
12th IMEKO TC1 & TC7 Joint Symposium on

 Man Science & Measurement

September, 3 – 5, 2008, Annecy, France

DESIGNING WIRELESS INTRUMENTATION SYSTEM WITH THE DIAMOND METHOD
Jean-paul Jamont , Michel Occello, André Lagrèze

University of Grenoble II, LCIS Labs, Valence, France, {jean-paul.jamont,michel.occello,andre.lagreze}@iut-valence.fr

Abstract: Designing wireless instrumentation systems

requires to work with two levels: the individual level (the

sensors) versus the social level (the whole system). We

introduce the DIAMOND method which allows to design

open embedded complex systems using a multiagent

approach.

Keywords: Multiagent systems, Design of instrumentation

system, co-design approach.

1. INTODUCTION

Wireless instrumentation systems (WIS) are sets of

embedded systems (intelligent sensors) strongly related with

their environment. These sensors integrate a software part

and a hardware part (electronic cards, sensors, effectors,

medium access control, routing algorithm, interaction

protocols etc.).

WIS are based on a plurality of low power transceivers

transmitting measurement data from a set of sensors to a

central workstation. These systems are distributed but, more

often now, acquire a decentralized intelligence. The

adaptation feature comes from the cooperation between the

entities of the whole system.

Such systems can be observed at two levels: an

individual level and a social level. In fact, in an individual

view an entity has its own capacity, its own knowledge and

want reach its own objectives. In the social level, we focus

our work on the whole system: the entities must cooperate to

reach a global aim which can be contradictory with its own

aim.

This paper aims to present our approach called

DIAMOND (Decentralized Iterative Multiagent Open

Networks Design) for the design of open embedded

complex systems with multiagent system. More specifically,

we focus on the integration of the individual part of such

system with the social part.

2. OVERVIEW OF THE DIAMOND METHOD

A multiagent method At its origin, the DIAMOND method

has been built to design embedded multiagent systems. This

method addresses lot of application fields including

manufacturing control and collective robotics. One of the

first applications that we have designed with this method

was a WIS to study an underground river system [1].

Multiagent systems are well suited for analyzing and

designing complex systems such as networks of distributed

autonomous entities behaving in an open environment. For

example, the context of the instrumentation of an

underground river system involves an open network of

intelligent sensors whose cooperation must be monitored in

order to insure the best organization.

Multiagent systems (MAS) are a collection of several

agents. It is necessary to start by defining what we call an

agent. Once this notion has been introduced, we shall

approach the concept of MAS. For the past few years the

resolution agents have undergone a strong and fast

development of researches. The confrontation of several

definitions [2][3] allows us to say that, in our context, “an

agent is a software entity embedded in an environment

which it can perceive and in which it acts. It is endowed

with autonomous behaviours and has objectives”. Autonomy

is the main concept in the agent issue: it can be defined as

the agent’s ability to have control over their actions and

their internal states. The autonomy of agents implies no

centralized control.

The power of an agent decomposition is the decentralization

of the intelligence, i.e. of the decision capabilities, and of

entities’ knowledge. In MAS, agents are situated in a

common environment. They interact and attempt to reach a

set of goals. Through these interactions a global behaviour,

more intelligent than the sum of local multiagent system

components intelligence can emerge. The emergence

process is a way to obtain dynamic results that cannot be

predicted.

The DIAMOND method In a traditional system design, the

partitioning step takes place at the beginning of the cycle. In

fact, a hardware requirement and a software requirement are

created from the system requirements (fig.1).

Fig. 1. Traditionnal software method approach

379

The DIAMOND method is a codesign method because it

unifies the development of the hardware part and the

software part. In fact, the partitioning step is pushed back at

the end of the lifecycle to authorize modifications of the

requirement, refinements and iterations.

Four main stages, distributed on a spiral shaped lifecycle [4]

(fig 2), may be distinguished within our embedded

multiagent design approach. The definition of needs defines

what the user needs and characterizes global functionalities.

The second stage is a multiagent-oriented analysis which

consists in decomposing a problem into a multiagent

solution. The third stage of our method starts with a generic

design which aims to build the multiagent system without

distinguishing hardware/software parts.

Finaly, the implementation stage consists in partitioning the

system in a hardware part and a software part to produce the

code and the hardware synthesis.

Fig. 2. The DIAMOND lifecycle

3. REQUIREMENTS DEFINITION

This preliminary stage starts by an analysis of the

physical context of the system (identifying workflow, main

tasks, etc...).

Study of actors. We study the different actors. An actor is

a role played by something or someone who interact with

the system. A person of the real work can play many roles.

Use case analysis The actors contribute in use cases. A use

case is a description of a behaviour of the system as it

responds to a request that originates from outside of that

system. Study the use case enables to capture the functional

requirements. So, an use case allow to describe how the

different actor interact with the designed system to achieve a

specific goal.

Service requirement analysis. We must study the services

requirements of these actors. A sequence diagram shows

different processes that live concurrently. It show the

messages exchanged between these processes and the order

in which they occur.

During this analysis, we use the UML use case diagram and

the UML sequence diagram. They can include physical

interactions.

Particular mode analysis The second step consists in the

study of particular modes for a system that we call "running

mode" and "stop mode". This step comes from the

GEMMA methodology [5]. Working with physical systems

requires to identify many particular possible behaviors

directly linked with the embedded aspect of the system: In

which state must the system be when going under

maintenance? How to calibrate the system components?

How must be the state of all the components when an

emergency stop occurs (robot in safety area...)? Even in a

decentralized intelligence context, the conditions defining

these modes must remain easily understandable. The users

of the system must respect laws and norms (the human

safety can be altered).

This activity puts forward a restricted running of the system.

It allows to specify the first elements necessary for a

minimal fault-tolerance. Moreover, this phase enables to

identify cooperative (or not) situations and to define

recognition states in order to analyze, for example, the self-

organizational process of an application. This activity allows

to take into account the safety of the physical integrity of the

users possibly plunged in the physical system.

We have defined fifteen different modes grouped in three

families. The stop modes are related to the different

procedures to stop the system. They define the associate

recognition states too. The running modes focus on the

definition of the recognition states of normal running, test

procedures etc. The failure operations modes concentrate

the security procedures (for example allowing a human

maintenance team to work on the system) or to specify rules

for restricted running etc.

4. THE SOCIETY PHASE

The multiagent stage is handled in a concurrent manner at

two different levels (Fig. 3.). At the society level, the

multiagent system is considered as a whole. At the

individual level, the system’s agents are built. This

integrated multiagent design procedure encompasses five

main phases discussed in the following.

Fig. 3. The DIAMOND lifecycle

380

Situation phase The situation phase defines the overall

setting, i.e., the environment, the agents, their roles and their

contexts. This stems from the analysis stage. We first

examine the environment boundaries, identify passive and

active components and we proceed to the problem

agentification.

We insist here on some elements of reflection about the

characteristics of the environment. We must identify here

what is relevant to take into account from the environment,

in the resulting application.

It’s, first of all, necessary to determine the environment

accessibility degree i.e. what can be perceived from it. We

will deduce from these characteristics which are the

primitives of perception needed by agents. Measurements

make possible to measure parameters which enable to

recognize the state of the environment. They thus will

condition the decisional aspect of the agent.

The environment can be qualified of determinist if it is

predictable by an agent, starting from the environment

current state and from the agent actions. The physical

environment is seldom deterministic. Examining allowed

actions can influence the agent effectors definition.

The environment is episodic if its next state does not depend

on the actions carried out by the agents. Some parts of a

physical environment are generally episodic. This

characteristic has a direct influence on agent goals which

aim to monitor the environment.

Real environment is almost always dynamic but the designer

is the single one able to appreciate the level of dynamicity of

the part of the environment in which he is interested. This

dynamicity parameter impacts the agent architecture.

Physical Environments may require reactive or hydride

architectures.

The environment is discrete if the number of possible

actions and states reached by the environment are finite.

This criterion is left to the designer appreciation according

to the application it considers. A real environment is almost

always continuous.

It is then necessary to identify the active and passive entities

which make the system. These entities can be in interaction

or be presented more simply as the constraints which

modulate these interactions. It is necessary to specify the

role of each entity in the system. This phase allows to

identify the main entities that will be used and will become

agents.

Individual phase Decomposing the development process

of an agent refers to the distinction made between the

agent’s external and internal aspects. The external aspect

deals with the definition of the media linking the agent to

the external world, i.e., what and how the agent can

perceive, what it can communicate and according to which

type of interactions, and how it can make use of them.

The agent’s internal aspect consists in defining what is

proper to the agent, i.e. what it can do (a list of actions) and

what it knows (its representation of the agents, the

environment, interaction and organization elements).

In most cases, the actions are carried out according to the

available data about the agent’s representation of the

environment.

Such a representation based on expressed needs has to be

specified during specifications of actions. In order to

guarantee that the data handled are real data, it is necessary

to define the required perception capabilities. We have

defined four types of actions. Primitive actions are tasks

which are not physically decomposable. Composed actions

are temporal ordered lists of primitives. Situated actions

need to have a world representation to execute their tasks.

Society phase Interaction among agents is achieved via

messages passing. Such exchange modes are formalized by

means of interaction protocols. Although these interaction

protocols are common to all the agents, they are rather

external to them. Conflict resolution is efficiently handled

by taking into account the relationships between the agents,

that is, by building an explicit organizational structure.

Such an organization is naturally modelled through

subordination relations that express the priority of one agent

on another.

Integration phase We need to analyse the possible

influences upon the previous levels. Those influences are

integrated within the agents by means of their

communication and perception assessment capabilities

(given in each agent’s model through guard and trigger

rules). The decomposition masks the notion of agent’s

control, i.e., how it handles its focus of attention, its

decisions, and it links its actions. This dual aspect is based

on the two previous one. Through the integration of social

influences within the agents, one will endow the multiagent

system with some dynamics. According to the social

analysis we must give to the agent the possibility to interact

in order to choose its role.

5. THE GENERIC DESIGN

This stage is based on abstract component

decomposition. We can define an abstract component as an

elementary object that performs a specific but reusable

function. It is designed in such a way to easily operate with

other components to create an application. Components can

be combined each other to build more complex functions.

This phase offers an efficient process leading to a

component decomposition by starting from the informal

description of the multiagent system built during the

previous stage.

The Problem Description Phase. This phase consists in

identifying and delimiting the domain of the general

problem, as well as identifying some specific aspects that

should be taken into account. Although this phase is

informal, it allows designers to clearly separate the various

aspects embedded within the application. We must choose

here the architecture of the agents.

The agents are built following hybrid architectures, i.e. a

composition of some pure types of architecture. Indeed, the

agents will be of a cognitive type in case of a configuration

alteration, it will be necessary for them to communicate and

to manipulate their knowledge in order to have an efficient

collaboration. On the other hand, in a normal mode, it will

381

be necessary for them to be reactive using a stimuli/response

paradigm to be most efficient.

We evaluated in [6] the impact of the time real aspects on

the design of the agents and showed that they must be taken

into account for each ability of the agents and at each level

of the design as reminded on figure 4.

Fig. 4. Distribution of real-time constraints (recommended temporal

mechanism (S)ynchronous or (A)synchronous)

Agent applicative tasks design phase. We must build the

external shell of the agent i.e. elaborate the interface with

the external world for each sensors and effectors. It is time,

here, to choose a technological solution for them and to

complete the context diagram to specify all information

about the signal. The next step is to design the internal shell

of the agent. We begin by the elaborated actions according

to the task tree.

It is necessary at this stage to arrange the components

to build the application: the architecture of the agent will be

used as a pattern, at a very high level, for the components

decomposition. The components have an external and an

internal description. The internal description can be an

assembly of components, or a formatted description of a

decisional algorithm. At this level the designer has to build

agents applicative tasks.

6. IMPLEMENTATION PHASE

Partitioning Phase. The main use of codesign techniques

appears in the software/hardware partitioning of the abstract

components defined in the third level. Also it is essential to

study the different partitioning criteria.

A first level relates to agent parts for which the partitioning

question doesn't exist. Indeed some elements must be

hardware as input/output device such as for example the

sensors and the actuators.

The second level relates to features for which there are

several choices of implementation. We present below, those

which can be considered to be relevant for the agents

according to previous works we have made in this field and

codesign works like [7]: cost, performance, flexibility,

fault-tolerance, ergonomic constraints and the algorithmic

complexity.

The cost is present at all the stages of a system design life

cycle. On very small series, we must decrease, as much as

possible, the price of the software/hardware development

and the hardware material. In the case of great series, we

must reduce manufacturing costs.

The performance depends on the considered problem. A

real-time application for which the robustness is a function

of the occupation processor time is an example of system

where this criterion is very important. A hardware

partitioning is often privileged.

The flexibility plays in favor of the software. Software

modifications have generally a less significant impact on the

whole system than a hardware change. However, the

flexibility of the EPLD (Electrical Programmable Logic

Device) and other FPGA (Field Programmable Gate Array)

increases quickly. For example, these architectures are

reprogrammable in-situ: it is possible to modify their

specifications without extracting them from the electronic

chart.

From their nature, software systems are less fault tolerant

than hardware components like EPLD. Indeed,

microcontrollers use memories, stack structures with

possible overflow etc. The internal fault tolerance will be

thus a criterion which will play in favor of a hardware

partitioning.

The ergonomic constraints gather all the system physical

characteristics like weight, volume, power consumption,

thermal release etc. Depending on the application, this

criterion can be highly critical (case of the aeronautics

embedded applications). One more time, the designer must

appreciate correctly this criterion.

The algorithmic complexity has a great importance for some

applications. The software part will be more important if

tasks are very complex. In fact, it is very difficult to make

hardware synthesis of highly cognitive features.

Co-simulation and co-validation Phases. This activity

allows to simulate the collaboration between software part,

hardware part and their interface.

Implementation Phase. At this level, each component is

completely specified with common graphic specifications

for the hardware part and the software

part. For each component, the designer has already selected

if he wishes hardware or software implementation.

This level must ensure the automatic generation of the code

for the components for which implementation

software has been selected. The code is made in a portable

language like Java or C++.

We use a Hardware Description Language which provides a

formal or symbolic description of a component or of a

hardware circuit and it interconnections. In our method the

hardware components are specified in VHDL [8].

7. CASE OF STUDY

We illustrate the requirements definition and the society

phase of our method with the EnvSys project [1]. It is a

simplified version of the real analysis.

6.1 Requirement definition

382

Preliminary Approach This project (Fig. 5.) aims the

wireless instrumentation of underground river systems.

More precisely, our work on this project focuses on the

design of a communication management of this system. The

measures must reach to a workstation located at the exit of

the underground river system.

Fig. 5. Illustration of the EnvSys project

The workstation is a computer which collects the

measures coming from the various sensors. They are stored

in a text file. These records are saved with this format:

<idsensor><idmeasure_1><data1><TAB>...<TAB><idmeasure_n><datan><RC>.

idsensor is the identifier of the sensor which sends the

measures (2 bytes), idmeasure_1 is the identifier of the type of

measure (1 byte - 1: temperature, 2:pressure, 3:ph), datan is

the measure.

These measures are used by an analyst (viewable on site

or remotely) The workstation also enables to know the IDs

of the reached sensors. It enables speleologists to verify that

their deployed sensors are always present and reachable.

The sensors are immersed in the underground river

system. They are autonomous from an energy point of view

(batteries). They can ensure several functions:

• A measure function: it is the first role of a sensor. It

interacts with its environment to carry out an

information.

• A relay function: Each sensor has a limited

transmission range. It is therefore necessary that

each sensor help others to send their measurements

to the workstation.

In the complete analysis we must characterize the wireless

communication and the fault tolerance requirement.

Study of actors The system consists of a set of sensors and

a workstation. The actors acting on this system are:

• The speleologists: he put the sensors in the cave.

He checks periodically that the sensors transmit

their measures or if they need to be replaced.

• The analyst: he analyzes the collected data.

When he put a sensor in the cave, the speleologist must

know how many other sensors are in its range. When he

finished this operation (and when he wants to verify that the

system works i.e. that the data necessary to the analyst are

collected by sensors) he may launch a test. The analyst can

view the data which arrives in the workstation, store them or

destroy them.

Use case analysis We can identify the different use cases:

• The use case configuration that allows the creation

of the network and the addition of sensors.

• The use case measure that allows to collect all the

measures on the workstation. During this use case,

the user can:

o manage the data (analyst),

o check the topology i.e. sensors that are

still in working condition and participate

in the collecting data task (speleologist).

The next figure (Fig. 6.) illustrates these cases of use and

their organization.

Fig. 6. EnvSys use case diagram

Service requirement analysis We give here an abstract of

the different sequence diagrams. The following diagram

(figure 7) introduces the services by the actors "speleologist"

and "analyst" when the system is used to instrumente the

underground river system.

Fig. 7. An example of sequence diagram

383

Particular mode analysis. In normal measurement mode,

the data arrive at the workstation. If fi is the sending

frequency used by sensor i to transmit its measures, then if

during the period Tmini = 1/f_i + tdelivery there is no reveived

message from i, we have been rejected for the normal mode.

It may be necessary to add sensors. The analyst must

determine whether the missing data can distort the analysis

of results.

A mode of preparation has been identified. It is linked to the

use case “configuration”. In this use case, the speleologist

must to know the neighbourhood of the deployed sensor.

6.2 Society phase

Situation phase The environment is the underground river

system. The environment consists in the information

measurable by the sensors: in our case we will consider, as a

first step, only the temperature.

Sensors are located but may not acquire their geographical

position. The environment, as the majority of physical

environments, is deterministic, not episodic, dynamic and

continuous.

The components of our system are:

• The workstation: this station receives measures

from the sensors. It allows the user to manage data

or discover the network topology.

⇒ This entity is not autonomous. The

workstation will not become an agent.

• The sensors: As seen above, the sensor must

interact with the environment to extract data. It

must then send these data to a workstation. They

have a limited amount of energy. This amount of

energy should enable the measurements process

and message delivery tasks. Sensors must

cooperate because they involve a multihop

communication. There are numerous paths to

enable a communication. A sensor must decide

himself whether he can still help other sensors to

communicate

⇒ They are active entities. They are autonomous

and involve the cooperation.

⇒ They become agents.

To address the communication problem, we will use the

MWAC model specially designed for this type of problem

[9].

Individual phase Tree of capabilities. The agent must

perform measure primitive tasks and send these measures to

the workstation. An agent is unable to send its measure to

the collection station at this part of the analysis.

Building representation of itself and of the environment. An

agent has an identifier and knows its energy level. However,

the agent does not require to have a representation of its

environment. Indeed, relevant information would be its

geographical position, but it can not acquire it.

The required data on the environment which will be

acquired, lead to define the agent sensors. In our case we

consider only the temperature.

Fig. 8. Tree of capabilities and building representation of itself and the

environment (individual phase)

Context diagram. When a speleologist places a sensor, he

must know how many other sensors are in its range: it is

necessary to have a screen. He requires a sensor to carry out

the temperature.

Establish the behaviour of agents. The behaviour of the

agent is actually very simple. It will periodically call upon

its sensors to establish measures. He requires to send the

measure to the workstation.

Social phase Defining the knowledge about others. We

require the help of others agents to deliver messages to the

workstation. It is impossible to know its geographical

position. We will use the MWAC model to enable a reliable

communication between the agents. The knowledge of

others is taken into account with this model. Thus knowing

another sensor is to know his triplet <id,role,group>.

Role is REPRESENTANT or SIMPLE MEMBER or

CONNECTION. A group is identified by the representant

identifier.

This analysis is in fact the result of several iterations. In a

first time the organization is not defined: a neighbour is

identified only by its id. Once the model MWAC chosen and

therefore the organization defined, an agent will be

identified by the triplet <id ,role, group>.

During the next iteration of this process, we will introduce

additional data on others (list of neighbours, adjacent list of

groups and list of route fragments) and the addition of data

on itself (the role). A tree consolidated with the results of all

these iterations can be found on figure 7.

Defining the communication primitives. The communication

primitive are the one proposed by the MWAC model

(sending function, receiving messages).

Defining collaborative actions/perceptions. No more

collaborative actions/perceptions are required than defined

in the MWAC model.

Organizational aspect. An organization is inherited from the

MWAC model.

When the system is being instrumented, there is no special

requirement in organizations and in interactions.

However, in a configuration phase, it is necessary to define

a protocol for the communication between an agent and its

neighbours. Indeed, this mode requires that an agent knows

how many other agents sensors are reachable. We define a

communication protocol (Fig. 9).

384

Fig. 9. A simplified communication protocol

 At this stage it is therefore necessary to start a new iteration

of the previous process:

• Adding to the agent of a button because the

speleologist needs to define the mode (positioning

mode or not). The complete context diagram is

shown on figure 10.

• Adding to the agent the data to memorize the mode

or not (the complete data/capabilities tree is

visible in figure 11). A privitive/action scheme is

shown on figure 12.

Integration phase

Identifing social influence. In a positioning mode, agents

must refuse to join a group. Indeed, it follows many re-

organizations. These re-organizations lead to unnecessary

energy losses.

Defining the social behaviour of the agent. During the

positioning mode, we require to degrade the interaction

protocols inherited from the MWAC model. We just have to

correct this problem, to modify the decision module of the

agent he chooses for any role. It aborts the smooth running

of the MWAC inherited protocol.

Fig. 10. Context diagram of an agent

Fig. 11. Consolidate tree of capabilities and building representation of

self and the environment (iteration between the individual phase and

the social phase)

Fig. 12. Primitives and actions scheme

7. CONCLUSION

We have proposed in this paper a method to approach

domains where collaborative entities are connected to

physical devices they have to control or to supervise like in

wireless instrumentation systems. We examined how a

traditional multiagent design cycle must be enriched in this

context.

Our method has been validated on several real world

projects as for underground river instrumentation, an

application of collective robotics to paletization in a

manufacturing process or to build the software infrastructure

for UWB sensor localization.

Our future work concerns the MASC tools (MultiAgent

System Codesign) associated with the DIAMOND method.

The agent design with components and the code generation

in Java and C languages are operational. The VDHL

specification generation is partially developed.

Model wireless instrumentation systems are a recent field.

Very few works address the problem of the analysis of self-

organized instrumentation systems. This work proposes

some innovative contributions in term of hybrid

software/hardware multiagent lifecycle.

385

REFERENCES

[1] J.-P. Jamont et al., A Multi-agent System for the

instrumentation of an underground hydrographic system, 2002

IEEE International Symposium on Virtual and Intelligent

Measurement Systems - VIMS’2002, IEEE Instumentation

and Measurement Society, 2002.

[2] Y. Demazeau, “Steps towards multi-agent oriented-

programming,” 1st International Workshop on Distributed

Artificial Intelligence and Multiagent Systems, 1995.

[3] M.J. Wooldridge, “Intelligent agents,” in Multiagent systems:

A modern approach to Distributed Artificial Intelligence,

Gerhard Weiss Ed., MIT Press, 1999.

[4] B. W. Boehm. A spiral model of software development and

enhancement. IEEE Computer, 21(5):61–72, 1988.

[5] S. Moreno and E. Peulot, Le GEMMA, Casteilla, ISBN 978-

2713517525, 1997.

[6] M. Occello et al.. Designing organized agents for cooperation

in a real time context. In A. Drogoul, M. Tambe, and J. Singh,

editors, Collective Robotics, volume LNAI 1456, pages 25–73.

Springer- Verlag, March 1998.

[7] J. Adams et al. The design of mixed hardware/software

systems. Las Vegas, USA, june 1996. ACM.

[8] M. Zwolinski, Digital System Design With Vhdl, Prentice Hall,

ISBN 978-0130399854, 2003

[9] J.-P. Jamont, M. Occello and A. Lagrèze. Management of

communication in wireless instrumentation systems: a solution

based on a multiagent approach, Proceedings of the 12th

IMEKO TC1-TC7 joint Symposium on Man, Science &

Measurement, IMEKO.

386

