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Multimedia Data 

 Multimedia in principle means data of more than 

one medium  

 Commonly used forms of data are numbers, 

alphanumeric, text, images, audio, and video  

 Multimedia denotes a combination of text, audio, 

and video  
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Chronology of Data Types in Computer 

Science 

 Numeric Data: scientific computations, early stages of 

computing 

 Alphanumerical Data: Business Applications 

 large volumes of data 

 RDBMS, E-R Model 

 Multimedia Data: Novel Applications 

 Text 

 Image 

 Video 

 Audio 
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Similarity Searches in Multimedia 

1) extract from each object N numerical features  

and map objects into points of a N-dimensional space 

2) use a suitable distance (e.g., Euclidean) over such a 

space, and search for “close” objects using a multi-

dimensional (“spatial”) index 

    

* Slide borrowed from Paolo Ciaccia 
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Vector-based Similarity 

Searches* 

 Using the same distance function is not always 

appropriate 

Example: retrieve (only) black points 

* Slide borrowed From Paolo Ciaccia 
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KProp: Knowledge Propagation in Large Image 

Databases Using Neighborhood Information 

Michael Houle, Vincent Oria, Shin’ichi Satoh, 

Jichao Sun 

(ACM MM 2011) 
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A query-based baseline -- Bestmatch 

Bestmatch is a simple greedy algorithm which: 

• Computes pairwise visual distances of detected objects; 

• For each unlabeled object u, find its nearest labeled object 
v; 

• Assign label t to u, where t is the label attached to v. 



1-11 

Building the influence graph 

•
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Sample images of the datasets 

 ALOI-100 

• Google-23 



1-13 

Feature Descriptor and Distance Measure 

 Google-23 Face Set 

 Frontal faces are detected by the face detector of OpenCV 1.0 

 Feature descriptors are computed by the Oxford Matlab code: 

 13 (9 detected +4 inferred) interest points 

 149-D vector computed around each interest point 

 1937-D vector for each face 

 Euclidean distance (L2) is used as distance measure 

 

 ALOI 

 Each image is represented by a 641-D vector 

based on color and texture histograms 

 Again L2 distance is used as distance measure 
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Experimental results – ALOI-100 
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Experimental results – Google-23 
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Discussion 

 All four methods perform better on ALOI-100 than on 
Google-23. 

 LapSVM is not consistently better than SVM --- it beats 
SVM on ALOI-100 but loses to SVM on Google-23 --- 
since it is sensible to labeled data and usually needs to be 
well tuned. 

 KProp has much better performance than all other methods 
especially when the number of labeled sample is small (say 
1, 2 or 3). It is always better than SVM on ALOI-100 but 
SVM overtakes KProp on Google-23 when more than 3 
faces are labeled per person. This can be explained by the 
transitivity of object relationships. 
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Discussion (cont’d) 

• Distance distributions of the two datasets (from left to 
right: ALOI-100 and Google-23). 

• It can be seen from the figures that, it is much difficult to 
tell whether two faces belong to a same person by their 
distance. 

17 
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■ Traditional approaches: 

● Data drawn from a real vector space Rm. 

● Distance function d: Rm  R. 

● Structure makes use of data representation. 

● Organization often depends on hierarchical decomposition 
of the domain  costs typically exponential in m.  

● Triangle inequality used for pruning of search paths. 

■ Examples: 

● R-tree (Guttman 1984). 

● SR-tree (Katayama & Satoh 1997). 

● Quadtree (Finkel & Bentley 1974), Octree. 

● k-d tree (Bentley 1975). 

● Many, many more… 

Spatial Indexing 
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Spatial Indexing 
 Traditional approaches: 

 Data drawn from a real vector space Rm. 

 Distance function d: Rm  R. 

 Structure makes use of data representation. 

 Organization often depends on hierarchical 

decomposition of the domain  costs typically 

exponential in m 

 Examples: 

 R-tree (Guttman 1984). 

 SR-tree (Katayama & Satoh 1997). 

 Quadtree (Finkel & Bentley 1974), Octree. 

 k-d tree (Bentley 1975). 

 Many, many more… 
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The Curse of Dimensionality 

 Spatial effect of dimensionality: 

Exponential increase in volume associated with increase in 
dimensionality. 

Distances concentrate around their mean values  indistinguishable. 

Variances tend to zero as a proportion of the mean. 

Points tend to concentrate along region boundaries. 
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 Implications for search: 

Search paths begin to look identical. 

Modelling of data becomes more difficult. 
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The Curse of 

Dimensionality 

Searching high-dimensional data: 

 Exact similarity queries require close 
to linear time. 

 Data organization is a major 
challenge. 

 2D and 3D intuition does not apply! 

But!... This doesn’t mean that 
neighborhoods are meaningless! 

 

Example: LA-Times 127738x6590 text 
data set, vector angle metric 
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Intrinsic Dimension and Search 

 Idea: performance analysis in terms of a characterization of the data, 

not the space. 

 Question: what dimension does the data appear to be in? 

 Many measures have been proposed, including: 

 Fractal dimension. 

 Doubling dimension. 

 Expansion dimension. 

 We will look at two approaches with analysis based on expansion 

dimension: 

 Distance-based: Cover Tree [Beygelzimer et al, 2006]. 

 Rank-based: Rank Cover Tree [H. and Nett, submitted]. 
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Expansion Dimension 
 Expansion rate of set S: 

 Introduced by Karger & Ruhl (2002). 

 Used to measure of the cost of an 

expanding search in the vicinity of a 

query point q. 

 Maximum ratio d of the number of 

points in two balls centered at q. 

 Expansion dimension:  

 Measure of intrinsic dimensionality of 

S.  

 If representational dimension is m… 

 Doubling the radius of a sphere  

volume increases by factor 2m. 
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Generalization of expansion dimension 
 Generalization of expansion dimension. 

 Choose any two spheres of positive, 

unequal radii. 

 If volumes are known, can compute 

representational dimension. 

 Volumes are not known, so... 

 ...estimate using numbers of points 

captured by the spheres. 

 Two sets of measurements allows for 

assessment of local intrinsic 

dimensionality. 

 Can characterize data sets according to 

average stereological dimension. 
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Coping with the Curse: 

k-NN Approximation Methods 

 Trade exactness of similarity query for efficiency. 

 

 Older approximation methods of mainly 
theoretical interest. 

 

 Performance typically depends on: 

● Dimension. 

● Relative distance error. 

● Probability of correctness. 

 

 Distance error approximation is much less 
effective in high dimensions! 
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k-NN Approximation Methods 

 Several results claiming speedups of 1-2 orders of magnitude, over 

sequential search: 

● Metric data: M-Tree (Zezula et al., 1998). 

● Vector data: LSH (Indyk and Motwani, 1998; with Gionis, 1999). 

● Vector data: clustering based approximation (Ferhatosmanoglu et al., 

2001). 

● ... 

 Data sets typically of the order of 103 -105 elements and 50-200 attributes. 

 Time / accuracy tradeoff difficult to manage in practice. 

 No consensus on how to measure accuracy. 
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Some Measures of Accuracy 

 U = {u1,u2,…} : approx NN set. 

 U ’ : subset of some 

(unknown) exact k-NN set. 

 ri  : (unknown) distance from q 

to exact i-th NN.  
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 Indyk and Motwani (1998), with Gionis (1999) 

 “Locality-sensitive” hashing technique. 

 Hash data so that similar items are mapped to the same bucket with 
high probability. 

 Data modeled as vectors 

 Hamming distance with bit sampling. 

 Advantages 

 1-2 orders of magnitude speedup possible, for n ~ 105, d ~ 60. 

 General technique extensible – very popular! 

 Drawbacks 

 Accuracy measured according to distances but not rank.. 

Locality Sensitive Hashing 
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LSH Families 

■ LSH family F  of hash functions for metric space M : 

• Distance function d : M  R 0. 

• Hash table T. 

• Hash functions h  F : M  T. 

• Distance threshold r. 

• Approximation factor c > 1. 

• Randomly-selected hash function h  F . 

■ F  is a (r,cr,p,q)-sensitive family when: 

• Close points likely map to the same bucket:                                             
d (x,y)  r  h (x) = h (y) with probability at least p. 

• Far points likely map to different buckets:                                                     
d (x,y)  cr  h (x) = h (y) with probability at most q. 

• Interesting when p > q. 

h 
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Examples of LSH Families 

■ Bit-sampling LSH: 

• Each point represented as an m-dimensional bit vector. 

• Hamming distance d : {0,1}m  R 0, number of differing bits. 

• LSH family: hi  (x) selects i -th bit of x. 

• Choose some distance threshold r and approximation factor c > 1. 

• (r,cr,p,q)-sensitive for p = 1 – r /m and q = 1 – cr /m. 
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Examples of LSH Families 

■ Separating hyperplanes (random projections): 

● LSH family: h (x) associated with hyperplane with normal vector v. 

● Random hash function h (x) = sign (v • x) = ±1 , for random v. 

● Depends on which side of the hyperplane x lies. 

● For uniformly distributed data: 

 

 

● Sensitive LSH family for vector angle distance metric arccos. 

    yxyhxh  arccos1)()(Pr

v x 

y 
 yx  arccos

1-34 

■ Basic idea: 

● Start with any LSH family F. 

● Construct a new LSH family G  by concatenation of w  hash functions 
from F. 

 

● Choose u random hash functions from G . 

● Preprocessing step: hash all points of the dataset into the u hash 
tables. 

 )(,),()( 1 xhxhxg w

■ Processing of query q : 

● For each hash function g, search through the buckets indexed 
by g (q). 

● Stop once we find a point x  for which d (q,x)  cr . 

Approximate 1-NN Search Using 

LSH 
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 Performance: 

 th : time to evaluate hash functions of F. 

 td : time to evaluate distance function. 

 n : number of points in the data set. 

 

Other design choices:  

 

Preprocessing time: 

 

Additional space: 

 

Query time: 

 

Prob. of finding neighbour within distance cr : 
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Approximate 1-NN Search Using 

LSH 
 Requirements for scalability: 

Small approximation factor c. 

Probability p must be much 
larger than probability q. 

 If the representational 
dimension is high, the 
distance computation time td 
must not depend on it.  

 Conclusion: 

LSH has intriguing possibilities for data mining, but ...  

 ... the family of hash functions must be quite sensitive! 

Hashing typically depends on the representational dimension. 

Better practical performance by abandoning theoretical guarantees  
heuristics! 

p q  = log p / log q 

0.80 0.20 0.1386 

0.70 0.30 0.2962 

0.60 0.40 0.5575 

0.55 0.45 0.7487 

0.50 0.50 1.0000 
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Cover Tree 

 Introduced by Beygelzimer, Kakade & Langford (2006). 

 Tree index for exact similarity search. 

 (1+e)-distance approximation also possible using early termination. 

 Metric space data 

 Triangle inequality satisfied. 

 No assumed knowledge of data representation or dimension. 

 Worst-case performance optimal in n: 

 O (n log n) construction, O (log n) search, insertion, deletion. 

 No explicit dependence on representational dimension, BUT...  

 Strong dependence on a measure of intrinsic dimensionality. 
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Cover Tree Properties 

 Let u be a node at level i-1. 

 Let v be the parent of u at level i. 

 Let w be another node at level i. 

 Covering tree condition:  

 

 Separation condition: 

 

 Closest pair assumed to have 

distance 1.  
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Cover Sets 

 Assume that we have: 

 Query item q. 

 At level i > 0, a set of nodes Vi containing 

ancestors of every k-NN u of q (Cover Set). 

 Let V*  be the set of all children of Vi. 

 Distance to k-th NN of V*: 

 

 Implication: 

 Can form new cover set at level i -1 as 

 

 

 All children of v are within distance 2i of v, so 

no ancestor of neighbor u is discarded. 
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Cover Tree Search 

 Find k-Nearest (cover tree T, query point q, number of neighbors k): 

 Set Vh=Lh to be the initial cover set (all nodes are descendants). 

 For i = h-1 down to 1: 

 Set V*  be the set of all children of Vi. 

 Form new cover set 
 Return the k items of V0 closest to q. 

 Insertion and deletion resemble search: 

 Insertion by local modification of tree structure after search. 

 Only the highest-level copy of the item is explicitly inserted. 

 Deletion slightly more complex. 

 Construction by successive insertion. 

}2),(),(:{ **1

i

ki VqdvqdVvV 
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Cover Tree Performance 

 Let the expansion dimension be D = log2 d. 

Operation WC Cost (in ) WC Cost (in D) 

Construction (Space) n n 

Construction (Time) 6 n log2 n 26D n log2 n 

Insert / Delete 6 log2 n 26D log2 n 

1-NN Query 12 log2 n 212D log2 n 

■ Practical speedups over sequential search: variable! 

• Datasets from KDD and UCI machine learning archives (among others). 

• Speedups of between 10-100 times is common. 

• Some sets achieved 1000 times speedup, others essentially no speedup. 

• Substantial speedups coincide with smallest expansion dimensions (< 20). 

• However, very large real datasets can have expansion dimensions in the thousands. 



1-43 

Outline 
 Multimedia  

 Motivating application 

Knowledge Propagation in Large Image Databases 

 Similarity Search and Intrinsic Dimensionality 

 Similarity Search and the Curse of Dimensionality 

 Locality Sensitive Hashing (LSH) 

 Cover Tree (CT) 

 Rank Cover Tree (RCT) 

 Experiments 

 Conclusion 

1-44 

 Rank Cover Tree 

 New tree index for similarity search based on the Cover Tree. 

 Design based on neighborhood ranks to the query, instead of distances 

to the query. 

 Computes exact k-NN similarity queries with extremely high probability. 

 Can accelerate performance at the expense of exactness. 

 

 Metric space data 

 Triangle inequality satisfied. 

 No assumed knowledge of data representation or dimension. 
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Rank Cover Tree 

 Random leveling. 

 Copy promoted to higher 
level with probability 1/Δ. 

 Expected number of nodes 
at level L is n / ΔL. 

 Expected height of the tree 
is  ~ logΔn. 

 Similar to skip list index. 

 

 Well-formed condition: 

 For each node u at level L-
1, its parent v is the 
nearest neighbor of u from 
level L.  
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RCT Strategy 
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 Cover Tree vs RCT. 
● As search descends the CT, cover 

distance drops by a factor of 2. 

● In the RCT a random leveling, the 
1-NN neighbor within the current 
level has an expected NN rank 
with respect to the full set, AND... 

● Expected rank drops by factor of 2. 

 Implication : 
● Can form sets at each level that 

cover all k-NNs with very high 
probability.  

● The cardinality of the cover set 
does not depend on 2k, and only 
sublinearly on n. 
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RCT Search 
 Find k-Nearest (RCT T, query point q, number of neighbors k, coverage 

parameter ): 

 Set Vh-1=Lh-1 to be the initial cover set (all nodes are descendants). 

 For j = h-2 down to 0: 

 Set V*  be the set of all children of Vj+1. 

 Let the cover set size quota at level j be: 

 

 

 Set Vj to be the set of items of V* attaining the smallest kj 
distances from q  (or all items of V* if its size is less than kj ). 

 Return the k items of V0 closest to q. 

 Construction by level-order insertion – parent of u is the 1-NN from 
among the items of the level immediately above u. 
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Coverage Parameter 
 How should we choose the coverage parameter ? 

 Can show: if  is chosen to be sufficiently large, the query is exact with 
high probability. 

 Smaller choices allow for speedup at the expense of accuracy. 

 Expected time cost of queries can be controlled through the choice of . 

 Outcome of analysis: 

 Assume that the coverage parameter is chosen as:  

 

 Then with probability at least  

 ... RCT construction produces a well-formed tree in expected time 
at most 

 ... when the tree is well-formed, RCT similarity search produces a 
correct result in expected time at most    hkO 

cn11

 nhO 
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5log
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Complexities 

 If the sampling rate  is fixed: 
 h = log n. 

 Construction time is in 

 Search time is in 

 

 If the tree height h is fixed: 
  = n 1/h. 

 Construction time is in 

 Search time is in 

 

 All with very high probability cn11

 nncO
n 2loglog441.168.2

log2 

 nnkcO
n

log)log(
loglog441.168.2 2 

 )/2(1log441.168.2 2 hh
ncO 


 hh
kncO /2log441.168.2 2 
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Operation CT Cost RCT Cost 

(h=3) 

RCT Cost 

(h=4) 

RCT Cost 

(h=8) 

1-NN 

Query 

Comparison of RCT with CT 

 CT is exact, RCT is correct with very high probability. 

 RCT achieves much smaller dependence on the intrinsic dimensionality 

while still being sublinear in n. 

 CT real cost involves keeping track of nodes that lie in regions of 

diameters of very large length (exponential in 2)  for some distance 

measures, all data points could lie in these bounds until the very lowest 

levels of the search! 

 RCT real costs are decided through the explicit choice of the coverage 

parameter . 

n2

12 log 3/297.4 n 2/157.5 n 4/101.7 n
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Experimental Results 

 100-NN queries, averaged over 100 different query points & 10 builds. 

 RCT and SASH: time versus accuracy plots. 

 Cover Tree: exact time. 

 LSH: 

 E2LSH tool – implementation performs range queries. 

 For k-NN queries, must expand range until the desired number of 

neighbors is obtained 

 In our experimentations, we give it the true k-NN distance. 

 Tremendous advantage over RCT, SASH, Cover Tree! 
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Experimental Results 

■ ALOI (Amsterdam 
Library of Object 
Images) 

■ 110,250 images, 641 
features (data 
prepared by INRIA-
Rocquencourt). 

■ Average expansion 
dimension (up to 
k=200):  6.7 

 

1-54 

■ Chess 

■ Database of 28,056 
endgame positions 
(King + Rook vs. King). 

■ 6 features. 

 

 

Experimental Results 
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■ Covertype 

■ Topographical 
information on forest 
cover. 

■ 580,012 forest cells of 
900 sq. meters each. 

■ 54 attributes. 

 

 

Experimental Results 
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■ Gisette 

■ 13,500 recordings of 
hand-written digits 4 
and 9.  

■ 5,000 numerical 
attributes. 

 

Experimental Results 
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■ Isolet 

■ 7797 recordings of 
spoken letters. 

■ 617 attributes (spectral 
coefficients, contour 
features, sonorant 
features, etc.) 

■ Average stereological 
dimension (up to 
k=200):  11.9 

 

Experimental Results 
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■ MNIST 

■ Database of hand-
written digits. 

■ 70,000 instances 
written by 500 
individuals. 

■ 784 feature 
dimensions. 

 

Experimental Results 
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■ Poker 

■ 1,025,100 hands of 5 
cards. 

■ 10 attributes. 

 

Experimental Results 
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■ Reuters 

■ 487,000 news articles 
(roughly half the data 
set). 

■ Approx. 300,000 
keywords, no 
dimensional reduction. 

■ Bag-of-words vectors 
with TF-IDF weighting. 

■ Average stereological 
dimension (up to 
k=200):  21.6 

 

 

Experimental Results 
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■ Spambase 

■ E-mail spam, 
frequency of certain 
words. 

■ 4601 messages. 

■ 57 attributes 
(keywords). 

 

Experimental Results 
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■ Wikimedia Commons 
faces. 

■ 200,000 faces, 2580 
feature dimensions. 

■ Vectorization performed 
by Toshiba. 

■ Sequential search 
performance is excellent. 

 

 

Experimental Results 

? 
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■ Wikimedia Commons 
faces. 

■ 200,000 faces, 2580 
feature dimensions. 

■ Vectorization performed 
by Toshiba. 

■ Sequential search 
performance is excellent. 

■ All indices failed 
miserably! 

■ Average stereological 
dimension (up to k=200):  
150.1 

 

 

Experimental Results 


