
12th IMEKO TC1 & TC7 Joint Symposium on

 Man Science & Measurement

September, 3 – 5, 2008, Annecy, France

HW/SW HYBRID SIMULATION AS PART OF THE DESIGN OF WIRELESS

INSTRUMENTATION SYSTEMS: DISCUSSION ABOUT AN EXPERIENCE

Jean-paul Jamont , Michel Occello

University of Grenoble II -UPMF, LCIS, Valence, France, {jean-paul.jamont,michel.occello}@iut-valence.fr

Abstract: This paper introduces hardware/software hybrid

simulation of wireless instrumentation systems as a part of

their lifecycle. It presents a state of art of simulators which

are close to our hw/sw multiagent simulator, the MultiAgent

Hardware Software simulator (MASH) and a discussion

about our experience in the use of this tool.

Keywords: instrumentation system design, hw/sw

cosimulation, multiagent systems.

1. INTRODUCTION

Our work focuses on the use of embedded multiagent

systems (eMAS) to model and design open physical

complex systems like wireless instrumentation systems

(WIS), collective robotics, distributed control systems, etc.

Multiagent systems are well suited to model these complex

systems supported by new wireless technologies, because

they are more and more distributed and decentralized. They

involve numerous hardware/software (hw/sw) entities which

enable logical/physical interactions between them and their

shared environment.

Modeling and designing these open physical complex

systems using MAS highlights two types of specific needs

for this context: needs concerning methods (our contribution

is the DIAMOND method (Decentralized Iterative Approach for

Multiagent Open Networks Design [1])) and needs concerning

architectures (our contribution is the MWAC model (Multi-

Wireless-Agent Communication [2])).

This paper is a discussion which focuses on a particular

point of the DIAMOND method: exploiting the hw/sw

cosimulation in the WIS design. In this paper the word

"cosimulation" is used to translate the fact that we include

hardware agent and software agent in a same simulation.

In a first part we introduce the origin of our work on

hardware/software simulation and related works. In a second

part, we present our simulator called MASH. In a last part,

we discuss about our experience of hardware/software

simulation of MAS.

2. HARDWARE/SOFTWARE SIMULATION OF

INSTRUMENTATION SYSTEM

In this part, we present the context and the motivation of our

work. We begin by introducing the different ways to design

WIS. Then, we present our solution for a lifecycle. In a last

part, we present a state of the art of simulators closed to our

own tool.

2.1. Why do we require more than a traditional software

simulation?

WIS include particular routing protocols, coordination

features, data fusion and cooperation algorithms, etc... Three

different way exists to design a such system.

Naive solution. This solution consists in implementing

the WIS components directly on the target platforms. This

solution is possible for simple reactive systems not really

complex. Indeed, this solution is very expensive financially

and the system development takes an important amount of

work. There are three main reasons:

• The genericity is very poor because the designed

models are often application-specific and difficult to

reproduce in other application contexts.

• The designers address the functional difficulties and the

difficulties to embed the software concurrently (limited

memory, low power, time constraint, ergonomic

constraints and so on.)

• It is difficult to test such a system (case of episodical

faults).

Simulation based solution. This solution is very

popular. It consists in reproducing the behavior of the global

designed system in a virtual environment. Generally, the

time is simulated. When the simulation results are consistent

with what is expected of the designed system, the designers

proceed to its embedment.. The disadvantages of this

method are:

• The relevance of the results depends on the quality of

the models used in the simulation tool,

• The simulated application is completely decoupled from

the physical constraints,

• Once the simulation is complete, the embedded code

must developed again,

• Developing the embedded code can introduce some

deviations with the originally simulated system. These

deviations come from a degradation (due or not) of the

models to fit with the available resources and other

constraints of the real application.

Emulation. This solution consists in deploying the real

code but with a simulation of the low layers (within the

meaning of OSI). For example, we can simulate the physical

layer and the link layer. The real sensors communicate with

289

simulated layers. The major disadvantages of this solution

are:

• We start with the development of the embedded

constrained code : it is a complex system, as said

previously, it is important to separate the applicative

requirements and the embedded development

constraints,

• The quality of the results are strongly coupled with the

emulation model,

• Oversizing the available resources is required by the

emulator

• A poor control of the transit times in the simulated

layers that can distorts the measurements.

MASH simulation. Our belief is that to decrease the

difficulty of the deployment of WIS, new simulation type is

requiered: the hardware/software hybrid simulation.

On the figure 1, we can see that a traditional software

simulation approach focuses only on the MAS design and

not on its implementation on a specific platform.

Fig. 1. The hardware simulation that we propose to complete the WIS

simulation

The hybrid simulation allows verifying that there is no

deviation between the functioning of the real embedded

implementation of the WIS and the designed software part

of the WIS. The deviation could result from a deterioration

of the software model to take into account the hardware

restriction i.e. the available memory and the power of the

processor.

In a last step, the simulation can be a "pure" hardware

simulation. In this case, the simulator replaces the real

environment with a virtual environment: perceptions of the

sensors in the environment and their neighborhood are

modified. The simulation can be used to play a scenario of

the real world to test some extreme use cases.

2.2. Related works

The fundamental ideas guiding our work on the

hardware/software simulator are quite close to some rare

and very recent tools.

In the context of wireless sensor networks, simulators

are generally a part of a global framework or suitetool.

Some few works begin with the aim to include hardware

entities in software simulation. We can cite some works on

these frameworks that allow creating code and simulating it

on a hardware device.

SensorSim [3] is a simulation framework for modeling

sensor networks. This work is built on the top of the ns-2

simulator [4]. It provides additional features for modeling

sensor networks (sensing channel and sensor models, battery

models and hybrid simulation). Unfortunately [5], this work

has not been updated to support the last releases of ns-2. The

middleware based platform SensorWare provides

lightweight and mobile control scripts that allow the

computation, communication, and sensing resources at the

sensor nodes to be efficiently harnessed in an application-

specific fashion, through the use of abstraction services.

Simulated nodes and real nodes are not time synchronized.

TOSSIM [6] is a discrete event simulator used for testing

the code produced with TinyOS [6] and for running it on

nodes before their deployment. TinyOS/TOSSIM can

provide only a pure simulation or a real deployment of the

code on the sensors. It maps the actual code into the

simulation platform before run time. Therefore, the language

supported by this tool depends on the compiler.

Em* [7] is a toolsuite which allow to develop applications

over wireless sensor networks using Linux-based hardware

platforms. It supports deployment, simulation, emulation,

and visualization of live systems, both real and simulated.

Code that has been debugged using all the modes has a good

chance to work in a real-world deployment, where it must

be scalable and must deal with the effects of the real

environment. While deployed code may not work

immediately, an "immense amount of real progress can be

made in a more friendly environment". Unfortunately, it

cannot emulate the real binary code that runs on the real

platform.

J-Sim [8] is a component-based discrete event network

simulation framework written in Java. J-Sim is useful for

network simulation and emulation: it is possible to add one

or more real sensor devices. This framework provides

support for sensor channels and wireless communication

channels, physical media such as seismic channels and

power models.

Atemy [9] and Avrora [10] are sensor network emulators

and simulators dedicated to AVR processor based systems.

One of their advantages is that developers of TinyOS related

software can directly use them. Because the processor is

chosen in advance, the low-level emulation of the hardware

sensor node allows acquiring high-fidelity results but, of

course, its genericity is weak for platform based on other

processors. Moreover, it seems that the run time

290

interpretation overhead makes the emulation speed much

slower than other approaches [11].

SEMU [11] is a recent framework of simulation for WSN

where the hardware/software simulation model is similar to

Em* but tries to increase the efficiency of the

synchronization. It is based on Linux and use virtual

machines for the real code emulation. The essential

contribution consists in increasing the real code emulation

speed.

 We have noticed by their descriptions the limitations of

these simulators. In order to be independent of a platform

point of view and of a methodological point of view we

propose a simulator where only interaction protocols are to

be specified. Furthermore, to develop self-organized

systems in instrumentation, we want to integrate multiagent

features to take advantage of their numerous organizational

models and interaction models.

3. THE MASH SIMULATOR

Our hardware/software simulator called MASH simulator

(MultiAgent Software and Hardware simulator). MASH

consists of several simulated/real agent nodes (SimAgent)

interacting with an environment component (SimNetwork).

The basic architecture of our WIS simulator and its

major simulation models are described on the figure 2.

Fig. 2. The hardware simulation that we propose to complete the WIS

simulation

 It allows to simulate the WIS in three different ways:

the software simulation, the hardware simulation and the

hardware/software hybrid simulation.

To success real-time constraints, it could be necessary to

distribute this simulator on a cluster of computer as done in

[12]

SimNetwork Layer. This main component can appear as

the inference mechanism for the simulation. Its aims are to

provide a useful model of a real environment and its

interacting agent. One of the main goals of this component

is to find in the neighborhood of an agent, the agents that

can physically receive the message transmitted by the

sender. The SimNetwork component must provide sensor

readable values and must allow effectors to modify the

environment state. This part deals with the environment map

and the wave propagation models.

The environment map describes the physical part of the

environment i.e. block of rock, water, air, wall etc. A 2-

dimensional grid models it.

The wave propagation model is implemented like

circular wave propagation through the 2-dimensional grid. It

estimates the signal strength measured by a receiver agent

Sr when a sender agent sends the message with strength Ss.

Considering Sr, we can estimate the probability of a good

reception of the message by the receiver agent. Estimating

Sr requires to know the geographical position of the sender

and of the possible receivers. These positions are stored in

the environment map and not in the agent because in a lot of

applications, embedded systems cannot know theirs

positions. From these positions, we can identify the different

media crossed by the signal (air, water, wall etc.) during its

propagation.

SimAgent layer. This layer enables the simulation of the

hardware/software agent. Each agent possesses its own

model and its own architecture.

An agent can be implemented by a software agent (a java

class) or an hardware agent which, in the simulator, redirects

the message to a serial port. Hardware agents are plugged on

the simulator with a serial port.

The time delay added by this serial wrapper is not really

a problem because for our application field because, in a real

case, it is possible to have some agents with a variable

transit time.

It is not realistic to adopt the approach that each entity uses

the same computing time. We consider this time as a

parasitic time. Each SimAgent transmits its requests to the

SimNetwork component that sends the information to all

agents that can receive them, in the environment.

Behavior component. The behavior component is the

applicative component. It simulates the execution of

software on a single sensor node. It receives messages from

the other agent. The SimNetwork answers physical

component requests like reading sensor values or controlling

actuators.

The simulator user must code the applicative part of the

agent by deriving a new class from the Application class to

implement directly an application.

The battery model. This model is very important to

obtain realistic results from the energy efficiency point of

view. It is necessary to the software simulated agent to

include the energetic consumption in the simulation because

all embedded agents must integrate the energy point of view

in their reasoning.

The battery model simulates the capacity and the lifetime

of the agent energy source. It is difficult to define a

universal model because the battery behavior strongly

depends on the material used to build the agents. For an

291

embedded agent, one of its main goals is to increase as

much as possible the lifetime of its energy storage. Our

simulator implements one of the most simple model of

battery: the linear model. Other models are described in

[13][14].

In fact, in the case of our WIS simulation we do not need

the same precision that is required for the hardware/software

partitioning for example, where the aim is to find the best

hardware/software compromise. This model allows user to

see the efficiency of the user's application by providing how

much capacity the agents consume.

In this case it is necessary to have a battery model library

(discharge rate dependant model, relaxation model etc.).

The model that we have implemented in our simulator

defines the battery like a linear storage of current. The

remaining capacity C after operation of time td can be

expressed by the following equation where C’ is the

previous capacity and I(t) is the instantaneous current

used by the hardware at time t:

∫
+

=

−=

dtt

tt

dttICC
0

0

)('

We can note that if the consumed current always remains

the same (the circuit does not switch between sleep mode

and active mode for example) we can simply write that:

dtICC .'−=

In our simulation, we define the consumed current

depending on some states: radio emission (8.1 mA), radio

reception (7.0 mA), cpu active mode (2.0 mA), cpu sleeping

mode (1.9 mA).

The simulated applicative agent part, must define other

current consumptions for effectors or sensors.

4. MASH SIMULATION WITH A WIS: DISCUSSION

ABOUT AN EXPERIENCE THE MASH SIMULATOR

We discuss here about the hw/sw simulation of one of

our eMAS used in the EnvSys project [2]. The general idea

of this project is to study the feasibility of an underground

wireless sensor network. It will allow wireless

instrumentation of a subterranean river system. Such a

network would present an important interest in many

domains: the study of underground flows, the monitoring of

deep collecting, flooding risk management, river system

detection of pollution risks, etc.

4.1. About the embedded agent architecture

These agents are embedded on autonomous processor

cards. These cards are equipped with communication

modules and with measuring modules to carry out agent

tasks relative to the instrumentation. These cards supply a

real time kernel. The KR-51(the kernel's name) allows

multi-task software engineering for C515C microcontroller.

We can produce one task for one capability. We can then

quite easily implement the parallelism inherent to agents and

satisfy the real-time constraints.

 We have chosen for sensors a classical three-layer

embedded architecture (physical layer/link layer/applicative

layer). We use the physical layer, employed by the NICOLA

system, a voice transmission system used by the French

speleological rescue teams [15]. This layer is implemented

in a digital signal processor rather than a full analogical

system. Thereby we can keep a good flexibility and further

we will be able to apply a signal processing algorithm to

improve the data transmission. The link layer used is a

wireless version of the CAN (Controller Area Network)

protocol stemming from the motorcar industry and chosen

for its good reliability. The applicative layer is constituted

by the agents’ system.

Hybrid architectures enable to combine the strong

features of each of reactive (to the message) and cognitive

capabilities (to detect inconsistencies and start a local re-

organization). The ASTRO hybrid architecture [16] is

especially adapted to a real time context. The integration of

deliberative and reactive capabilities is possible using

parallelism in the structure of the agent.

Separating Reasoning/Adaptation and Perception/Co-

mmunication tasks allows a continuous supervision of the

evolution of the environment. The reasoning model of this

agent is based on the Perception/Decision/Reasoning/Action

paradigm.

The cognitive reasoning is thus preserved, and predicted

events contribute to the normal progress of the reasoning

process.

4.2. Discussion about the different simulations

We discuss in this part about the three different types of

simulation in evolved in the MASH simulator.

Our simulator allows to evaluate the WIS and to quantify

the emergence inferred by the system.

It allows comparing our multiagent approach with other

approaches because it provides a scenario editor/player.

The figure 3 shows how windows of a software/hardware

joint simulation that evolves 95 agents: 91 software agents

and 4 hardware agents (see fig. 4).

Fig. 3. An hardware/software hybrid simulation

Pure software simulation. At this level, the simulator

allows to evaluate and improve such agents' software

architectures and the cooperation techniques that they

involve. The scenario player allows to compare the MAS

solution to traditional solutions or other MAS solution.

In this use case, we have compared our solution with three

other solutions based on ad-hoc protocols like the DSDV

protocol (Destination-Sequenced Distance-Vector protocol

292

[17]) and the natural DSR protocol (Dynamic Source

Routing protocol [18]).

The simulator enables to measure different criteria as the

group average density, the global transmitted volume, the

transmitted volume variation and the average memory used

by the agent. Another important criterion is the efficiency

that is defined in our application as the theoretical useful

volume of the optimal way divided by the volume of each

transmitted communication. These measures allow to adjust

the sensitivity of the parameters of the self-organization

process.

Design an artificial complex system features like the a self-

organization process based embedded system is easier to

design in a pure software way. In fact, the difficulties raised

by this type of process are isolated from the difficulties of

the hardware design and specific perturbation of the real

world. Therefore, we can write that the software simulations

allow us to prepare the embedded part of the multiagent

system.

However, a major problem of these software simulations is

that the quality of the simulation depends on the quality of

the different models. The embedded multiagent simulation

integrates many models that come from non-multiagent

community. These models concern the environment [19],

the wireless channels [20], the battery devices [14] etc.

Hybrid software/hardware simulation. One of the

hardware/software hybrid simulation aims is to test

embedded agents in a very large system with a low financial

cost. For example, we can use 1000 virtual agents in a same

simulation and only four embedded agents. Of course, the

embedded agents must be judiciously situated in the

topology (the simulated environment) in regard with that the

designer wants to see (a re-organization of the self-

organization process, a fault tolerance feature, a possible

reaction of the MAS against a disturbance etc.).

Another advantage of the hardware/software hybrid

simulation is the support provide in the debugging phase. In

fact, we can use the simulator in a hardware agent-

debugging step. Debugging is essentially a process of

exposition of program’s internal states relevant to its

abnormal behavior and pinpointing the cause. Visibility of

execution states is a determining factor of how difficult the

debugging task is. With this type of simulation it is easy to

compare the deviation between the hardware behavior of an

agent and the simulated behavior of the same agent.

Contrary to conventional debuggers, we do not inspect

program counters, memories and registers but we focus on

the agent data.

Fig. 4. Screen copy of the simulator

293

Pure hardware simulation. The pure hardware simulation

aim is to test the final eMAS entities in an aggressive

simulated environment. In this simulation all the agents are

run natively (the code is running on the real platform) but

these agents interact together through the simulated world. It

allows simulating some event like movement more easily

than in the real world: we can simulate easily the agent

move without physically move the agents. It is important in

an efficiency evaluation phase to be sure that all the

compared solutions are tested with the same scenario.

For example, if we want to test the eMAS in an underground

river system, it is easier to model the flow, the possible rock

fall, etc.

In a debugging phase, it is possible to debug the agent with a

serial debugging backchannel (independently from the

MASH simulator).

However, the simulator can be used as a visualization and

analysis tools (the agent representation on the simulator

allows to spy the intern state of the physical corresponding

agent).

A great disadvantage of this simulation is that, to have

realistic simulations, one needs many devices and the

associated financial cost is very important.

5. CONCLUSION

We presented in this paper the tool MASH and the use of

different simulations it proposes to

• design a virtual wireless instrumentation multiagent

system

• prepare for the boarding of this system,

• test the wireless instrumentation multiagent

systems and debugger,

• evaluate the performance of this system.

This work takes place clearly within the engineering of

wireless instrumentation systems. Our goal is to contribute

make more relevant the use of cooperative agents to design

such systems. Further, evolving physical agents and virtual

agents in a same societies could initiate a more theoretical

research on the nature of these hybrid societies as it is

already the case with the collaboration of human agents and

software agents.

REFERENCES

[1] J.-P. Jamont, M.Occello, Designing embedded collective

systems: The DIAMOND multiagent method, IEEE

International Conference on Tools with Artificial Intelligence,

IEEE Computer Society, vol 2, 2007.

[2] J.-P. Jamont, M. Occello, A self-organization process for

communication management in embedded multiagent system,

IEEE/WIC/ACM International Conference on Intelligent

Agent Technology, IEEE Computer society, 2007.
[3] S. Park, A. Savvides and M. B. Srivastava, Simulating

networks of wireless sensors, Proceedings of the 2001 Winter

Simulation Conference, pp 1330-1338, ACM, Dec. 2001.

[4] K. Fall and K. Varadhan, The ns ManuaL (formerly ns Notes

and Documentation), December 2007.

 http://www.isi.edu/nsnam/ns/doc/ns_doc.pdf,

[5] I. T. Downard, Simulating Sensor Networks in NS-2, Final

Technical Report No. ADA423595, Naval research lab,

Washington DC, 2004.
[6] P. Levis et al., TOSSIM: accurate and scalable simulation of

entire tinyOS applications, Proceedings of the 1st

International Conference on Embedded Networked Sensor

Systems, 2003.

[7] L. Girod, T. Stathopoulos, J. Elson, M. Lukac, A. Parker, N.

Xu, R. Kapur and D. Estrin, EmStar: A Software Environment

for Developing and Deploying Wireless Sensor Networks,

Proceedings of the USENIX Annual Technical Conference,

USENIX, pp. 283-296, June 2004.
[8] A. Sobeih and J.C. Hou, A simulation framework for sensor

networks in J-sim, Technical Report UIUCDCS-R-2003-2386,

University of Illinois at Urbana-Champaign, Department of

Computer Science, November 2003.

[9] J. Polley, D. Blazakis, J. McGee, D. Rusk, J. Baras, and M.

Karir. ATEMU: A fine-grained sensor network simulators. In

Proceedings of SECON’04, First IEEE Communications

Society Conference on Sensor and Ad Hoc Communications

and Networks, 2004.
[10] B. Titzer , D. K. Lee and J. Palsberg, Avrora: scalable sensor

network simulation with precise timing, Proceedings of the

Fourth International Symposium on Information

Processing in Sensor Networks, pp 477-482, 2005.

[11] S.-H. Lo, J.-H. Ding, Sheng-Je Hung, J.-W. Tang, W. Tsai,

and Y.-C. Chung. Semu : A framework of simulation

environment for wireless sensor networks with co-simulation

model, Advances in Grid and Pervasive Computing : Second

International Conference, pages 672–677, Paris, France, May

2007. LNCS 4459, Springer Verlag.

[12] B. White, J. Lepreau, L. Stoller, R. Ricci, S. Guruprasad, Mac

Newbold, M. Hibler, C. Barb, and A. Joglekar. An integrated

experimental environment for distributed systems and

networks. In 5th Symposium on Operating System Design and

Implementation. USENIX, December 2002.

[13] S. Park, A. Savvides, and M. B. Srivastava. Simulating

networks of wireless sensors. In Proceedings of the 2001

Winter Simulation Conference, pages 1330–1338. ACM,

December 2001.

[14] M. Handy and D. Timmermann. Simulation of mobile

wireless networks with accurate modelling of non-linear

battery effects. In Procedings of Applied Simulation and

Modelling. Acta Press, September 2003.

[15] N. Graham, The Nicola Mark II – a New Rescue Radio for

France, the CREG Journal, vol 38,1999.

[16] M. Occello, Y. Demazeau, and C. Baeijs. Designing

organized agents for cooperation in a real time context. In

Collective Robotics, volume LNCS/LNAI 1456, pages 25–73.

Springer-Verlag, March 1998.

[17] C.E. Perkins, E.M. Royer, and S. Das. Highly dynamic

destination-sequenced distance-vector (dsdv) routing for

mobile computers. In ACM SIGCOMM’94, 1994.

[18] D.-B. Johnson and D.-A. Maltz. Dynamic source routing in ad

hoc wireless networks. In Mobile Computing, pages 153–181.

Kluwer Academic Publishers, 1996.

[19] Y. Z. Mohasseb and M. P. Fitz. A 3d spatio-temporal

simulation model for wireless channels. In IEEE International

Conference on Communications, volume 6, pages 1711 –

1717. ACM, June 2001.

[20] G. Judd and P. Steenkiste. A software architecture for

physical layer wireless network emulation. In Proceedings of

the First ACM International Workshop on Wireless Network

Testbeds, Experimental evaluation and Characterization,

pages 97–107. ACM, September 2006.

294

