999) 

 “Locality-sensitive” hashing technique. 

 Hash data so that similar items are mapped to the same bucket with 
high probability. 

 Data modeled as vectors 

 Hamming distance with bit sampling. 

 Advantages 

 1-2 orders of magnitude speedup possible, for n ~ 105, d ~ 60. 

 General technique extensible – very popular! 

 Drawbacks 

 Accuracy measured according to distances but not rank.. 

Locality Sensitive Hashing 
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LSH Families 

■ LSH family F  of hash functions for metric space M : 

• Distance function d : M  R 0. 

• Hash table T. 

• Hash functions h  F : M  T. 

• Distance threshold r. 

• Approximation factor c > 1. 

• Randomly-selected hash function h  F . 

■ F  is a (r,cr,p,q)-sensitive family when: 

• Close points likely map to the same bucket:                                             
d (x,y)  r  h (x) = h (y) with probability at least p. 

• Far points likely map to different buckets:                                                     
d (x,y)  cr  h (x) = h (y) with probability at most q. 

• Interesting when p > q. 

h 
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Examples of LSH Families 

■ Bit-sampling LSH: 

• Each point represented as an m-dimensional bit vector. 

• Hamming distance d : {0,1}m  R 0, number of differing bits. 

• LSH family: hi  (x) selects i -th bit of x. 

• Choose some distance threshold r and approximation factor c > 1. 

• (r,cr,p,q)-sensitive for p = 1 – r /m and q = 1 – cr /m. 
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Examples of LSH Families 

■ Separating hyperplanes (random projections): 

● LSH family: h (x) associated with hyperplane with normal vector v. 

● Random hash function h (x) = sign (v • x) = ±1 , for random v. 

● Depends on which side of the hyperplane x lies. 

● For uniformly distributed data: 

 

 

● Sensitive LSH family for vector angle distance metric arccos. 

    yxyhxh  arccos1)()(Pr

v x 

y 
 yx  arccos
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■ Basic idea: 

● Start with any LSH family F. 

● Construct a new LSH family G  by concatenation of w  hash functions 
from F. 

 

● Choose u random hash functions from G . 

● Preprocessing step: hash all points of the dataset into the u hash 
tables. 

 )(,),()( 1 xhxhxg w

■ Processing of query q : 

● For each hash function g, search through the buckets indexed 
by g (q). 

● Stop once we find a point x  for which d (q,x)  cr . 

Approximate 1-NN Search Using 

LSH 



1-35 

35 

 Performance: 

 th : time to evaluate hash functions of F. 

 td : time to evaluate distance function. 

 n : number of points in the data set. 

 

Other design choices:  

 

Preprocessing time: 

 

Additional space: 

 

Query time: 

 

Prob. of finding neighbour within distance cr : 
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Approximate 1-NN Search Using 

LSH 
 Requirements for scalability: 

Small approximation factor c. 

Probability p must be much 
larger than probability q. 

 If the representational 
dimension is high, the 
distance computation time td 
must not depend on it.  

 Conclusion: 

LSH has intriguing possibilities for data mining, but ...  

 ... the family of hash functions must be quite sensitive! 

Hashing typically depends on the representational dimension. 

Better practical performance by abandoning theoretical guarantees  
heuristics! 

p q  = log p / log q 

0.80 0.20 0.1386 

0.70 0.30 0.2962 

0.60 0.40 0.5575 

0.55 0.45 0.7487 

0.50 0.50 1.0000 
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Cover Tree 

 Introduced by Beygelzimer, Kakade & Langford (2006). 

 Tree index for exact similarity search. 

 (1+e)-distance approximation also possible using early termination. 

 Metric space data 

 Triangle inequality satisfied. 

 No assumed knowledge of data representation or dimension. 

 Worst-case performance optimal in n: 

 O (n log n) construction, O (log n) search, insertion, deletion. 

 No explicit dependence on representational dimension, BUT...  

 Strong dependence on a measure of intrinsic dimensionality. 
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Cover Tree Properties 

 Let u be a node at level i-1. 

 Let v be the parent of u at level i. 

 Let w be another node at level i. 

 Covering tree condition:  

 

 Separation condition: 

 

 Closest pair assumed to have 

distance 1.  
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Cover Sets 

 Assume that we have: 

 Query item q. 

 At level i > 0, a set of nodes Vi containing 

ancestors of every k-NN u of q (Cover Set). 

 Let V*  be the set of all children of Vi. 

 Distance to k-th NN of V*: 

 

 Implication: 

 Can form new cover set at level i -1 as 

 

 

 All children of v are within distance 2i of v, so 

no ancestor of neighbor u is discarded. 
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Cover Tree Search 

 Find k-Nearest (cover tree T, query point q, number of neighbors k): 

 Set Vh=Lh to be the initial cover set (all nodes are descendants). 

 For i = h-1 down to 1: 

 Set V*  be the set of all children of Vi. 

 Form new cover set 
 Return the k items of V0 closest to q. 

 Insertion and deletion resemble search: 

 Insertion by local modification of tree structure after search. 

 Only the highest-level copy of the item is explicitly inserted. 

 Deletion slightly more complex. 

 Construction by successive insertion. 
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Cover Tree Performance 

 Let the expansion dimension be D = log2 d. 

Operation WC Cost (in ) WC Cost (in D) 

Construction (Space) n n 

Construction (Time) 6 n log2 n 26D n log2 n 

Insert / Delete 6 log2 n 26D log2 n 

1-NN Query 12 log2 n 212D log2 n 

■ Practical speedups over sequential search: variable! 

• Datasets from KDD and UCI machine learning archives (among others). 

• Speedups of between 10-100 times is common. 

• Some sets achieved 1000 times speedup, others essentially no speedup. 

• Substantial speedups coincide with smallest expansion dimensions (< 20). 

• However, very large real datasets can have expansion dimensions in the thousands. 
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 Rank Cover Tree 

 New tree index for similarity search based on the Cover Tree. 

 Design based on neighborhood ranks to the query, instead of distances 

to the query. 

 Computes exact k-NN similarity queries with extremely high probability. 

 Can accelerate performance at the expense of exactness. 

 

 Metric space data 

 Triangle inequality satisfied. 

 No assumed knowledge of data representation or dimension. 
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Rank Cover Tree 

 Random leveling. 

 Copy promoted to higher 
level with probability 1/Δ. 

 Expected number of nodes 
at level L is n / ΔL. 

 Expected height of the tree 
is  ~ logΔn. 

 Similar to skip list index. 

 

 Well-formed condition: 

 For each node u at level L-
1, its parent v is the 
nearest neighbor of u from 
level L.  
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RCT Strategy 

2 

2 3 4 5 6 7 8 9 10 11 
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 Cover Tree vs RCT. 
● As search descends the CT, cover 

distance drops by a factor of 2. 

● In the RCT a random leveling, the 
1-NN neighbor within the current 
level has an expected NN rank 
with respect to the full set, AND... 

● Expected rank drops by factor of 2. 

 Implication : 
● Can form sets at each level that 

cover all k-NNs with very high 
probability.  

● The cardinality of the cover set 
does not depend on 2k, and only 
sublinearly on n. 
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RCT Search 
 Find k-Nearest (RCT T, query point q, number of neighbors k, coverage 

parameter ): 

 Set Vh-1=Lh-1 to be the initial cover set (all nodes are descendants). 

 For j = h-2 down to 0: 

 Set V*  be the set of all children of Vj+1. 

 Let the cover set size quota at level j be: 

 

 

 Set Vj to be the set of items of V* attaining the smallest kj 
distances from q  (or all items of V* if its size is less than kj ). 

 Return the k items of V0 closest to q. 

 Construction by level-order insertion – parent of u is the 1-NN from 
among the items of the level immediately above u. 
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Coverage Parameter 
 How should we choose the coverage parameter ? 

 Can show: if  is chosen to be sufficiently large, the query is exact with 
high probability. 

 Smaller choices allow for speedup at the expense of accuracy. 

 Expected time cost of queries can be controlled through the choice of . 

 Outcome of analysis: 

 Assume that the coverage parameter is chosen as:  

 

 Then with probability at least  

 ... RCT construction produces a well-formed tree in expected time 
at most 

 ... when the tree is well-formed, RCT similarity search produces a 
correct result in expected time at most    hkO 

cn11
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Complexities 

 If the sampling rate  is fixed: 
 h = log n. 

 Construction time is in 

 Search time is in 

 

 If the tree height h is fixed: 
  = n 1/h. 

 Construction time is in 

 Search time is in 

 

 All with very high probability cn11

 nncO
n 2loglog441.168.2

log2 

 nnkcO
n

log)log(
loglog441.168.2 2 

 )/2(1log441.168.2 2 hh
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

 hh
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1-50 

50 

Operation CT Cost RCT Cost 

(h=3) 

RCT Cost 

(h=4) 

RCT Cost 

(h=8) 

1-NN 

Query 

Comparison of RCT with CT 

 CT is exact, RCT is correct with very high probability. 

 RCT achieves much smaller dependence on the intrinsic dimensionality 

while still being sublinear in n. 

 CT real cost involves keeping track of nodes that lie in regions of 

diameters of very large length (exponential in 2)  for some distance 

measures, all data points could lie in these bounds until the very lowest 

levels of the search! 

 RCT real costs are decided through the explicit choice of the coverage 

parameter . 

n2

12 log 3/297.4 n 2/157.5 n 4/101.7 n
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Experimental Results 

 100-NN queries, averaged over 100 different query points & 10 builds. 

 RCT and SASH: time versus accuracy plots. 

 Cover Tree: exact time. 

 LSH: 

 E2LSH tool – implementation performs range queries. 

 For k-NN queries, must expand range until the desired number of 

neighbors is obtained 

 In our experimentations, we give it the true k-NN distance. 

 Tremendous advantage over RCT, SASH, Cover Tree! 
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Experimental Results 

■ ALOI (Amsterdam 
Library of Object 
Images) 

■ 110,250 images, 641 
features (data 
prepared by INRIA-
Rocquencourt). 

■ Average expansion 
dimension (up to 
k=200):  6.7 
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■ Chess 

■ Database of 28,056 
endgame positions 
(King + Rook vs. King). 

■ 6 features. 
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■ Covertype 

■ Topographical 
information on forest 
cover. 

■ 580,012 forest cells of 
900 sq. meters each. 

■ 54 attributes. 
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■ Gisette 

■ 13,500 recordings of 
hand-written digits 4 
and 9.  

■ 5,000 numerical 
attributes. 
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■ Isolet 

■ 7797 recordings of 
spoken letters. 

■ 617 attributes (spectral 
coefficients, contour 
features, sonorant 
features, etc.) 

■ Average stereological 
dimension (up to 
k=200):  11.9 
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■ MNIST 

■ Database of hand-
written digits. 

■ 70,000 instances 
written by 500 
individuals. 

■ 784 feature 
dimensions. 
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■ Poker 

■ 1,025,100 hands of 5 
cards. 

■ 10 attributes. 
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■ Reuters 

■ 487,000 news articles 
(roughly half the data 
set). 

■ Approx. 300,000 
keywords, no 
dimensional reduction. 

■ Bag-of-words vectors 
with TF-IDF weighting. 

■ Average stereological 
dimension (up to 
k=200):  21.6 
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■ Spambase 

■ E-mail spam, 
frequency of certain 
words. 

■ 4601 messages. 

■ 57 attributes 
(keywords). 
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■ Wikimedia Commons 
faces. 

■ 200,000 faces, 2580 
feature dimensions. 

■ Vectorization performed 
by Toshiba. 

■ Sequential search 
performance is excellent. 
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■ Wikimedia Commons 
faces. 

■ 200,000 faces, 2580 
feature dimensions. 

■ Vectorization performed 
by Toshiba. 

■ Sequential search 
performance is excellent. 

■ All indices failed 
miserably! 

■ Average stereological 
dimension (up to k=200):  
150.1 
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