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Abstract: A study of uncertainty in gamma ray transmission 
measurement of single beam tomography is presented. The 
radial density distribution of the FCC (fluidized catalytic 
cracking) catalyst in experimental riser is shown in 
measured and calculated data. Discrete models are proposed 
to describe data and for a better understanding of density 
distribution measurements. Validation procedure for the 
measurement models and uncertainty evaluation were 
carried out. 

Keywords:  discrete models, standard uncertainty, single 
beam tomography. 

1.   INTRODUCTION 

   The pioneer work on gamma ray tomography, the R.N. 
Bartholomew and R.M. Casagrande (1957) paper, by 
measuring solid concentrations in FCC riser, gives an 
expression to estimate experimental errors. In this work, for 
calculating the solid density average in the gamma ray path 
length, the following equation is proposed 
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whereα  is the mass attenuation coefficient, Di is internal 
diameter,  and IV , IF are the gamma ray intensities in empty 
and at flow riser conditions. A much higher contribution 
from the gamma ray intensity measurement is reported in 
the mentioned [1] paper, according to the errors evaluation. 
The statistical uncertainty is calculated in [2], by means of 
the error propagation formula where only intensity I and 
gamma ray counts N observed, are estimated. Special 

attention is devoted to errors increase in chord length along 
tube radius [2], nearing the riser walls. By using the 
Equation (1) or another Beer-Lambert based equation, that 
relates the   linear attenuation coefficient µ to the intensity   
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where s is the gamma ray path length, to scan the riser, the 
internal diameter Di in Equation (1), should be replaced by 

the chordal length ic  inside riser, measured at a number of i 

gamma ray trajectories. Applying GDT- gamma 
densitometry tomography to industrial scale bubble 
columns, a uncertainty analysis is carried out taken into 
account several sources of uncertainty as instrumental 
errors, including Compton scattering effects, statistical 
uncertainty in gamma counts, in flow variation and the 
image reconstruction errors [3]. The length L inside riser,    
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 is calculated and the known water length is taken as a 
reference for the measurements. Some expressions are 
derived for the uncertainty evaluation and an increase in the 
error near the walls measurement cause large inaccuracy on 
the reconstruction data at this location. The chosen function 
form that relates intensity to the attenuation coefficient the 
Equation (2), is thought also as a possible source of error 
[3]. Additional reports that describe wall effects influencing 
sensing techniques in X-Ray tomography can be found [4]. 
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    Tomographic parameters as density resolution, spatial 
resolution and temporal resolution are usual indicators of the 
imaging process capability. Temporal resolution is probably 
the most questionable parameter in gamma ray tomography, 
while competition among other techniques is thought of [5]. 
To follow the competition the gamma ray tomography 
developed a fun beam with small scintillation detectors plus 
the gamma source to be packed into the arrangement 
geometry [6]. For single beam tomography the precise 
definition of parameters and the uncertainty evaluation of 
the measurements  [7], might be a way to access new 
industrial contribution, on the field. The mathematical 
reconstruction works on the data matrix from transmission 
measurements along the riser radius. A relationship follows 
from direct measurements to the inverse model [8]. That a 
small uncertainty in data can lead to a large uncertainty in 
the result is demonstrated.  The paper suggests that, a limit 
to the inversion procedure and experimental evaluation of 
the metrological performance of the algorithm should be 
carried out.   
        

2. PARAMETER ESTIMATIONS 
 

    Several measurement uncertainty are involved in the 
transmission measurement of the riser, and a possible source 
of uncertainty is the form of Equation (2), as it is pointed out 
by [3].  Such a possibility was investigated once in the 
original Equation (2), the I0, I intensities changed to IV, IF as 
given in Equation (1), in order to match riser measuring 
conditions. In this conditions, Equation (3) also was adapted 
to the IV, IF intensities.  The meaning of calculating ρ with 
Equation (1), or L with Equation (3), inside riser, might be 
better observed in Figure 1, in single beam geometry  
       

           
  
    Fig. 1. A view of the gamma ray transmission 
geometry with S source, beam penetrating Riser , 
penumbral region p, and Detector  collimator  aper ture.   
     
    In Figure 1, the gamma ray path length cross the tube 
walls to be detected, in while, in the givens equations the 
intensities are evaluated inside riser. The transmission 
measurement by scanning is taken along x-axis in a 
coordinate system where the origin coincides with the 
geometrical riser center, Figure (1).  As the chordal length 
decreases and the tube thickness increases nearing the wall  
the gamma ray attenuation increases. The obtained gamma 
profile has such a parabolic curve form that data could not 

be well fitted by any given model in [9], for example. Such 
a behavior requires a model that takes into account the 
geometry of the tube. Then tube thickness d was modeled as 
a function d = f (Re, R) of the external and internal radii   
that can be observed in Figure (1). To the IV intensity 
calculation was proposed [10] the equation   
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where linear and nonlinear parameters are fitted to data by 
least square method. The IF is also obtained by the 
expression   
 

)cdaexp(ay o21F µ−=                (5) 

where oc is the chordal length of the scanned object.  Now 

both intensities are calculated to predict the radial density 
distribution.  Replacing these intensities in Equation (1) 
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with ic the chordal length inside riser, for measurements 

taken along radius at i points.  Equation (6) can be 
simplified to 

i
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where cρ  is the catalyst apparent density. The terms on the 

right side of Equation (7), are known for a static experiment 
with catalyst, to calculate density distribution. The 
measurements by scanning the riser can be evaluated by 
comparing with values given by Equation (7), to analyze 
data prior to mathematical reconstruction and to be used a 
reference.    
      To model the spatial resolution the gamma beam width 
was measured inside riser. A two terms Gaussian function 
fitted the data in a sigmoid shape curve, then, by numerical 
differentiation a Gaussian peak was obtained. Using this 
peak curve a spatial resolution definition is proposed:  the 
distance between peak centers   S ≥ FWHM⋅√2. The FWHM 
– Full Width at Half Maximum is adopted as an already 
given criterion in gamma spectrum analysis [11]. In Figure 1 
two peaks are placed on the same graph in order to illustrate 
the definition criterion 

 
 
   Fig. 2. Spatial resolution determination by means of  
       the distance between peak centers S = FWHM. 2 .  
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In Figure 2, circles are experimental data, the FWHM is 
indicated by horizontal line and dashed line is the Gaussian 
probability density function, to estimate the departure from 
symmetry.  

By measuring three different gamma beam widths inside 
riser the spatial resolution definition was evaluated [12], as 
the minimum distance that two objects can be distinguished.  
The data matrix from the scan measurement should follow a 
sampling procedure, according to the Nyquist criterion, in 
order to avoid aliasing in imaging process. To  predict 
catalyst flow measurement at different sampling frequency 
the gamma beam in a single interaction was modeled by a 
sum of sins function. In the multiple interactions, as in the 
catalyst static flow experiment a Fourier series fits the data 
well: 

  
)xw8(sinb)xw8cos(a)xw(sinb)xwcos(aa)x(f 88110 +++++= �   

                                                                                     (8) 
where a and b, are fitted to data parameters and w is a 
frequency factor.  

 
 
          Fig.3. Radial catalyst density distr ibution in r iser  
                    by  gamma ray transmission measurement. 
                
    In Figure 3, experimental and calculated data are given in 
triangles and points. The measurement is quite well 
simulated the sampling interval r is in a r/R ratio to internal 
radius R of 0. 95, so in this interval, experimental and 
calculated data agrees in Figure 3. The experiment shown in 
Figure 4, the density distribution was measured in three 
different sampling rates    

 
       Fig. 4.  Radial catalyst density distr ibution in r iser  
               measured at three different   sampling rates.   

 

    In Figure 4, the gamma beam trajectories follow the 
sampling rates of 1 sample per 1.10-3 m in triangles, 1 
sample per 5.10-3m in crosses and 1 sample per 12.10-3m is 
given in line.  As expected, the highest sampling frequencies 
give the most accurate information about the radial 
distribution. According to Nyquist the highest one of 1 
sample per 1.10-3 m is over sampled and the others two 
sampling rates are under sampled. Trying to optimize by 
seen, the second sampling rate of 1 sample per 5.10-3m, 
given in crosses, might be acceptable for a radial 
distribution investigation, but it probably will cause aliasing, 
later at the reconstruction imaging process. At the lowest 
sampling rate, surely, the data points are missing the trend 
of catalyst flow. 

Mathematical reconstruction.  By using a triangular 
Bézier patch was proposed, based on a fixed 3-projection 
approach [13], for which a trajectory is easily described in 
barycentric coordinates.  To reconstruct the density function 
through a functional tensor product Bézier surface [14], 
based on an arbitrary number of projections, is now under 
investigation. This function is a parameterized barycentric 
combination of uniformly spaced points, called control 
points, or control densities: 
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where b(s,t) is the function value, s and t are the 
parameters with values between 0 and 1, bij are the control 

densities, kkpp
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polynomials, and p is their degree. A gamma ray trajectory 
is a line given by an equation in terms of s and t: s=at+b. 
The graph of b(s,t) interpolates the points bij where i=0 or 
i=n, and j=0 or j=m. In our case, n=m. The Bernstein 
polynomials form a basis for the space of all polynomials in 
two variables, which means that any polynomial surface is a 
Bézier surface. Another important property is that they 
satisfy the unit partition condition: 
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independently of s and t. In the next section it is shown how 
the control densities are found for a given experimental 
configuration. 

Finding the control densities. Given a trajectory indexed 
by l, consider all intersections of this trajectory with all the 
other trajectories. We now will apply an approximation to 
the Beer-Lambert equation in this context. Let pk=(sk , tk) be 
the k-th intersection point, and dk its normalized distance to 
the previous  point pk-1, where d0=0.  The attenuation 
suffered by a gamma ray that crosses a riser section is 
approximately given by: 
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where b(sk , tk) is the proposed polynomial density, and 
Ml being the number of intersections in the l-th trajectory. 
Substituting equation (1) into (2), and rearranging the 
coefficients, we get: 
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These are the rows of an over-determined system AX=b, 

where X contains the unknowns bij. The least squares 
problem is set by the normal equations: ATAX=AT b.  
    The tensor product Bézier surface method was developed 
in two phases: (i) the calculation of intersections, 
iiplemented in C++, producing the matrix A, and (ii) the 
least squares methods was invoked in the MatLab ambient. 
In Figure 5, is presented the reconstructions from static 
experiment of a core concentration of catalyst. 

 
Fig. 5. Tensor product Bézier method with 5 projections. 

 
The tensor Bézier with a higher number of projections show 
some improvement, as can be seen in Figure 6  

  Fig. 6. Tensor product Bézier method with 10 
projections. 

 
The possibility of use FBP (Filtered Back Projection), 

for reconstruction of the catalyst density inside riser, was 
investigated, and also to make a comparison with Bézier 
method.  Is easy to implement FBP because of the build in 
Matlab functions, and then to make experiments in order to 
evaluate the method performance in function of the number 

of projections. The expected reconstructed density for the 
experiments is a centralized cylinder trunk of height 0,85 
approximately, with a radius of 5 cm. The reconstruction 
with FBP method for a number of 180 projections is given 
in Figure 7.   
 

 
              Fig. 7. Reconstruction with FBP method   
 

The reconstruction of the density function by the regular 
FBP method with only three projections is very poor, with 
too many artifacts, with the height too low (<0.2). With the 
same 3 projections, but utilizing a simple interpolation in the 
sinogram to produce 180 projections Figure 7, the results are 
much better, with the height still too low (<0.5), and with 
some artifacts. The tensor product Bézier method applied to 
5 projections Figure 5, which is of degree 7, produced a 
smoother function than the FBP one, but with the height 
above 0.5, however presenting artifacts near the center, and 
outside the riser. There is a significant improvement in 10 
projections Figure 6, which is of degree 10, with the height 
close to .85, with fewer artifacts outside the riser, but with a 
bigger depression near the center. These results show that 
the tensor product Bézier method is much simpler, but 
performs favorably in relation to the FBP with few 
projections.  
    As an optimal temporal resolution requires a minimum of 
gamma ray trajectories and a minimum of projections, to 
improve the reconstruction by using a small number of 
projections is under investigation. The other factories 
influencing temporal resolution are: the number of 
trajectories that is fixed by the Nyquist criterion and the 
counting time that is selected by the required uncertainty in 
the intensity measurement.    
   
 3.  UNCERTAINTY EVALUATIONS 
    
    The measurement models were evaluated in the general 
form  

            ),0(N;)a,x(y 2
iii σ∈εε+φ=          (13) 

and the uncertainty associated )y(u i  with iy  is σ and, ε  

being here a residual error.   For a nonlinear function the 
variance of the parameters is 
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where J  is the Jacobian matrix given in [9]. At first 
parameter estimator methods were applied and then 
validation methods are tested, as Monte Carlo simulation 
that was calculated for nonlinear least square estimator  
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where q,iε is  determined using a random number generator 

for normal distribution and a set m
1iq,iiq )}y,x{ (z −=      

   The length measured with Equation (3), was used to 
evaluate the slice volume, of an known object, then 
combined with density from Equation (7), gives the mass, 
that multiplied by the gamma beam width provided a mass 
that was compared to a more extensive data interval to 
evaluate uncertainty. The combined standard uncertainty 
was calculated by means of the equation given in [15], that 
in a compact form can be written as 
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where fx∇ are the sensitivity coefficients and xV the 

covariance matrix, for simultaneous measurement the 

uncertainty matrix is xxxy JVJV = , that  was calculated,  

following this notation, according to procedure given by 
[15].  
    To calculate the spatial resolution as shown in Figure 2, it 
was necessary that the gamma beam be expressed as a band-
limited function, under such conditions that Fourier 
transform vanish for a frequency that is higher than the 
cutoff frequency [16]. A Gaussian function fitted the data 

best, with a variance 2σ and it then it was required to apply 
the lemma: "the Fourier transform of a continuous-time 

Gaussian function of variance 2σ  is also a Gaussian shape, 

but with variance 1/ 2σ ", in order to evaluate their 
uncertainty [17].  
    The catalyst radial density distribution was measured and   
data are presented in Figure , The Fourier representation of 
the data is given in Equation (8). The Fourier transform of 
the data provides information on the frequency. The Fourier 
transformY of the X  is given implicitly by  
 
                  AYX =                                         (17)         
A  is the matrix of the coefficients, according to  [15]. The 
uncertainty matrix associated with estimates y of the values 

of Y is denoted by yV , and in a compact form can be 

written as 

                 T
yx AAVV =                                    (18) 

it follows that yV  can be calculated from (11), sinceA is 

invertible.            
    

 
              
                 
 

The scanning of the riser is carried out in a spatial 
frequency and the Fourier function in Equation (8), has a 
constant frequency w, as it is a static experiment. In flow 
experiments [18], a Fourier function did not succeed in 
model catalyst density distribution. For a flow condition 
riser there occurs frequency content of signal that is locally 
in time, due to the temporal dependence of the flow. 
Therefore, the STFT - short time Fourier transform or 
Windowed Fourier Transform was implemented by means 
of Matlab functions. Then, a model of the flow was obtained 
that allows distinguishing a frequency difference and it can 
be analyzed by changing frequency resolution and time 
resolution.  Monte Carlo simulation was used for uncertainty 
evaluation but the results are not yet acceptable.  

 
4.   CONCLUSION 
 
Modeling in a metrological approach shows the 

capability of identifying problems and yielding diagnostics 
from gamma transmission measurements in riser. And 
certainly a more detailed formulation of the error structures 
following measurement models is required. Monte Carlo 
simulation, as a specific technique for model validation and 
uncertainty calculation seems to be most promising. As is 
expected, the time dependence of the catalyst flow proves to 
be the more challenging topic in gamma ray tomographic 
investigation.  
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