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Abstract: This article evaluates methods of computing 
confidence intervals and values of descriptive statistics, 
capability and performance indexes with the help of 
conventional procedures, statistical SW, and the method of 
generating random subgroups. Comparison of different 
methods has shown that there are differences between the 
results obtained by SW and those obtained by manual 
computing. Alternative estimation of values and confidence 
intervals by means of bootstrapping technique is discussed.  

Keywords: confidence interval, bootstrapping technique, 
performance index. 

1.   INTRODUCTION 

  The distribution of measured data is only a sample 
distribution, which should represent an overall population. It 
is, therefore, necessary to complete the calculations from the 
sample distribution with confidence intervals. The width of 
a confidence interval characterizes the accuracy of the 
estimate. A wide confidence interval indicates that the 
estimate is not accurate. 

In this article we briefly describe confidence intervals of 
basic estimates for the mean, median and standard 
deviations that are valid if the distribution is well known. 
Alternatively, a principle of naïve bootstrapping is 
introduced as a random resampling technique. The results of 
estimates of calculation and resampling are compared. 
Because of good correspondence of the results, 
bootstrapping is then used for estimating of confidences for 
Ppk (critical performance index) that cannot be calculated 
directly. The basic concept of SPC (Statistical Process 
Control) is introduced. The level of quality is evaluated with 
the help of capability and performance indexes. The correct 
estimate of these indexes and confidences strongly depends 
on the correct estimate of the standard deviation.  Two types 
of variability are discussed and their impact on results in 
process capability analysis is demonstrated.  

For precise evaluation it is possible to use many 
mathematical or statistical tools in available SW. The data 
user receives the required result very quickly, but cannot be 
sure if it is correct. 

In this project, results from statistical SW and manual 
computation of the mean, median, standard deviation, 
capability and performance indexes and confidence intervals 
are compared. For computation, the valid formulas, 
available statistical SW and slightly unusual procedure of 
random resampling called bootstrapping technique were 
used. The bootstrapping technique was created in the C++ 
programming language considering no limits for data size.  

Statistical software computes the required statistics with 
no respect to the basic presumptions of normality, stability, 
homogeneity, symmetry, etc. The result may be incorrect. In 
one statistical SW fundamental discrepancy between 
evaluating long and short-term capability was found. 
Various computation methods are used in different kinds of 
SW, confidence intervals are missing, numerical results are 
not exactly the same and the interpretation of results 
depends only on the data user and his expertise.  

Data analysis must be completed with graphical output, 
the applied procedure must be mentioned and with the 
respect to differences in the results obtained by SW, the 
applied type and version of statistical SW must be declared.  

2.   PURPOSE 

As it is shown in Tab. 1, the output from the analysis of 
process performance for the same data set is not the same in 
one type of statistical SW.  The difference is significant. 

Tab. 1 Calculation of Performance Index (for the same example) 

SW Pp 

MS Excel 1,00132 

QC.Expert 2.5 1,64862 

STATISTICA 6.0 1,00132 

 
SW STATISTICA 6.0 does not compute the confidence 

intervals. SW QC.Expert 2.5 presents a very high value of 
Pp because of the different type of estimated variability. The 
manual computation in MS Excel is quite difficult and it is 
possible to make mistakes. If the distribution is skewed, the 
confidence intervals are not symmetric and the traditional 
approach fails. The simple example shows that it is not 

125



possible to rely on the results of statistical SW without any 
risk. As an alternative procedure for the computation of 
performance index, critical performance index and their 
confidence intervals, the bootstrapping technique was used 
and the results were compared in examples with several 
shapes of distributions. 

3.   METHODS 

Because the distribution from input data is only a sample 
distribution, the estimate of any statistic should be 
completed with confidence intervals. The result with the 
confidences tells us that our estimate is correct with high 
probability in a small area. 

Fig. 1 shows PDF (Probability Density Function). The 
shape in this example corresponds with the Laplace-Gauss 
(Normal) distribution. For a simple estimate of the basic 
statistics obtained by conventional procedures the sample 
distribution estimated from the measured data should be 
similar. The best estimate for the mean of distribution is the 
arithmetic average, which is the same as the median and 
modus if the data are normally distributed. The position of 
these statistics is situated on the peak of the bell curve (see 
Fig. 1 N(0; 1)).  

 
Fig. 1 Normalized Normal Distribution N(0; 1) 

 
The formula for the two-side confidence interval of the 

mean (if the variability is unknown): 
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The estimate of median confidence interval is quite 
difficult. Formula (2) is one possible nonparametric estimate 
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For the estimate of data variability, standard deviation is 
used. This characteristic tells us what amount of data is 
concentrated in proportional interval; see Fig (1). It is not 
possible to use the confidences of standard deviation (3) if 
normality is rejected. 
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Of course similar procedures for the estimate of other 
statistics have been described in available literature [1], [3], 
[5]. Each estimate depends on the shape of the source 
distribution.  

The main idea of the bootstrapping technique [1], [7] is 
based on random resampling of the source data set. The 
random samples are generated from the measured data and 
these samples are situated in subgroups, see Tab. 2.  

The basic idea is to get more information from the 
source data set after resampling with replacement. Tab. 2 
shows the concept of resampling with replacement (naïve 
bootstrapping). For simplicity the input data are only figures 
from 1 to 5. 

Tab. 2 Illustration of Bootstrapping (n=5) 

Input data 1 2 3 4 5 Mean Sorted Mena 

1st subgroup 1 3 2 1 5 2,4 2,2 
2nd subgroup 5 2 2 4 3 3,2 2,4 
3rd subgroup 4 1 3 1 2 2,2 3,2 
etc. . . . . . . . 

 
Each sample contains only input data. Some figures are 

repeated in one subgroup, some are omitted in another. 
From each subgroup the desired statistics (e.g. mean, critical 
performance index, standard deviation etc.) are computed. 
Then these results are ranked. For 30000 subgroups there 
are 30000 ranked statistics. If the resampling is correct, the 
90% confidence interval of the desired statistic is result 
value of ranges from 1500 to 28500, for the 95% confidence 
interval ranges from 750 to 29250.  

Fig. 2 shows the estimated distribution (histograms) 
from the first nine unsorted subgroups (n = 20; B = 800).  

 
Fig. 2 Histograms from Bootstrap Subgroups 
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Fig. 3 shows upper part of distribution from averages 
(negative-exponential smoothing) of unsorted subgroups in 
other example (n = 100; B = 1200). 

 
Fig. 3 Upper Part of Estimated Distribution (STATISTICA 6.0) 
 
The number of figures n in each subgroup usually equals 

the number of figures in source data. The number of 
simulated subgroups B depends on the number of source 
data. A simple estimate for sufficient number of subgroups 
is given by next formula [7]: 

nB .40=             (4) 

B … Number of subgroups (bootstrap simulations) 
n  … Number of input data 

 
The error of the bootstrapping technique is the difference 

between the real and estimated distribution. It consists of 
two factors. The first one is a statistical error that depends 
on the number of source data and, of course, on data 
correctness. This type of error cannot be eliminated by the 
bootstrapping technique. The second one is the simulation 
error (insufficient randomness or scarcity of bootstrap 
subgroups). This type of error can be reduced by increasing 
the number of subgroups. Formula (4) is optimal 
recommendation with respect to the number of computation 
and related computing demands (time, computer 
performance, etc.). The final number of bootstrap subgroups 
B depends on the operator’s choice and it can be higher. We 
used 30000 bootstrap subgroups for all computations. The 
results of estimated statistics from each bootstrap subgroup 
are sorted. Then it is possible to determine the confidence 
intervals (as shown in the Fig. 4, Fig. 5 and Fig. 6) that are 
valid for symmetrical PDF. Fig. 4 shows the sorted results 
from the estimate of the mean and its confidences. The 
result has a very good correspondence with the manual 
calculation (see Results). Fig. 5 shows the output from the 
estimate of the median and its confidences. The output is 
accurate again. In Fig. 6 the bootstrap simulation of sample 
standard deviation is shown. If the PDF is systematically 
skewed, the better estimate of central value is the median 
which is resistant to outliers and is robust to disturbance of 
normality. The parametric bootstrap provides a more precise 
estimate of the central value for the asymmetric shape of 
distributions [7]. For our purpose naïve bootstrapping is 
sufficient. 

 
Fig. 4 Result Curve from 30000 Simulated Subgroups (Mean) 

 

 

Fig. 5 Result Curve from 30000 Simulated Subgroups (Median) 

 
Fig. 6 Result Curve from 30000 Simulated Subgroups (St. Dev.) 

In SPC the process characterized by measured data needs 
to be stable and predictable. Corrective actions are accepted 
for the stability and predictability of measured data. This 
means that the process is adjusted so that the data are 
centered between the upper and lower specification limits 
(USL, LSL). The input data should correspond to normality, 
homogeneity, etc. There are eight conditions called 
assignable causes [1], [6] for the stable and predictable 
process. Breaking any of these conditions indicates that 
something highly improbable has happened. The process 
becomes unstable and unpredictable. How well the data 
meet the specifications is expressed with the help of process 
capability and performance indexes (Cp, Pp). In addition to 
Cp and Pp the critical values (Cpk, Ppk) indicate how well 
the process of measured data is centered. For higher values 
of the indexes, reduction of variability is very important. 
Variability can be understood as a metric of quality and 
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standard deviation as a metric of variability. It means the 
metric of process capability or product character. With 
respect to the measured data we distinguish the short-term 
variability (inherent or within sample variability) and long-
term variability (overall or between samples variability). 
The first one is estimated from a short period of time and 
includes a minimal amount of noises and process changes. 
The second one covers the whole process of measuring with 
all changes and shifts. The capability index is correctly 
determined from short-term variability. The performance 
index is determined from overall variability. Both indexes 
compare the defined and real standard deviation. It stands to 
reason that the capability index is greater than or equal to 
the performance index. So the capability index represents 
potential capability if the process does not contain shifts of 
central value (centralized process). It takes into account 
keeping the limits of specifications. The Cp controls the 
variation or difference in series of measured data. If, for 
instance, a significant autocorrelation is present, the 
performance index will be low. The Cp depicts how the 
process could perform relative to the specification if shifts 
are eliminated. The Pp depicts how the process is actually 
performing relative to the specifications. It is estimated only 
from the standard or sample standard deviation. A 
significant difference between Cp and Pp indicates that the 
process is out of control or the source of variability is not 
covered by short-term (within) variability. The process is 
not under control with respect to the specifications if Cp or 
Pp is lower than 1. Minimal requirement for capable process 
is usually 1.33. The following figures show the difference 
between classical and critical indexes.  

 
Fig. 7 Three Different Processes with the Same Cp (QC.Expert 2.5) 

 
Fig. 8 Three Different Processes with the Same Cpk (QC.Expert 2.5) 

The green lines are the Gaussian PDF, the red lines 
depict an estimates of PDF from measured data. It is 
obvious that if the process is not centered, the value of Cpk 
declines. If the measured data are outside specification 
limits, Cpk can be negative. If the process is centered, Cp 
and Cpk are equal. The Cp and Cpk have higher value if the 
process has low variability (it can be proved by higher 
kurtosis). In the same way, it is possible to explain and 
interpret the performance index and its critical values. Fig. 7 
and Fig. 8 were created in QC.Expert 2.5. 

The following formulas characterize the estimate of 
variability in the sequence of measured data. Its correct type 
is essential for the computing capability or performance 
indexes. These types of standard deviation (within 
variability) are valid for the estimate of the process 
capability index [1]. 
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The calculations of standard deviations in formulas (5) 
and (6) are only valid for a sequence of measured data. 
Other procedures are valid for data organized in subgroups. 
As is clear from the previous formulas, within variability 
strongly depends on the sequence of measured data (it uses 
moving averages). If the characteristic sequence is broken, 
the moving averages are entirely different. Resampling with 
replacement breaks the characteristic sequence and changes 
short-term variability. The naïve bootstrapping provides 
incorrect estimates of Cp, Cpk and their confidence intervals 
in this example. In this case it is possible to use 
“subsampling”, which solves the problem with data 
sequence [7]. Nevertheless, the naïve bootstrapping provides 
a reliable estimate of overall variability, performance index 
Pp and critical Ppk and their confidences. The sample 
standard deviation (7) is used for the estimate of overall 
variability. It is used for the estimate of the performance 
index. This index takes into consideration the periodicity of 
the process that is caused for instance by tool abrasion. 
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The performance index and confidence interval are 
computed from the following formulas [1], [3]. 
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But this index does not take into account the process 
position. To achieve this, it is necessary to determine critical 
index (10). The interpretation of Pp and Ppk corresponds 
with Figs.7 and 8. 
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The estimate of the confidence interval for Ppk is quite 
difficult. It is not possible to use any time valid procedure 
directly. Some approximations by Kushler, Hurley, Franklin 
or Wasserman are mentioned in [3]. In this case the 
bootstrapping is very simple and suitable technique. It 
provides stable and relevant estimates for values and 
confidences of mean, median, standard deviation and 
performance indexes as is proved in the next section. 

The bias occurred in the results of the Pp or Ppk estimate 
from bootstrapping. For correcting the bias it is necessary to 
use bias correction. In this project Efron´s bias correction 
presented in [1] was used. Because the central value of the 
estimated characteristic is not situated in the middle of the 
sorted results from bootstrapping, the correction shifts the 
value and both confidence intervals. The computation is 
performed with the help of Z0-values in Standardized 
Normal distribution, the 95% confidence interval was used 
in all computations. 

4.   RESULTS 

The first experiment with the bootstrapping technique 
was done to estimate the value and confidence intervals for 
the mean, median and standard deviation. The source data 
set contained 1000 data. The ranked results of the 
arithmetical averages from 30000 generated subgroups are 
shown in Fig. 4, the ranked results of the medians are shown 
in Fig. 5, results of the sample standard deviation are shown 
in Fig. 6. The values marked by arrows in the pictures 
displayed a good correspondence to manual calculations and 
conventional estimation for input data. Tab. 3 represents the 
output of data analysis and bootstrap simulations of the 
same data. The data were normally distributed (proved by 
histogram, Chi-square test, Kolmogorov-Smirnov one-
sample test for normality, skewness and kurtosis).  

Tab. 3 Estimates of the Mean, Median and Standard Deviation 

 
 

The other results were obtained from capability analysis 
in SPC. As was already mentioned, this type of analysis is 
frequently used in quality control. Fig. 9 shows the control 
charts X-individual and R (Ranges) from the process of 
measured data. The red lines represent upper and lower 
control limits. In this example there was a lack of data. For 
only 20 data it is not possible to reliably check all eight out-

of-control conditions. Question was whether the results of 
bootstrapping and of conventional computation would be 
significantly different. Tab. 4 shows results from the 
estimate of the central value, lower and upper confidence 
limit for the above mentioned characteristics. Estimates of 
simulations were done with Efron’s bias correction. 

  
Fig. 9 SPC – Control Chart X-individual and R (QC.Expert 2.5) 

Only 20 data were available for the estimate of process 
quality level. But the results of computations and 
bootstrapping presented in Tab. 4 correspond well.  

Tab. 4 Comparative Results from Calculations and Bootstrapping 

 
 

The bias correction presented in [1] is necessary for 
estimate of the confidence interval for performance indexes. 
In Fig. 10 the ranked results of the performance index 
without bias correction are shown. The same results after 
bias correction are presented in Fig. 11. Figures were 
created in MS.Excel. Horizontal blue lines represent the 
values of the performance index, upper and lower limits 
calculated in QC.Expert and MS.Excel (preset %5=α ).  

 
Fig. 10 Pp and Confidence Interval without Bias Correction 

 
Fig. 11 Pp and Confidence Interval after Bias Correction 
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The concave-convex curve represents the results from 
bootstrapping. The vertical green lines enclose the 95% 
confidence interval. It is clear from the pictures that, after 
bias correction, the curves of bootstrapping and confidence 
limits intersect approximately only at one point. This 
indicates conformity of results from computations and 
bootstrapping. As was already mentioned, the 95% 
confidence interval from 30000 simulations in bootstrapping 
is in the range from 750 to 29250. The bias correction 
changes this interval. The new range for the 95% confidence 
interval of Pp was obtained from the sorted simulation 
number of 153 to 27358.  
 The central values and the width of bootstrap confidence 
intervals were compared with the results from calculations 
in simulated examples. There were 50 examples in the first 
project. Each example contained only 30 data with 
approximately Gaussian distribution N(0; 1). The following 
figures show how the results of two methods are differed. 
The black curves represent the bootstrapping estimates, the 
other colors represent the results of calculations. We 
compared the basic statistics (mean, median, standard 
deviation) and the performance indexes (Pp, Ppk) after 
Efron’s bias correction. As is obvious, there is a strong 
correlation and a good correspondence between the results.  

 
Fig. 12 Estimates of Means and Confidences 

 

 
Fig. 13 Estimates of Standard Deviations and Confidences 

 

 
Fig. 14 Estimates of the Performance Indexes and Confidences 

 

 
Fig. 15 Estimates of Critical Performance Indexes and Confidences 

 
Figs. 16 and 17 show the estimates of central values and 
confidence intervals of log-normal distribution LN(20; 2) in 
the second project. As was mentioned, the median provides 
a better estimate of central values of skewed distributions. 
The results of simulations (medians) were compared with 
the estimates of Box-Cox and exponential transformations. 
A good correspondence of results exists in the central value 
estimates (Fig. 12), but the comparison of the confidence 
intervals (Fig. 13) shows that there is a significant 
difference. In this case the parametric bootstrapping 
provides better results [7]. Each example contained 60 data. 
 

 
Fig. 16 The Estimates of Central Value in 50 Examples of Log-normal 

Distribution (bootstrapping, Box-Cox and exponential transformation) 
 

 
Fig. 17 The Estimates of Confidence Intervals (the same examples) 

 
The difference between the bootstrap estimates and 
calculations of confidence intervals is strongly influenced by 
the kurtosis of input data. This result was discovered by 
significant correlation coefficients r ( %5=α ) (Tab. 5).  

Tab. 5 Kurtosis and Its Influence on Differences of Results 
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The difference between upper confidence limits 
increases with higher kurtosis of input data. The difference 
between lower confidence limits decreases with higher 
kurtosis of input data.  

5.   DISCUSSION 

The size of subgroups is very important. The same size 
of subgroup as is the number of figures in the source data set 
was proved as the best size selection. The number of 
simulations (the number of subgroups) is optional, but the 
choice depends on the input data size. Resampling with 
replacement is a simple method that provides reliable results 
of estimates of basic descriptive statistics (controlled were 
the mean, median and standard deviation) and the estimates 
of performance and critical performance indexes that are 
determined with the help of long-term variability. The naïve 
bootstrapping is not suitable for the estimate of short-term 
variability. In this case it strongly depends on the data 
sequence and the calculation is based on moving averages. 
If the data set is resampled, the result is incorrect. The time 
needed for thousands of simulations may be quite long. 
Bootstrap is suitable for the estimation of long-term 
capability (performance index), especially for its lower 
confidence limit, which is more important. For a greater 
number of generated subgroups, the results are generally 
more accurate because the error of insufficient randomness 
is eliminated. The bias correction eliminates inaccuracies in 
bootstrap estimates of performance indexes. The confidence 
interval of the sorted results is adjusted. 

If the input data do not fit the Normal distribution, the 
naïve bootstrapping provides only raw estimates. The results 
of resampling are influenced by the kurtosis and the number 
of input data. Bootstrapping technique is not resistant to 
outliers. 

In SPC it is very important to control the confidence 
intervals of estimated statistics. If someone needs to be sure 
that the level of quality is not lower than required 1.33, it is 
necessary to produce quality where the lower confidence 
interval is greater than established 1.33. The required level 
1.33 is only an estimate of central statistics. If this level is to 
be maintained, the lower limit of the confidence interval 
should be controlled. 

As was mentioned earlier, the required level of process 
capability is not lower than 1.33. This value varies with time 
and depends on the type of process which the data come 
from. Some companies have reached process quality level 
more than 2.  

The concept of long and short-term variability is not 
unified. As was already shown, it is possible that some kinds 
of SW compute quality characteristics in a different way. 
Later it was proved that the new version of QC.Expert 3.0 
accepts the above mentioned approach in long-term and 
short-term variability and the estimated capability and 
performance indexes correspond to the conventional manual 
computations. 

Results of any data analysis have to be completed with a 
graphical report; numerical results alone cannot provide a 
sufficient overview of all process characteristics. In SPC the 
capability and performance indexes need to be completed 
with control charts. One figure alone cannot tell us 

everything about the controlled process, the shape of 
distribution, trends, heteroscedasticity, outliers, etc. 
Simultaneously applied methods or procedures should be 
presented and the specific version and type of SW should be 
referenced. Statistical software doesn’t complete the results 
with the confidence intervals in all estimates. No essential 
preliminary analysis is recommended. The bootstrapping 
technique is a potentially automatic procedure that helps in 
examples where the basic presumptions do not applied. 
Nevertheless, the data analysis (in general) and 
interpretation of results are not automatic processes.   

6.   CONCLUSION 

No commercial bootstrapping technique was used. 
Original program was created in the C++ programming 
language. The random numbers (white noise) for random 
resampling were taken from SW STATISTICA 6.0. The 
random number generators in STATISTICA 6.0 were 
verified using the DIEHARD suite of tests, and they passed 
all the test criteria.   

For correct process capability and process performance 
analysis it is necessary to keep the correct procedures of 
calculation and estimates and use correct statistics. Firstly 
the test of normality should be done. If the normality is 
rejected, it is possible to use transformation (specification 
limits are transformed too). Procedures introduced in (1), 
(3), (5-10) are not correct if the normality is rejected. It is 
not necessary to have an accurate estimate of the index and 
its confidence interval, but in process capability analysis the 
biggest emphasis should be placed on the lower confidence 
limit. The bootstrapping technique provides estimates that 
are very close to the results of calculations and presents 
narrower confidences in most of the results. 

Because long and short-term variability is not unified in 
national norms or standards, it depends on the agreement of 
the parties concerned, which type of variability or which 
type of procedure will be used for the estimate of the 
capability or performance index. Both indexes depend on 
the number of data. With the higher amount of data is better 
information about the process and its character, but 
consequently, variability increases.  

As was proved in many examples, the bootstrapping 
technique provides stable results that are not based on 
normal theory [1]. It is possible to estimate confidence 
intervals of many statistics even if the source data do not fit 
normal distribution. Of course, the precision of results 
depends on the precision of the source data. 

The above described research was carried out as part of the 
research project MSM 4977751310    

„Diagnostics of Electrical Interactive Processes“. 
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