
12th IMEKO TC1 & TC7 Joint Symposium on 
 Man Science & Measurement 

September, 3 – 5, 2008, Annecy, France 
 
 
 

DESIGN AND OPTIMISATION OF DEPENDABLE MEASUREMENT SYSTEMS 
 

Blaise CONRARD , Mireille BAYART  
 

  Laboratoire d’Automatique, Génie Informatique et Signal (UMR 8146)                                                                           
Polytech'Lille, 2 Bd Langevin, 59655 Villeneuve d’Ascq, France 

                                                                                                                                     
Blaise.Conrard@polytech-lille.fr, Mireille.Bayart@univ-lille1.fr 

 
 
 

Abstract: This paper deals with the use of a structural 
modelling in order to optimise the cost of a measurement 
system with dependability constraints. The aim of the 
proposed method is to determine the sensor placement that 
tolerates a given number of failures with the lowest cost. A 
structural model is used. It describes the links between the 
physical quantities and is employed in order to determine 
the potential analytical redundancies. With that, the 
optimisation problem becomes an integer linear 
programming (ILP) problem whose resolution provides the 
best reliable and lowest-cost system. 

Keywords: sensor placement, structural analysis, 
dependability assessment, optimisation. 

1.   CONTEXT 

Concerning production systems or embedded systems, 
their dependability mainly depends on the reliability of their 
measurement system. Indeed, if a sensor fails and does not 
send its measure to the control system, the whole can 
become unavailable and it can inflict economic losses on its 
owner. Another more serious case concerns a sensor that 
provides a false measure and that leads the system to an 
unsafe position for the environment or the operators that 
work close to it. 

Consequently, the design of a measurement system is a 
complex and cautious activity. Indeed, two antagonist 
aspects have to be taken into account [1]. The system must 
be inexpensive thanks to the mineralization of the number of 
components and it must be fault tolerant thanks to the using 
of hardware and analytical redundancies. 

This paper presents a way to optimize the measurement 
system in order to find the system that provides a required 
level of fault tolerance with the lowest cost. The aims of the 
paper are, firstly, to present the concepts and structural 
modelling used, and, secondly, to describe the optimisation 
method.  

2. USED CONCEPTS AND MODELLING 

This section describes a way to model a measurement 
system and to assess its dependability, during its design step. 

2.1 Level of fault tolerance 
Designing a dependable measurement system requires a 

way to assess the dependability of the system. The proposed 
criterion is based on the evaluation of its capacity to tolerate 
failures during its operating phase. Rather than a 
quantitative probability estimation, the paper proposes to 
use a semi-qualitative evaluation. It consists in assessing the 
capacity of tolerating failures, thanks to the maximum 
number of failures that the system can simultaneously have 
without providing any false information or without detecting 
an internal problem.  

From a practical point of view, this method is attractive. 
Indeed, it enables a system to be evaluated without having 
lot of information about the reliability characteristics of all 
usable devices. These data are often difficult to find because 
they are not always provided by the suppliers or they are 
often imprecise since they concern new complex devices 
containing both electronic components and software 
elements used in a given and precise environment. 

2.2 Structural modelling 
A physical process can be modelled by a set of variables, 

each of them corresponding to a physical quantity. A set of 
physical equations links these variables and constitutes a set 
of constraints. In structural model [2,3], an incidence matrix 
is used to model the system and this set of constraints. Each 
row corresponds to an equation and each column to a 
variable. A 1 in position (i, j) indicates that variable j 
appears in constraint i.  

For instance, with the following system made of3 pipes, 
the next matrix shows the relation between their flow and 
expresses that if two flows are known the last one can be 
evaluated. 

Q1

Q2

QOutput

 
Fig. 1.  3 pipes 
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Table 1. Incidence matrix for 3 pipes 

Q1 Q2 QOutput 
1 1 1 

 
Thus, this model based on this incidence matrix provides 

a means to represent the different constraints that link 
physical quantities and in a second step is used to determine 
different ways to evaluate a physical quantity according to 
other ones. Another interest of this modelling is that it does 
not need the exact establishment of physical equations. 
Consequently, this makes easy the building of this model 
and accelerates the design phase. 

2.3 Measurement points 
A physical process has a set of points where sensors can 

be implemented and can provide a measure of a 
corresponding physical quantity. The aim of the design step 
consists in determining on each point the number of sensors 
that have to be implemented. With this goal, the proposed 
method consists in listing the points that we shall call here 
measurement points. 

From this, the incidence matrix has to be completed and 
integrates these measurement points as new variables usable 
and reachable by the control system. For instance, with the 
previous example of 3 connected pipes, they are 3 points on 
which flowmeters can be implemented, and consequently 3 
new variables associated to the measure of the flows.   

Q1

Q2

F1

F2

FOutput

QOutput

 
Fig. 3.  3 pipes with flowmeters 

 
Table 2. Incidence matrix for 3 pipes with flowmeters 

Q1 Q2 QOutput F1 F2 FOutput 
1 1 1    
1   1   
 1   1  
  1   1 

2.4 Establishing of measurement ways 
Thanks to the incidence matrix, the various ways of 

measuring a given physical quantity can be found [4]. It 
consists in determining all the combinations of measurement 
points that can be used to evaluate the value of the 
considered quantity.  

More especially, at first, it consists in searching if a 
measurement point can provide the considered physical 
quantity. Subsequently, each constraint that contains the 
searched quantity is used and provides an analytical way to 
estimate this quantity. A recursive approach is then used in 
order to determine the different possibilities to obtain the 
needed variables used in the considered constraint. Globally, 
a set of methods of estimating the value of a physical 
quantity thanks to known and reachable variables can be 
determined. 

In the previous example, the 2 ways of obtaining the 
QOutput quantity can be found thanks to this method. The first 

way is by using the FOutput measure, deduced from the last 
constraint. The second way is by using the F1 and F2 
measures presented in the first constraint that describes that 
QOutput can be estimated by Q1 and Q2 and by the two 
following constraints that express that Q1 and Q2 are 
provided by the F1 and F2 measures. Consequently, the 
possibility to estimate the QOutput quantity can be summed up 
by the following relation : 

FOuput ∨ ( F1 ∧ F2 ) => QOutput 

2.5 FTL function 
In order to quantify the level of fault tolerance 

concerning the measure of a physical quantity q, the 
presented method proposes to use the function FTL(q) 
(Fault Tolerance Level). This function provides the minimal 
number of failures that can induce the unavailability of the 
measure of q for the control system.  

According to the previous section, several ways enable 
the estimation of the physical quantity q. It can be obtained 
directly by a sensor or by an analytical relation between 
other measures.   

If q can be obtained by a measurement point, the value 
of FTL(q) is equal to the number of redundancy sensors 
implemented on this point. Indeed, this number of sensors 
(nq) gives the number of provided images of the measure q 
and consequently it corresponds to the minimal number of 
required faults to induce the unavailability of the concerned 
measure. 

FTL(q) = nq 
 
If the quantity q is obtained and estimated by a 

combination of other measures associated with an analytical 
relation, its level of fault tolerance depends on the level of 
the used measures. It is assessed by the minimal level of all 
used measures. Indeed, the used measure with the lowest 
level defines the number of needed failures that stop the 
quantity estimation. For example, if the physical quantity Q 
can be deduced from the measures M1 and M2, it level can 
be determine from the next relation and depends on the 
number of redundant sensors (NM1 and NM2) used to 
measure M1 and M2: 

with Q = function( M1 , M2) 
FTL(Q) = FTL( M1∧ M2 )   

= min( FTL(M1), FTL (M2) ) 
= min( NM1, NM2 ) 

 
Finally, when there are several methods to estimate a 

quantity q, its fault tolerance level is determined by the sum 
of the level of each estimation way. Indeed, this set of 
methods forms a set of redundant measures and the minimal 
number of needed faults that makes all of them unavailable 
is equal to the sum of the minimal number of faults that 
makes each of them unavailable. This sum is valid with the 
assumption that the different methods of measuring are 
independent and do not use a same measurement point.  

For example, in the previous example with 3 pipes, there 
are 2 means to estimate the flow QOutput, either directly 
thanks to the measurement point FOutput, or thanks to a 
relation using the measurement points F1 and F2. According 
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to the number of sensors (Nx) implemented in each 
measurement point, the fault tolerance level is deduced: 

 FOuput ∨ ( F1 ∧ F2 ) => QOutput 
FTL(Q) = FTL(FOuput ∨ ( F1 ∧ F2 ) )   

= FTL(FOuput) + FTL( F1 ∧ F2 ) 
= FTL(FOuput) + min( FTL( F1 ), FTL( F2 )) 
= NF Ouput + min (NF1, NF2 ) 

 
To sum up, the properties for the FTL function are the 

following ones, in which qn represents a physical quantity 
and the operators ∧ an association of them in order to 
estimate another quantity: 

FTL( q1 ∧ q2 ) = min ( FTL(q1) , FTL(q2) ) 
FTL (q) = NSensor q 

And with the assumption that q1 and q2 are independent 
methods that is to say they not use a same measurement 
point: 

FTL( q1 ∨ q2 ) =  FTL( q1 ) + FTL( q2 ) 

2.6 Particular constraints 
In certain cases, some considered variables cannot be 

evaluated from the other ones due to the nature of the 
equation that links them. For example, it is the case of 
variables whose derivation only appears in the equation and 
that forbids their evaluation from the other ones. Another 
case concerns the Boolean variable whose state depends on 
a condition about another one; the first one can be evaluated 
from the second, but not the contrary. 

 The structural modelling takes this situation into 
account by using the value of -1 instead of the previous 1. 
When this value of -1 appears, the concerned constraint 
expresses that the corresponding variable cannot be 
determined by the other variables. 

 
In the previous example, if the control system needs to 

know only if the output flow is nil. A corresponding 
Boolean variable (QOutput=0) is added. In the incident matrix 
the value -1 is placed for QOutput in order to express that the 
value of QOutput=0 can be deduced from the quantity QOutput 
but not the contrary. The next figure shows this 
configuration in where a flow detector is proposed (FDO). 

Q1

Q2

F1

F2

FOutput

QOutput
FDO  

Fig. 2.  3 pipes with a flow dectector 
 

Table 2. Incidence matrix for 3 pipes with flowmeters 

Q1 Q2 QOutput QOutput=0 F1 F2 FOutput FDO 
1 1 1      
  -1 1     

1    1    
 1    1   
  1    1  
   1    1 

 
When the incident matrix has values -1, the method of 

establishing of measurement ways (section 2.4) is modified. 

When different ways of estimate a variable are research, the 
constraints that have a value -1 for this variable are not 
considered. 

2.7 Integration of operating mode 
When some actuators are used, several operating modes 

can be defined according to the combination of active or idle 
actuators. The measurement system can have access to the 
order transmitted to each actuator and consequently can use 
these data in order to determine if a particular means to 
evaluate physical quantities can be used. The incidence 
matrix can be completed with this information by adding 
new columns that correspond to the actuators and that define 
if they are in a particular position.  

For instance, if 2 valves are added to the previous 
example, the incidence matrix contains 2 new variables 
associated to each valve. With them, two new constraints are 
added and express that if a valve is close, the corresponding 
flow can be determined.  

Q1

Q2

F1

F2

V1

V2

FOutput

QOutput

 
Fig. 4.  3 pipes with 2 valves 

 
Table 3. Incidence matrix for 3 pipes 

V1 V2 Q1 Q2 QOutput F1 F2 FOutput 
  1 1 1    
  1   1   
   1   1  
    1   1 
Close  1      
 Close  1     

 
With that, thanks to the first constraint, the incidence 

matrix allows to deduce that if a valve is closed, there is a 
direct relation between the two other flows. Thus, in this 
particular operating mode where V1 is closed, the measure 
of the output flow can be made by only one flowmeter, FO 
or F2 and without using the association of F1 and F2 as it was 
found previously. 

 
Consequently, for each physical quantity, the current 

operating mode when this quantity is needed can be 
specified and allows to find new other ways to estimate it. 
During the establishing of measurement ways, only the 
constraints that match with the specified operating mode are 
the taken into account. 

2.8 Integration of operating mode 
As the operating mode, some constraints can be defined 

ore used only if an initial state is known. It is the case of 
relations that has an integration operator and that need to 
know the value of certain variable at a known time. 

For instance, in the forward example where a tank is 
used, the level of fluid in it can be determined by the 
quantity of fluid added only if the level before its filling is 
known. 
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3. OPTIMISATION METHOD 

Based on the previous considerations, this section 
presents the proposed method of designing a measurement 
system. 

3.1 Principle of the proposed method 
The proposed method uses the following steps: 
a. The designer describes the system thanks to the 

various measurement points and for each of them, the 
cost of corresponding sensor. With this data, the 
method will determine the adequate number of sensor 
that minimise globally the cost of the system. 

b. Subsequently, he describes the physical quantities 
required by the control system and if necessary in 
which operating mode, these quantities are required. 
Simultaneously, he sets a required fault tolerance level 
for each quantity. This level corresponds to the limit 
number of failures with which the measure can occur 
become unavailable. Indirectly, with this data, the 
designer specifies the global dependability level for the 
system. 

c. Thirdly, he builds the structural model that forms the 
base to determine the different means of measuring or 
estimating each required physical quantity.  

d. From all these data, the optimization phase can begin 
and will provide among every possible measurement 
system, one that suits the fault tolerance constraints 
and that has the minimal cost. 

3.3 Constrains transposition 
The first step of the optimization phase is the 

transposition of the required fault tolerance level for each 
needed physical quantity into a set of constraints applied on 
the measurement points. 

The function FTL(qi) (Fault Tolerance Level) is used to 
specified the fault tolerance level for each needed measure 
quantity (qi), according to the importance of the considered 
quantity. By specifying a minimal value, the designer 
defines the number of failures that can render unavailability 
each measure provided by the measurement system. 
Consequently, the required dependability of the 
measurement system is given by a set of minimal fault 
tolerance levels, as it follows : 








≥
≥

...
2n)q(FLT

n)q(FLT

2

11

 

 
Thanks to the study of the structural model, a set of 

methods to evaluate each needed physical quantity is 
determined. This set of methods is expressed by a set of 
required measures. Each of these measures corresponds to a 
measurement point where one or several sensors can be 
implemented. A Boolean equation is used to represent the 
various combinations of measures that enable the estimation 
of the required physical quantity. Consequently the previous 
system of inequations becomes the following one, in where 
each needed quantity has been replaced by the 
corresponding combination of required measures. 
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

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Thanks to the following properties of function FTL, the 
fault tolerance constraints applied to the measure of a 
physical quantity will be transposed into a set of 
inequations. 

FTL( a ∧ b ) ≥ n 
=>  FTL( a ) ≥ n  and  FTL( b ) ≥ n 

 
FTL( a ∨ b ) ≥ n 

=>  FTL( a ) + FTL( b ) ≥ n, 
  if a and b are independent 

 
To do it, we propose to change each Boolean expression 

by its conjunctive form, in order to simplify the 
transposition and in order to take into account the possible 
dependences between the different groups of measures.   

For instance, if the designer sets value 2 for the fault 
tolerance level of the measure of the output flow in the 
previous example with 3 pipes. The obtained relations are 
the following : 

FTL(QOutput) ≥ 2 implies that 
FTL( FOuput ∨ F1 ∧ F2 ) ≥ 2 

  since we have found: FOuput ∨ ( F1 ∧ F2 ) => QOutput 
On a conjunctive form, this relation becomes: 
FTL( (FOuput ∨ F1) ∧ (FOuput ∨ F2 ) ) ≥ 2 
Consequently, the resulted system of inequations can be 

deduced and is the following one: 
( )
( )




≥∨
≥∨

2FFFTL
2FFFTL

2Output

1Output   

or: 
( ) ( )
( ) ( )




≥+
≥+

2FFTLFFTL
2FFTLFFTL

2Output

1Output  

Finally, in this system of inequations, the fault tolerant 
level functions are replaced by the number of sensors in 
order to form a system of constraints that the measurement 
system has to satisfy: 







≥+
≥+

2NN
2NN

2Output

1Output

FF

FF  

3.3 Optimisation 
From the structural model and from the fault tolerance 

level specified for each physical quantity that the 
measurement system has to provide, the optimisation 
corresponds to a problem of cost minimisation associated to 
a system of inequations. 

Since the function FLT(P) where P is a measurement 
point, is equivalent to the number (Nx) of sensors placed on 
the corresponding point, the final problem is as follows: 

 


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
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This form corresponds to a classical integer linear 
programming (ILP) problem. A way to solve it, is the use of 
a Branch and Bound algorithm [5]. It consists of a 
systematic enumeration of all candidate solutions, where 
large subsets of fruitless candidates are discarded. For very 
huge systems whose number of solutions is too high and that 
need a too long time of treatment, an exhaustive algorithm   
cannot be used. In this case, although an optimal solution is 
not ensured, the genetic algorithms can be used and provide 
satisfactory solutions from an industrial point of view. 

4. ILLUSTRATIVE EXAMPLE 

This section presents the application of the presented 
method on an illustrative example. 

4.1 General description 
The considered process is a tank whose role is the 

mixing of 2 fluids with the same proportion before draining 
off toward the rest of the system. One of the interests of this 
example is that a same measurement point can be used to 
evaluate various physical quantities according to the 
operating mode of the system, such as the filling of the tank 
with one or two fluids or as the draining. Another interest is 
that 2 ways of filling the tank are considered: either one 
fluid then the other one or simultaneously. More especially, 
if the physical quantities needed by the control system are 
the same, the operating mode differs. 

4.2 Description of the process 
The process is shown on figure 4. 10 physical quantities 

are needed to describe this system and required by the 
control system. There are the tank fluid level (N), and 3 
fluid levels (NL, NI, NU) which are Boolean variables and 
that express if the fluid level is at low, intermediate or upper 
position. The variables QF1 and QF2 represent the quantity of 
fluid 1 or 2 in the tank. Concerning the different flows, there 
are flows Q1, Q2, QO associated to each pipe and finally T 
represents the temperature of the mixture in the tank. 

Concerning the measurement point, the following 
sensors are proposed. 5 of them (F1, F2, FO, N and T) are 
analogical sensors and the other (D1, D2, DU, DI DL, DO) are 
digital ones. According to the method, the following step is 
the specification of the cost of each sensor for each 
measurement point. For this illustrative example, a cost of 5 
is chosen for the analogical sensors and a cost of 2 for the 
discrete ones. Consequently, one goal of the method is the 
select of the best suitable type of sensor. 

 

P1 P2

F1 F2

PO

FO

N

DL

DI

DU

D1 D2

DO

T

Heating

 
Fig. 4.  3 pipes with flowmeters 

 
The next step deals with the structural analysis and the 

building of the incidence matrix. This matrix is shown on 
table 5. Some constraints define particular relations usable 
when a pump is stopped, or when the initial state (IS) is 
known. Indeed, if the tank is initially empty (E in the table), 
the quantity of each fluid in the tank can be evaluated thanks 
to the flow of each fluid. In the same way, if the tank fluid 
level is initially in a known position (E: empty, I: 
intermediate) and if the tank is filled by only one fluid, its 
quantity in the tank can be estimated from the tank level 
sensor. 

4.3 Optimisation and result 
After performing the optimisation for various required 

fault tolerance levels and for the 2 ways of filling, the 
synthesis of the results is present on the following table. 

Table 4. Incidence matrix for the tank process 
 sequential filling simultaneous filling 

FTL =1 cost = 10 
sensors: N, T 

cost = 15 
sensors: N, D2, T 

FTL =2 
cost = 20 

sensors: 2×N, 2×T 
cost = 27 

sensors: N, D1, D2, 
2×T, DL 

 
For the presented example, only in one case, solutions 

with only analogical sensors are the ones with the lowest 
cost. Indeed, the digital sensors are only interesting to 
implement a survey system that has in charge the checking 
of actuators' state. As we can expect, the costs of the 
proposed solutions are quite proportional to the required 
fault tolerance level. But if the designer wants to improve 
the speed of the process thanks to a simultaneous filling of 
the tank with the two fluids, the additional cost is about 50% 
higher than the sequential way of filling. 
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Table 5. Incidence matrix for the tank process 
P1 P2 PO IS N NL NI NU Q1 QF1 Q2 QF2 QO T F1 D1 F2 D2 FO DFO DE DI DU LF T
    1    1  1  1             
    -1 1                    
    -1  1                   
    -1   1                  

Stop        1                 
 Stop         1               
  Stop          1             
  Stop E     1 1                
  Stop E       1 1              
 Stop Stop E   1   1                

Stop  Stop I    1    1              
        1      1           
        -1       1          
          1      1         
          -1       1        
            1      1       
            -1       1      
     1               1     
      1               1    
       1               1   
    1                   1  
             1           1

 

5. CONCLUSION 

This paper presents a relatively easy-to-use design 
method. Indeed, it requires a reduced amount of data, that is 
to say, an incidence matrix built by a structural modelling 
and the cost of the potential usable sensors. With that, the 
method gives the sensor placement that offers a given fault 
tolerance level, with the lowest cost. Consequently, its main 
interest is that it can be used very early for the design of a 
measurement system and it provides a first cost estimate to 
the designer. Moreover, the way of using fault tolerance 
with a semi-qualitative point of view, is well-suited to 
present problems, for which the designers have at their 
disposal little information concerning the reliability of new 
sensors included electronic devices associated to embedded 
software. 
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