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Abstract: Common statistical methods, like arithmetic 
average, are, in principle, not adequate for ordinal scale 
evaluations, but in practice are frequently used. Specific 
methods are necessary, more complicated and with limits 
due to coarse resolution. This paper indicates some ways for 
overcoming resolution problems, allowing  to compare 
specific and common analysis results. Thereafter it was 
possible to consider chi-square and skewness as indicators 
of the possibility of safely using common methods on 
datasets produced by non-linear metrics. 
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1.   INTRODUCTION 

Subjective evaluations are quite common in many fields of 
science: social sciences require frequently subjective 
evaluations; politics involves elections [1-2], a very 
important example of subjective evaluations. Psychology 
defines many scales of characteristics that are not based on 
objective measurements. Not to forget the large amount of 
evaluations obtained by questionnaires and interviews and 
even scores given to students. Also in the field of 
engineering a number of decisions are taken with the help of 
subjective evaluations, for instance, to choose which “click” 
of  an electromechanical switch sounds better, or which 
“slam” of a car door conveys a higher feeling of reliability. 

Technical uses of subjective evaluations are so common 
and important to be widely present in the technical 
literature, arousing a deep debate on the limits of 
management of subjective evaluations. Every one can agree 
that subjective evaluations are frequently given by means of 
linguistic quantifiers: on-off condition, as good - no good or 
reject - accept, or ordinal scales, as inadequate - sufficient - 
good - very good - excellent. In the representational theory, 
the concept of measurement, originally defined by Ernest 
Nagel [3] as "the correlation of numbers with entities that 
are not numbers",  was broadened by Stanley S. Stevens [4]. 
He defined types of evaluations to include nominal, ordinal, 
interval, and ratio levels. In practice, this scheme is used 
mainly in the social sciences but even there its use is 
controversial because it includes definitions that do not meet 
the more strict requirements of the classical theory and 
additive conjoint measurement. However, the classifications 
of interval and ratio level measurement are not 
controversial. In particular, ordinal scales includes variables 
that can be ordered but for which the difference between 

successive levels cannot be considered as equal and zero 
point cannot be defined. For example: preference ranks 
(Thurstone rating scale), Mohs hardness scale, hotel ratings, 
shirt sizes (S,M,L,XL), and grades for academic 
performance (A, B, C, ...). Also includes the Likert scale 
used in surveys (strongly agree, agree, undecided, disagree, 
strongly disagree). It is easy to notice that distances between 
each ordered category are not necessarily the same (a four 
star hotel isn't necessarily just "twice" as good as a two star 
hotel). There are different levels of measurement that 
involve different properties (relations and operations) of the 
numbers or symbols that constitute the measurements. 
Associated with each level of measurement is a set of 
permissible transformations. For ordinal scale, the most 
commonly discussed levels of measurement are as follows: 
-  things are assigned numbers such that the order of the 

numbers reflects an order relation defined on the 
attribute. Two things x and y with attribute values a(x) 
and a(y) are assigned numbers m(x) and m(y) such that if 
m(x) > m(y), then a(x) > a(y); 

-  permissible transformations are any monotone increasing 
transformation, although a transformation that is not 
strictly increasing loses information; in other words, if 
numbers are used, they are only relevant up to strictly 
monotonically increasing transformations (order 
isomorphism). 
The point is that ordinal scales do not follow some 

hypotheses established as mathematical basis for common 
data analysis: the simple use of an arithmetic average 
requires, in fact, that the intervals between each step of 
evaluation be equal, that is, based on a linear metrics: as 
stated before, this cannot be verified for subjective 
quantifiers. Other properties, as the mutual exclusion of 
each of the different states, are required for applying 
common statistical distributions, as the binomial or 
hypergeometrical, or the regression method to identify a 
relationship between two variables (independent variables 
should have no uncertainty, in principle). 

On the other side we shall observe that these limits of 
basic mathematical hypotheses are frequently neglected or 
“approximated” in a spirit of practical application: normal 
distribution is widely used, even if its mathematical basis 
requires an infinite number of random contributions to be 
present, which is, in practice, not possible. A common 
practice is to switch from linguistic quantifiers to numbers, 
just because thereafter it is possible to apply calculation 
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methods to evaluate positions and dispersion indexes, like 
average and standard deviation, not allowed if one is not 
sure that the evaluation to be analyzed is, at least, an equal-
interval scale. But this condition is not always true even for 
measurement results obtained by physical instruments, and 
often questionable for many technological quantities. A 
frequently adopted practical way for overcoming these 
problems consists in considering the frequency distribution, 
and to decide if normal distribution is acceptable or if it is 
better to switch to log-normal distribution. Summarizing the 
practical way consists in having some form of indicator 
showing whether the usual analysis methods can be applied, 
or if it is better to transform somehow the metrics to get 
results in a more suitable form. 

Our aim is to define and evaluate some indicators to 
show whether operations like average or variance, 
commonly used in many different fields for data analysis, 
bring to valid results or not. So, in this paper, we would 
examine some indicators in order to evidence their 
capability to show on a given dataset whether methods 
specifically developed for ordinal scales shall be adopted or 
common methods can be applied for obtaining compatible 
results. 

2.   METHODS FOR ANALYSIS OF SUBJECTIVE 
EVALUATIONS 

The absence of a linear metric in subjective evaluations 
requires, in principle, to use specific methods for analyzing 
results obtained by judgments and usually reported by literal 
quantifiers corresponding to poorly defined ordinal scales. 
Even the simple operation of defining an index of position 
from a group of evaluations could not be done by the 
arithmetic average, if the constant dimension of the 
successive intervals is not demonstrated. In this section two 
common statistical methods and two corresponding specific 
ordinal methods are treated, then enhancements of the two 
specific methods and a procedure for uncertainty evaluation 
are proposed, finally two case studies on comparison of 
common and enhanced specific methods are described. 

2.1.  Common methods 
As common methods the arithmetic average and the 

Borda count for ranking are considered. 

2.1.1. Arithmetic average 
As well known, the arithmetic average of a list of 

numbers is the sum of all the members of the list divided by 
the number of items in the list. 

2.1.2. Borda count 
The Borda count is named after Jean-Charles de 

Borda [5]. The method, developed in the late 18th century at 
the French Academy of Sciences for electoral purposes, is 
still applied in several fields to process data in which each 
“voter” declares a preference order among different 
candidates [6]. This method transforms the ranking provided 
by each voter, given n candidates to choose from, into a 
numerical representation assigning n points to the candidate 
placed first, n-1 to the second and so on, down to one point 
for the candidate placed last. Therefore it is a procedure 

involving the concept of equal-interval scale. The overall 
ranking is obtained adding up the points given to each 
candidate [7].  

2.2.  Specific methods 
As specific ordinal methods OWA  (ordered weighted 

average) and Condorcet method are considered 

2.2.1. OWA method 
For ordinal scales OWA, a specific emulator of 

arithmetic average, was introduced in 1993 by Yager [8-9]. 
This operator is typically used with linguistic scales. It is 
defined as: 

1,...,
OWA= Max [Min{ ( ), }]kk n

Q k b
=

   (1) 

where Q(k)=Sg(k), k=1, …, n, with: 
• S an ordinal random variable whose values belong 

to the set {S1,…, St}, where Si is the i-th level of the 
ordinal scale and t is the number of levels of the 
scale; 

• g(k)=floor{1+[k((t-1)/n)]}; 
• Q(k) the average linguistic quantifier (the weights 

of the OWA operator); 
• bk the k-th element of the sample previously 

ordered in a decreasing order. 
 
This OWA operator is said to be an emulator of arithmetic 
average since it operates, in an ordinal environment, in the 
same way as the arithmetic average works in a cardinal one. 
It can take value only in the set of levels of the ordinal scale, 
while a numerical codification of these levels could lead to 
some intermediate mean values. Figure 1 shows an example 
of graphical representation of the OWA calculation. The 
value of the OWA emulator of arithmetic average is given 
by the intersection of the “ascending stair” (OWA weights) 
and the “descending stair” (ordered sample elements) [10]. 
 

 
Fig. 1.  Example of graphical representation of the OWA calculation. 
The value of the OWA emulator of arithmetic average is given by the 
intersection of the ‘‘ascending stair’’ (OWA weights) and the 
‘‘descending stair’’ (ordered sample elements). 

2.2.2. Condorcet method 
The Condorcet method is named after Marie Jean 

Antoine Nicolas de Caritat, Marquis de Condorcet [11]. The 
method, developed in the late 18th century at the French 
Academy of Sciences as the Borda count, is still applied in 
several fields [6]. Votes are counted by pitting each 
candidate against all the others in a series of imaginary one-
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to-one contests. The winner of each pairing is considered the 
candidate preferred by the majority of voters. When all 
possible pairings of candidates have been made, if one 
candidate beats all the other candidates in these contests he 
is declared the “Condorcet winner”. The latter check is 
usually done by creating the so-called “pairwise comparison 
matrix”. A vicious circle occurs if there is no Condorcet 
winner; a further criterion must therefore be introduced to 
break the cycle (e.g. Schulze method [7-12]). In order to 
find the overall ranking, it is necessary to reiterate the 
algorithm taking away the winner of the previous iteration at 
each iteration. 

2.3.  Enhancement of specific methods 
The two specific methods have a common problem: the 

low resolution that is evident when one tries to associate an 
uncertainty band to the results of the evaluation obtained. 
This section describes an enhancement of OWA and the 
Condorcet method, aimed to produce results with a better 
resolution. Only in this way it was possible to compare 
results of the two specific methods for ordinal scales to that 
obtained with the corresponding common statistical 
methods. The arithmetic average was compared with the 
results of enhanced OWA method and the Borda count with 
the enhanced Condorcet method. 

2.3.1. Enhanced OWA method 
As illustrated in figure 1, it is possible to obtain the 

OWA emulator of arithmetic average as the intersection of 
two stair functions. In order to get results with a better 
resolution, the authors propose to determine the OWA as the 
intersection of the two corresponding regression curve 
(second-order polynomials are chosen). Therefore, the 
enhanced OWA value is the ordinate of the intersection 
point.  

2.3.2. Enhanced Condorcet method 
The authors propose a significant change to the 

Condorcet method and introduce the “Enhanced Condorcet 
method”, also described in [13]. The first part of the 
algorithm is the same until the creation of the pairwise 
comparison matrix, and then instead of verifying whether 
one candidate beats all the other candidates in one-to-one 
contests, the ranking was obtained by row sums of the 
pairwise comparison matrix. This is justified by the fact that 
each row represents the number of successes of each 
contender against his opponents. In this way, if each voter 
expresses a complete priority classification, the overall 
ranking obtained with the enhanced Condorcet method 
corresponds to that obtained with the Borda count. Because 
of various “draw” conditions, the obtained overall ranking 
has a lower weight than that of a voter giving a complete 
ranking. Therefore, a constant term, that is equal to the 
difference between the above mentioned weights divided by 
the number of candidates, was added to all the candidates. 

2.4.  Uncertainty evaluation 
The comparison between specific and common statistical 

methods is possible adding the evaluation of a dispersion 

index. At present, there are no generally accepted 
procedures for uncertainty assessment in the context of 
subjective evaluations. The main standard for uncertainty 
calculation is ISO GUM [14], that defines “uncertainty” in 
clause 2.2.3 and the more specific term “expanded 
uncertainty” in clause 2.3.5, but does not consider subjective 
data. Moreover, the relationship between the evaluated 
variables and the derived response could be complicated. In 
order to overcome these limits, the authors propose the use 
of the statistical bootstrap method, introduced in 1979 by 
Efron [15-16]: a computer-based method to estimate the 
distribution of statistical estimators, e.g. the variable 
representing the subjective response. The method introduces 
the notion of bootstrap sample: n being the number of data 
of the original experimental sample, a bootstrap sample is 
obtained by n extractions with replacement of the data 
contained in the original sample. According to the theory 
proposed by Efron, when the number of bootstrap samples is 
sufficient, it is possible to estimate even complex population 
parameters.  

So the dispersion index is derived, whenever possible, by 
calculating standard deviation, and, when not possible, by 
the application of the bootstrap method. The comparison 
was applied to some group of simulated data and to real 
experimental case studies. 

2.5.  Case studies on comparison of common and 
enhanced specific methods 

Application to experimental data showed the advantages 
of increasing the resolution of OWA and Condorcet 
methods, but the evaluation of the uncertainty band 
pertaining to each method indicates that corresponding 
common methods often lead to a smaller uncertainty.  

2.5.1. Borda count vs. enhanced Condorcet method  
Figure 2 shows the comparison of Borda count, 

Condorcet method and enhanced Condorcet method with the 
relevant band of uncertainty, when applied to the ranking of 
ten acoustical attributes of a musical space under 
examination [17]. The comparison was made examining 
with the three methods a set of 44 votes given by expert 
musicians that were asked to assign to each acoustical 
attribute a number from 1 (the most important) to 10 (the 
least important). The mean scores were obtained averaging 
on the number of musicians. In order to present results in a 
comparable way, data were normalized in the 0÷1 interval. 
The uncertainty bands were evaluated using bootstrap in 
case of Condorcet and enhanced Condorcet methods, while 
for Borda count the usual standard deviation was adopted. 
Uncertainties are clearly much larger for Condorcet method, 
probably due to the coarse resolution, but even if enhanced 
Condorcet method produces reduced uncertainty bands, 
Borda count seems to be always better. 

2.5.2.  Arithmetic average vs. enhanced OWA method 
Figure 3 shows the comparison between the simple 

arithmetic average and the enhanced OWA method, applied 
to the results of the subjective evaluation of the “click” of 
five electromechanical switches.  
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Fig. 2.  Comparison of acoustical attributes’ results obtained with Borda count, Condorcet method and enhanced Condorcet method, with their 

relevant uncertainty bands. It is evident that, while all results can be considered compatible, Condorcet method has the largest uncertainty, 
probably due to the coarse resolution; in fact enhanced Condorcet method, that has the merit of a better resolution, produces a smaller uncertainty. 

Nevertheless Borda count seems to be the best one. 
 

 
Fig. 3.  Comparison of the results obtained with simple arithmetic average and enhanced OWA method, with their relevant uncertainty bands, 

applied to the subjective evaluation of the “click” of five electromechanical switches (A, B, C, D and E). It is evident a general good compatibility 
between the two methods, with comparable uncertainties. Standard OWA is not reported, having a constant value, due to its coarse resolution.  

 
The comparison was made examining with the two 

methods a set of votes given by 27 judges, that were asked 
to assign a number from 1 (the most important) to 5 (the 
least important) to the switches. The mean scores were 
obtained averaging on the number of judges after the 
normalization of the data in the 0÷1 interval. The 
uncertainty bands were evaluated using bootstrap in case of 
enhanced OWA method, while for arithmetic average the 
usual standard deviation was adopted. The two compared 
methods show fully compatible results, with comparable 
uncertainties. Traditional OWA results are not showed, 
having a constant value, due to its coarse resolution. 

The case studies presented allow to compare results and 
uncertainties obtained by methods of evaluation specific for 
ordinal scales (Condorcet and OWA), in their standard and 
enhanced versions, with that obtained with common 
methods (Borda and arithmetical average), showing a good 

compatibility justifying the wide use of common methods, 
because they, generally, are much simpler in practice and 
produce a lower uncertainty. Nevertheless common 
methods, in principle, cannot be applied when important 
distortion of the metric is present, possible with subjective 
evaluations but also with objective measurements in case of 
significant non-linearity. Therefore a research of possible 
indicators, showing the limits of application of common 
methods, was done comparing the results of arithmetic 
average and enhanced OWA for simulated data with given 
non-linearity distortion. 

3. COMPARISON BETWEEN COMMON AND 
SPECIFIC METHODS ON NON-LINEAR DATA 

Simulated data are produced starting from a normally 
distributed set modified by a non linear transformation to 
simulate the distorted evaluation of an observer. Note that 
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this way is quite severe, as in practice even distortions of 
evaluation are subjective, therefore different among the 
various members of the jury, so that a sort of compensation 
is involved when the group of data are examined. 
Nevertheless one shall note that there are also situations 
showing a sort of systematic distortion produced by the 
matter analyzed. A very clear example is when the 
evaluation scale, even having a number of steps, has also an 
implicit important boundary of the type on-off between two 
of its steps: for instance the scale inadequate - sufficient - 
good - very good - excellent has between the steps 
inadequate and sufficient a marked boundary between the 
region of “refuse” and the region of “accept”. In that 
condition frequently there is a significant gap of probability 
levels between the two steps, clearly higher than the 
probability differences between the other evaluation steps. 

One hundred data sets of simulated data are produced, 
for each of six different levels of non-linearity, and 
qualified, evaluating them by chi-square and skewness. 
Results obtained with each data set are analyzed with 
arithmetic average and enhanced OWA, considering, also, 
the relevant uncertainties, so that it is possible to understand 
if the differences are significant or not. As the indicators 
adopted are statistical, the number of data produced for each 

set, from 50 to 1000, is also considered. Table 1 shows some 
mean results obtained for non-linearity ranging from 0.5%, a 
value typical for instrumentation, to 20%, that can represent 
the scale distortion of some technological measurement or 
of subjective evaluations.  The chi-square column indicates 
the percentage of the relevant dataset having a χ2 value 
inside of a 95% confidence interval. The “Sk.” column 
shows skewness values. The “Com.” column indicates the 
percentage of the relevant dataset showing compatibility 
between common and specific methods, evaluated by a  
normalized error [18] lower than 1.5 at a confidence level of 
95%. It is possible to see that there is a generic, not well 
defined connection between compatibility and chi-square; 
while a defined relationship was extrapolated considering 
skewness Sk. The level of  95% of compatible results is 
taken as boundary between compatibility and non-
compatibility regions. This boundary depends on the 
number n of data of the dataset and is shown in figure 4, 
together with its tendency defined by the logarithmic path 
Sk = -0.12 ln(n) + 1.0 (dashed line). Therefore skewness can 
be considered to be a good indicator of the possibility of 
using common methods for analyzing subjective data. 

 

Table 1. Analysis of simulated evaluations. For different data numbers and different levels of distortion (given as amount of non-linearity),  the 
percentage of χ2 test accepted at 95% confidence and the value of skewness are shown in relation to the percentage of compatibility (normalized 

error lower than 1.5 at 95% confidence) between arithmetic average and enhanced OWA.  

Data number 50 100 200 300 500 1000 
Indicator 

  
Distort. 

χ2 Sk. Com. χ2 Sk. Com. χ2 Sk. Com. χ2 Sk. Com. χ2 Sk. Com. χ2 Sk. Com.

0.5% 0.90 0.02 1.00 0.94 0.04 1.00 0.96 0.03 1.00 0.96 0.02 1.00 0.86 0.03 1.00 0.36 0.02 1.00 

1% 0.83 0.05 1.00 0.96 0.05 1.00 0.96 0.05 1.00 0.95 0.05 1.00 0.80 0.05 1.00 0.17 0.05 1.00 

2% 0.89 0.10 1.00 0.97 0.10 1.00 0.95 0.11 1.00 0.95 0.09 1.00 0.81 0.10 1.00 0.15 0.09 0.99 

5% 0.96 0.23 1.00 0.93 0.22 1.00 0.84 0.24 1.00 0.64 0.24 0.99 0.11 0.24 1.00 0.00 0.24 0.90 

10% 0.95 0.41 1.00 0.91 0.38 0.97 0.31 0.42 0.94 0.02 0.43 0.81 0.00 0.43 0.47 0.00 0.43 0.04 

20% 0.80 0.54 0.98 0.38 0.58 0.82 0.00 0.59 0.57 0.00 0.60 0.18 0.00 0.60 0.00 0.00 0.60 0.00 

 

 

Fig. 4.  Limit values of skewness representing the boundary between the lower region of compatibility (between arithmetic average and enhanced 
OWA)  and the upper region of non-compatibility. 

 

93



4.   CONCLUSIONS 

The advantages of common analysis methods as 
compared with methods developed specifically for ordinal 
scales are important: from a practical point of view common 
methods are much friendly, as generally well known and 
because the analysis may be performed using traditional 
procedures and widely available software. Nevertheless in 
principle one should not apply common analysis methods to 
results obtained in ordinal scales, because the mathematical 
basis of common methods is the condition of an equal-
interval scale. On the side of specific methods, like 
Condorcet or OWA methods, the main drawback is the 
coarse resolution, that can be overcome using the developed 
relevant enhanced methods.  

Advantages of common methods were showed to be 
significant, even more considering the often lower 
uncertainty of results, so that it is clear the usefulness of 
simple indicators apt to alert when the metric distortion is 
small enough to allow the use of common methods or when, 
on the contrary, specific ordinal scale methods are 
mandatory. Skewness was found to be a good indicator for 
dividing the two regions of application of common methods 
or specific ordinal scale methods. The boundary depends 
also from the number of data considered in the analysis. A 
logarithmic shape boundary line appears to be adequate. 
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