Similarity Search in High Dimensional Spaces: Application to Multimedia

> Vincent Oria New Jersey Institute of Technology Newark, NJ 07102 USA

> > 1-1

Generalization of expansion dimension

- Generalization of expansion dimension.
- Choose any two spheres of positive, unequal radii.
- If volumes are known, can compute representational dimension.
- Volumes are not known, so...
- ...estimate using numbers of points captured by the spheres.
- Two sets of measurements allows for assessment of local intrinsic dimensionality.
- Can characterize data sets according to average stereological dimension.

1-25

Approximate 1-NN Search Using LSH Requirements for scalability: $\rho = \log p / \log q$ р q \diamond Small approximation factor c. 0.20 0.80 0.1386 \diamond Probability p must be much larger than probability q. 0.70 0.30 0.2962 ♦ If the representational 0.60 0.40 0.5575 dimension is high, the distance computation time t_d 0.55 0.45 0.7487 must not depend on it. 0.50 0.50 1.0000 Conclusion: LSH has intriguing possibilities for data mining, but ... … the family of hash functions must be quite sensitive! Hashing typically depends on the representational dimension. \diamond Better practical performance by abandoning theoretical guarantees \rightarrow heuristics!

1-36

Operation	WC Cost (in δ)	WC Cost (in D)
Construction (Space)	n	п
Construction (Time)	$\delta^6 n \log_2 n$	2 ^{6D} n log ₂ n
Insert / Delete	$\delta^6 \log_2 n$	2 ^{6D} log ₂ n
1-NN Query	$\delta^{12} \log_2 n$	2 ^{12D} log ₂ n

- Substantial speedups coincide with smallest expansion dimensions (< 20).
- However, very large real datasets can have expansion dimensions in the thousands.

