
Towards Ontological Correctness of Part-whole
Relations with Dependent Types

Richard Dapoigny1 Patrick Barlatier1

1LISTIC/Polytech’Savoie
University of Savoie, Annecy, (FRANCE)

Cite as: Dapoigny, R., Barlatier, P. Towards Ontological Correctness of Part-whole Relations with Dependent Types.

Dapoigny, Barlatier (University of Savoie) Towards Ontological Correctness of Part-whole Relations with Dependent Types 1 / 31

Contents

1 Introduction

2 Type Theory

3 Part-Whole specifications
Formalization
Applications

4 K-DTT with Triples

5 Conclusion

Dapoigny, Barlatier (University of Savoie) Towards Ontological Correctness of Part-whole Relations with Dependent Types 2 / 31

Introduction

A core problem in ontologies: Part-Whole modeling
and reasoning

Some limitations of classical approaches. Usually, reasoning is
achieved with Description Logics (DLs) or fragments of First Order
Logic (FOL). But there are many challenging problems such as:

The differences that appear in parthood relations between classes
and parthood relations between instances.

Meta reasoning about Part-whole relations.

Non-differentiation among the roles that parts play within the
structure of a whole.

Whether the inheritance property holds for parthood relations.

Dapoigny, Barlatier (University of Savoie) Towards Ontological Correctness of Part-whole Relations with Dependent Types 3 / 31

Introduction

The Layered Model for ontologies

The DL-based model:

Dapoigny, Barlatier (University of Savoie) Towards Ontological Correctness of Part-whole Relations with Dependent Types 4 / 31

Introduction

The Layered Model for ontologies

The K-DTT model:

Dapoigny, Barlatier (University of Savoie) Towards Ontological Correctness of Part-whole Relations with Dependent Types 4 / 31

Introduction

Type Theory

Dependent type theory: foundation for constructive mathematics.

Using constructive logic ⇒ epistemologically unclear steps in
proofs are forbidden.

In computer science, dependent types ⇒ proof assistants and
automated theorem provers.

Dependent type systems mix types and expressions to produce
code that is proven to be correct with respect to its expected
behavior.

The Curry-Howard isomorphism: proving ≡ computing.

So, why bother? idea: apply type theory to express and reason about
ontological components.

Dapoigny, Barlatier (University of Savoie) Towards Ontological Correctness of Part-whole Relations with Dependent Types 5 / 31

Type Theory

Basis of Type Theory

Universes are stratified (Russell): Prop ⊆ Type0 ⊆ Type1 . . . ⊆ Typei−1

Dapoigny, Barlatier (University of Savoie) Towards Ontological Correctness of Part-whole Relations with Dependent Types 6 / 31

Type Theory

Types and ontologies

Stratified universes: Type0 is the universe of "instanciable" types (e.g.,
House is instanciable in MyHouse), Type1 the universe for types of
instanciable types (e.g., items of the Dolce ontology), and so forth.

Dapoigny, Barlatier (University of Savoie) Towards Ontological Correctness of Part-whole Relations with Dependent Types 7 / 31

Type Theory

Representing knowledge and reasoning with
Dependent Types

Expressing "for all": product types

Πx : Cell .Πy : Membrane . LimitedBy(x , y)

Expressing "for some": sum types

Σx : Man .Σy : Donkey . Own(x , y)

But we can do more: quantification can be dependent.

Every man who owns a donkey beats it

Πd : (Σx : Man.Σy : Donkey .Own(x , y)).Beat(fst(d), fst(sec(d)))

the domain of quantification of the product (Π) is over the predicate
Σx : Man.Σy : Donkey .Owns(x , y).

Dapoigny, Barlatier (University of Savoie) Towards Ontological Correctness of Part-whole Relations with Dependent Types 8 / 31

Type Theory

Expressing knowledge

Relations
Representing relations with n-ary sum-types.

Σx1 : T1 . Σx2 : T2 Σxn : Tn . R(x1, x2, . . . , xn)

where T1, T2, ... Tn are types.

Example
Σx : Person . Σy : Good . Σz : Shop . purchaseFrom(x , y , z)
with an example of proofs:
〈John, 〈PartsbySimons, 〈Amazon, p1〉〉〉
with: p1 = purchaseFrom(John, PartsbySimons, Amazon)

Dapoigny, Barlatier (University of Savoie) Towards Ontological Correctness of Part-whole Relations with Dependent Types 9 / 31

Type Theory

Subtyping

Basic subtyping relation:

Γ ` M : A Γ ` A′ : Type A ≤ A′

Γ ` M : A′
(Sub)

Subtyping of relations: corollary [Luo94]
The relation ≤ is the smallest partial order over terms with respect to
conversion such that:
if A ≤ A′ and B ≤ B′, then Σx : A . B ≤ Σx : A′

. B′

Here, A and B can be types or sorts (e.g., Type0, Type1, ...)

In K-DTT, subtyping will be used to denote intensional subsumption.

Dapoigny, Barlatier (University of Savoie) Towards Ontological Correctness of Part-whole Relations with Dependent Types 10 / 31

Type Theory

Representing (binary) part − of relations

Rel(T , T ′
, R) , Σ T : Typei . ΣT ′ : Typei . R(T , T ′) with

R : T → T ′ → Prop.

Formalizing the binary part-whole relations:

PW , Rel(T1, T2, PartOf)

Example of such a relation:

Rel(shaftOfFemur , Femur , PartOf) ,

Σx : shaftOfFemur . Σy : Femur . PartOf (x , y)

How to formally conceptualize the properties of such a relation
(e.g., transitivity) within the theory?

A solution: specifications.

Dapoigny, Barlatier (University of Savoie) Towards Ontological Correctness of Part-whole Relations with Dependent Types 11 / 31

Part-Whole specifications Formalization

What is a specification?

Specifications have been introduced in theoretical computer science
[Burstall-Goguen80, Luo94] for proving the correctness of program
modules. A specification Sp in K-DTT consists of a pair:

Struc[Sp] : Type , Pr : Struc[Sp] → Prop

Dapoigny, Barlatier (University of Savoie) Towards Ontological Correctness of Part-whole Relations with Dependent Types 12 / 31

Part-Whole specifications Formalization

Notation

Higher-order logic symbols:

> =⇒ true (provable in any valid context)
⊥ =⇒ absurdity (has no proof)
⊃ =⇒ if P ⊃ Q and P are provable, then so is Q
& =⇒ if P & Q is provable, so are P and Q
∀ =⇒ if P[x] is provable then ∀x : A.P[x] is provable
. . . =⇒

Dapoigny, Barlatier (University of Savoie) Towards Ontological Correctness of Part-whole Relations with Dependent Types 13 / 31

Part-Whole specifications Formalization

Parameterized specification: an example

Provided that a part − whole relation operating on particulars (PT) is
transitive, one can introduce parameterized specifications
(p-specifications) for transitive relations with:

Struc[Trans](Rel(PT , PT , Tr)) , Rel(PT , PT , Tr)

with Tr : PT → PT → Prop

Pr [Trans](Rel(PT , PT , Tr)) ,
∀x : PT . ∀y : PT . ∀z : PT .

(Tr(x , y) & Tr(y , z)) ⊃ Tr(x , z)

Dapoigny, Barlatier (University of Savoie) Towards Ontological Correctness of Part-whole Relations with Dependent Types 14 / 31

Part-Whole specifications Formalization

Reasoning with transitive relations

If one has a proof (i.e., knows) that a relation is transitive:
Rel(PT , PT , PartOf) and since Valve ≤ PT , CarEngine ≤ PT and
Car ≤ PT , then from the corollary, it follows that:

Σx : Valve . Σy : CarEngine . PartOf (x , y) ≤ Rel(PT , PT , Tr)
Σx : CarEngine . Σy : Car . PartOf (x , y) ≤ Rel(PT , PT , Tr)

Intensional subsumption assumes that these two relations must satisfy
the predicative part of their super type, i.e., we get a proof for
PartOf (Valve1, MyCar) with Valve1 : Valve and MyCar : Car . It means
that we have constructed the type:

Σx : Valve . Σy : Car . PartOf (x , y)

Dapoigny, Barlatier (University of Savoie) Towards Ontological Correctness of Part-whole Relations with Dependent Types 15 / 31

Part-Whole specifications Formalization

Operations on specifications

Fusion of specifications

Given two specifications S and S′ having the same structure SJ :

Struc[Fusion(S, S′)] , SJ

Pr [Fusion(S, S′)](z) , Pr [S](z) & Pr [S′](z)

Extension of specifications
Given a specification Struc[S] and an extent ES of that structure:

Struc[Extent(S, ES , PrS)] , Σx : Struc[S] . ES(x)

Pr [Extent(S, ES , PrS)](z) , Pr [S](fst(z)) & PrS(z)

Dapoigny, Barlatier (University of Savoie) Towards Ontological Correctness of Part-whole Relations with Dependent Types 16 / 31

Part-Whole specifications Formalization

Introducing meta-properties of relations

With the respective p-specifications Trans(T , T ′
, R), Refl(T , T ′

, R),
Antsym(T , T ′

, R) that hold for transitive, reflexive and anti-symmetric
relations, one can introduce a p-specification POR for partial order
relations:

POR(T , T ′
, R) , Fusion(Refl(T , T ′

, R),
Trans(T , T ′

, R), Antsym(T , T ′
, R))

Struc[POR(T , T ′
, R)] , Rel(T , T ′

, R)

Pr [POR(T , T ′
, R)](z) , Pr [Refl(T , T ′

, R)](z) &
Pr [Trans(T , T ′

, R)](z) &
Pr [Antsym(T , T ′

, R)](z)

with z : Rel(T , T ′
, R).

Dapoigny, Barlatier (University of Savoie) Towards Ontological Correctness of Part-whole Relations with Dependent Types 17 / 31

Part-Whole specifications Formalization

Introducing meta-properties of relations

Similarly, an intransitive relation ITR is such that:

ITR(T , T ′
, R) , Fusion(Asym(T , T ′

, R), ITrans(T , T ′
, R))

Struc[ITR(T , T ′
, R)] , Rel(T , T ′

, R)

Pr [ITR(T , T ′
, R)](z) , Pr [Asym(T , T ′

, R)](z) &
Pr [ITrans(T , T ′

, R)](z)

and the specification IRT (PT , PT , PPartOf) for proper-part-of
p-specifications:

IRT (T , T ′
, R) , Fusion(Asym(T , T ′

, R), Trans(T , T ′
, R))

Struc[IRT (T , T ′
, R)] , Rel(T , T ′

, R)

Pr [IRT (T , T ′
, R)](z) , Pr [Asym(T , T ′

, R)](z) &
Pr [Trans(T , T ′

, R)](z)

Dapoigny, Barlatier (University of Savoie) Towards Ontological Correctness of Part-whole Relations with Dependent Types 18 / 31

Part-Whole specifications Applications

Part-whole p-specifications

Following [Keet08] different types of part-whole relations can be
specified,

Generic Part-whole relations
Transitive PartOf: POR(PT , PT , PartOf) : POR(T , T ′

, R)
Non-transitive meronymic PartOf:
NTR(PT , PT , MPartOf) : Asym(T , T ′

, R)
Intransitive proper PartOf:
IRT (PT , PT , PPartOf) : IRT (T , T ′

, R)
Intransitive meronymic PartOf:
ITR(PT , PT , MPartOf) : ITR(T , T ′

, R)

Dapoigny, Barlatier (University of Savoie) Towards Ontological Correctness of Part-whole Relations with Dependent Types 19 / 31

Part-Whole specifications Applications

Consequence

If a specification S subsumes a specification S′, then S′ must satisfy
all the axioms of S.

Example
Let us introduce the specification involved − in such that
Struc[involved − in(PD, PD, InvolvedIn)] ≤
Struc[POR(PT , PT , PartOf)], we have:

(Σx : Chewing.Σy : Eating.InvolvedIn(x , y)) :

involved − in(PD, PD, InvolvedIn)

then Rel(Chewing, Eating, InvolvedIn) satisfies all the predicates of its
super-type (i.e., it is reflexive, transitive and antisymetric).

Dapoigny, Barlatier (University of Savoie) Towards Ontological Correctness of Part-whole Relations with Dependent Types 20 / 31

Part-Whole specifications Applications

The formal ontology of part-whole p-specifications

Dapoigny, Barlatier (University of Savoie) Towards Ontological Correctness of Part-whole Relations with Dependent Types 21 / 31

Part-Whole specifications Applications

Example 1

Correctness of user-defined relations
From DOLCE: ED ≤ PT and PD ≤ PT .
If we add the types Car and CarChassis such that: Car : ED and
CarChassis : ED, a part-of relation where CarChassis is a part of Car .
Since ED ≤ PT , the relation is of type POR(PT , PT , PartOf), then it is
logically correct to speak of part-of relation between CarChassis and
Car .
If σ1 , Σx : CarChassis . Σy : Car . PartOf (x , y), it is possible to
automatically derive the inverse relation:

Πz : σ1 . HasPart(fst(sec(z)), fst(z))

Dapoigny, Barlatier (University of Savoie) Towards Ontological Correctness of Part-whole Relations with Dependent Types 22 / 31

Part-Whole specifications Applications

Example 1 (cont.)

Correctness of user-defined relations
If we apply the involved − in relation with the types Car and
CarChassis:

Σx : CarChassis . Σy : Car . InvolvedIn(x , y)

From the ontology of p-specifications this relation type should be
subsumed by:

Σx : PD . Σy : PD . InvolvedIn(x , y)

but Car ≤ PD ⊃ ⊥ and CarChassis ≤ PD ⊃ ⊥
then this definition is rejected.

Dapoigny, Barlatier (University of Savoie) Towards Ontological Correctness of Part-whole Relations with Dependent Types 23 / 31

Part-Whole specifications Applications

Example 2

Arguments of a relation more general than those of its parent
relation
Suppose that we assert:

The respective argument types are PD and PT for PartOf and
involved − in.

CarChassis : PT and Car : PT .

The ontology of specifications expects that the following equation
holds:

Σx : PT . Σy : PT . InvolvedIn(x , y) ≤ Σx : PD . Σy : PD . PartOf (x , y)

The subtyping requires that PT ≤ PD, which is in conflict with the
DOLCE ontology of particulars.

Dapoigny, Barlatier (University of Savoie) Towards Ontological Correctness of Part-whole Relations with Dependent Types 24 / 31

Part-Whole specifications Applications

Example 3

High Level Reasoning
→ Let us define a subquantity − of specification that is intransitive.

→ Its p-specification (in Type2) must be also irreflexive.

→ Choice: ITR(PT , PT , MPartOf) subsuming subquantity − of .

→ An instance of the specification subquantity − of is created in the
KB.

→ By propagating this instance upwards in the ontology of
specifications, an instance of the p-specification ITrans(T , T ′

, R) is
created, result: Ok.

→ If a Type1-specification inherits of a specification which generates
an incoherence at the Type2 level, then either:

I a constraint in Type2 is relaxed (e.g., intransitivity)
I or the Type1-specification is moved across the ontology until it

inherits from correct properties.

Dapoigny, Barlatier (University of Savoie) Towards Ontological Correctness of Part-whole Relations with Dependent Types 25 / 31

K-DTT with Triples

Ongoing Work

Expressing K-DTT with Triples
Any information is expressed in the form of triples store, but
without using the semantic related to RDF/OWL since we have
designed a dedicated inference engine with AllegroCL.

The ontology is divided into sub-domains that are mapped into
different namespaces with the purpose of distinguishing between
the related terminologies.

The predicate part of triples describe K-DTT operations, e.g., ":"
gives IsOfType, ≤ gives SubTypeOf and so forth.

Data structures are given with the following triples.

Dapoigny, Barlatier (University of Savoie) Towards Ontological Correctness of Part-whole Relations with Dependent Types 26 / 31

K-DTT with Triples

Triples

Dapoigny, Barlatier (University of Savoie) Towards Ontological Correctness of Part-whole Relations with Dependent Types 27 / 31

K-DTT with Triples

Nested Triples

Dapoigny, Barlatier (University of Savoie) Towards Ontological Correctness of Part-whole Relations with Dependent Types 28 / 31

Conclusion

Major Benefits

Main result: an ontology of p-specifications providing a number of
benefits:
 Meta-reasoning is done within a single logic.
 Syntactic differentiation between partOf and meronymic relations

through p-specifications.
 partOf relations are unambiguously identified through their

p-specifications with argument restriction.
 The unifying logical theory is able to provide the logical consistency

for user-defined structures.

However, there is a cost of greater difficulty during the modeling
stage → a guidance should be designed through, for instance, a
question answering process.

Dapoigny, Barlatier (University of Savoie) Towards Ontological Correctness of Part-whole Relations with Dependent Types 29 / 31

Conclusion

Perspectives

This could be generalized by defining the ontology as a
(structured) type and defining rules of inference as inductive
relations so as to give a computational understanding of the
ontology.

Specifications can be shared between systems and enhance the
expressive power of these systems.

Dapoigny, Barlatier (University of Savoie) Towards Ontological Correctness of Part-whole Relations with Dependent Types 30 / 31

Conclusion

Now, it’s time for some questions.

Dapoigny, Barlatier (University of Savoie) Towards Ontological Correctness of Part-whole Relations with Dependent Types 31 / 31

	Introduction
	Type Theory
	Part-Whole specifications
	Formalization
	Applications

	K-DTT with Triples
	Conclusion

