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Abstract: Designing wireless instrumentation systems 

requires to work with two levels: the individual level (the 

sensors) versus the social level (the whole system). We 

introduce the DIAMOND method which allows to design 

open embedded complex systems using a multiagent 

approach. 

Keywords: Multiagent systems, Design of instrumentation 
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1.   INTODUCTION 

Wireless instrumentation systems (WIS) are sets of 

embedded systems (intelligent sensors) strongly related with 

their environment. These sensors integrate a software part 

and a hardware part (electronic cards, sensors, effectors, 

medium access control, routing algorithm, interaction 

protocols etc.).   

WIS are based on a plurality of low power transceivers 

transmitting measurement data from a set of sensors to a 

central workstation. These systems are distributed but, more 

often now, acquire a decentralized intelligence. The 

adaptation feature comes from the cooperation between the 

entities of the whole system. 

Such systems can be observed at two levels: an 

individual level and a social level. In fact, in an individual 

view an entity has its own capacity, its own knowledge and 

want reach its own objectives. In the social level, we focus 

our work on the whole system: the entities must cooperate to 

reach a global aim which can be contradictory with its own 

aim.  

This paper aims to present our approach called 

DIAMOND (Decentralized Iterative Multiagent Open 

Networks Design) for the design of open embedded 

complex systems with multiagent system. More specifically, 

we focus on the integration of the individual part of such 

system with the social part. 

2.   OVERVIEW OF THE DIAMOND METHOD 

A multiagent method At its origin, the DIAMOND method 

has been built to design embedded multiagent systems. This 

method addresses lot of application fields including 

manufacturing control and collective robotics. One of the 

first applications that we have designed with this method 

was a WIS to study an underground river system [1]. 

Multiagent systems are well suited for analyzing and 

designing complex systems such as networks of distributed 

autonomous entities behaving in an open environment. For 

example, the context of the instrumentation of an 

underground river system involves an open network of 

intelligent sensors whose cooperation must be monitored in 

order to insure the best organization.   

Multiagent systems (MAS) are a collection of several 

agents. It is necessary to start by defining what we call an 

agent. Once this notion has been introduced, we shall 

approach the concept of MAS. For the past few years the 

resolution agents have undergone a strong and fast 

development of researches. The confrontation of several 

definitions [2][3] allows us to say that, in our context, “an 

agent is a software entity embedded in an environment 

which it can perceive and in which it acts. It is endowed 

with autonomous behaviours and has objectives”. Autonomy 

is the main concept in the agent issue: it can be defined as 

the agent’s ability to have control over their actions and 

their internal states. The autonomy of agents implies no 

centralized control. 

The power of an agent decomposition is the decentralization 

of the intelligence, i.e. of the decision capabilities, and of 

entities’ knowledge. In MAS, agents are situated in a 

common environment. They interact and attempt to reach a 

set of goals. Through these interactions a global behaviour, 

more intelligent than the sum of local multiagent system 

components intelligence can emerge. The emergence 

process is a way to obtain dynamic results that cannot be 

predicted. 

 

The DIAMOND method In a traditional system design, the 

partitioning step takes place at the beginning of the cycle. In 

fact, a hardware requirement and a software requirement are 

created from the system requirements (fig.1). 

 

 

Fig. 1. Traditionnal software method approach 
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The DIAMOND method is a codesign method because it 

unifies the development of the hardware part and the 

software part. In fact, the partitioning step is pushed back at 

the end of the lifecycle to authorize modifications of the 

requirement, refinements and iterations. 

Four main stages, distributed on a spiral shaped lifecycle [4] 

(fig 2), may be distinguished within our embedded 

multiagent design approach.  The definition of needs defines 

what the user needs and characterizes global functionalities.  

The second stage is a multiagent-oriented analysis which 

consists in decomposing a problem into a multiagent 

solution.  The third stage of our method starts with a generic 

design which aims to build the multiagent system without 

distinguishing hardware/software parts. 

Finaly, the implementation stage consists in partitioning the 

system in a hardware part and a software part to produce the 

code and the hardware synthesis. 

 

 

 

Fig. 2. The DIAMOND lifecycle 

 

3.   REQUIREMENTS DEFINITION 

This preliminary stage starts by an analysis of the 

physical context of the system (identifying workflow, main 

tasks, etc...).  

 

Study of  actors.  We study the different actors. An actor is 

a role played by something or someone who interact with 

the system. A person of the real work can play many roles. 

 

Use case analysis The actors contribute in use cases. A use 

case is a description of a behaviour of the system as it 

responds to a request that originates from outside of that 

system. Study the use case enables to capture the functional 

requirements. So, an use case allow to describe how the 

different actor interact with the designed system to achieve a 

specific goal.  

 

Service requirement analysis. We must study the services 

requirements of these actors. A sequence diagram shows 

different processes that live concurrently. It show the 

messages exchanged between these processes and the order 

in which they occur. 

During this analysis, we use the UML use case diagram and 

the UML sequence diagram. They can include physical 

interactions. 

 

Particular mode analysis The second step consists in the 

study of particular modes for a system that we call "running 

mode" and "stop mode".  This step comes from the 

GEMMA methodology [5]. Working with physical systems 

requires to identify many particular possible behaviors 

directly linked with the embedded aspect of the system: In 

which state must the system be when going under 

maintenance? How to calibrate the system components? 

How must be the state of all the components when an 

emergency stop occurs (robot in safety area...)? Even in a 

decentralized intelligence context, the conditions defining 

these modes must remain easily understandable. The users 

of the system must respect laws and norms (the human 

safety can be altered). 

This activity puts forward a restricted running of the system. 

It allows to specify the first elements necessary for a 

minimal fault-tolerance. Moreover, this phase enables to 

identify cooperative (or not) situations and to define 

recognition states in order to analyze, for example, the self-

organizational process of an application. This activity allows 

to take into account the safety of the physical integrity of the 

users possibly plunged in the physical system. 

We have defined fifteen different modes grouped in three 

families. The stop modes are related to the different 

procedures to stop the system. They define the associate 

recognition states too. The running modes focus on the 

definition of the recognition states of normal running, test 

procedures etc.  The failure operations modes concentrate 

the security procedures (for example allowing a human 

maintenance team to work on the system) or to specify rules 

for restricted running etc. 

4.   THE SOCIETY PHASE 

The multiagent stage is handled in a concurrent manner at 

two different levels (Fig. 3.). At the society level, the 

multiagent system is considered as a whole. At the 

individual level, the system’s agents are built. This 

integrated multiagent design procedure encompasses five 

main phases discussed in the following. 

 

 

Fig. 3. The DIAMOND lifecycle 
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Situation phase The situation phase defines the overall 

setting, i.e., the environment, the agents, their roles and their 

contexts. This stems from the analysis stage. We first 

examine the environment boundaries, identify passive and 

active components and we proceed to the problem 

agentification. 

We insist here on some elements of reflection about the 

characteristics of the environment. We must identify here 

what is relevant to take into account from the environment, 

in the resulting application. 

It’s, first of all, necessary to determine the environment 

accessibility degree i.e. what can be perceived from it. We 

will deduce from these characteristics which are the 

primitives of perception needed by agents. Measurements 

make possible to measure parameters which enable to 

recognize the state of the environment. They thus will 

condition the decisional aspect of the agent.  

The environment can be qualified of determinist if it is 

predictable by an agent, starting from the environment 

current state and from the agent actions. The physical 

environment is seldom deterministic. Examining allowed 

actions can influence the agent effectors definition.  

The environment is episodic if its next state does not depend 

on the actions carried out by the agents. Some parts of a 

physical environment are generally episodic. This 

characteristic has a direct influence on agent goals which 

aim to monitor the environment.  

Real environment is almost always dynamic but the designer 

is the single one able to appreciate the level of dynamicity of 

the part of the environment in which he is interested. This 

dynamicity parameter impacts the agent architecture. 

Physical Environments may require reactive or hydride 

architectures. 

The environment is discrete if the number of possible 

actions and states reached by the environment are finite. 

This criterion is left to the designer appreciation according 

to the application it considers. A real environment is almost 

always continuous. 

It is then necessary to identify the active and passive entities 

which make the system. These entities can be in interaction 

or be presented more simply as the constraints which 

modulate these interactions. It is necessary to specify the 

role of each entity in the system. This phase allows to 

identify the main entities that will be used and will become 

agents.  

 

Individual phase   Decomposing the development process 

of an agent refers to the distinction made between the 

agent’s external and internal aspects. The external aspect 

deals with the definition of the media linking the agent to 

the external world, i.e., what and how the agent can 

perceive, what it can communicate and according to which 

type of interactions, and how it can make use of them. 

The agent’s internal aspect consists in defining what is 

proper to the agent, i.e. what it can do (a list of actions) and 

what it knows (its representation of the agents, the 

environment, interaction and organization elements). 

In most cases, the actions are carried out according to the 

available data about the agent’s representation of the 

environment. 

Such a representation based on expressed needs has to be 

specified during specifications of actions. In order to 

guarantee that the data handled are real data, it is necessary 

to define the required perception capabilities. We have 

defined four types of actions. Primitive actions are tasks 

which are not physically decomposable. Composed actions 

are temporal ordered lists of primitives. Situated actions 

need to have a world representation to execute their tasks. 

 

Society phase Interaction among agents is achieved via 

messages passing. Such exchange modes are formalized by 

means of interaction protocols. Although these interaction 

protocols are common to all the agents, they are rather 

external to them. Conflict resolution is efficiently handled 

by taking into account the relationships between the agents, 

that is, by building an explicit organizational structure. 

Such an organization is naturally modelled through 

subordination relations that express the priority of one agent 

on another. 

 

Integration phase We need to analyse the possible 

influences upon the previous levels. Those influences are 

integrated within the agents by means of their 

communication and perception assessment capabilities 

(given in each agent’s model through guard and trigger 

rules). The decomposition masks the notion of agent’s 

control, i.e., how it handles its focus of attention, its 

decisions, and it links its actions. This dual aspect is based 

on the two previous one. Through the integration of social 

influences within the agents, one will endow the multiagent 

system with some dynamics. According to the social 

analysis we must give to the agent the possibility to interact 

in order to choose its role.  

5. THE GENERIC DESIGN 

This stage is based on abstract component 

decomposition. We can define an abstract component as an 

elementary object that performs a specific but reusable 

function. It is designed in such a way to easily operate with 

other components to create an application. Components can 

be combined each other to build more complex functions. 

This phase offers an efficient process leading to a 

component decomposition by starting from the informal 

description of the multiagent system built during the 

previous stage. 

 

The Problem Description Phase. This phase consists in 

identifying and delimiting the domain of the general 

problem, as well as identifying some specific aspects that 

should be taken into account. Although this phase is 

informal, it allows designers to clearly separate the various 

aspects embedded within the application. We must choose 

here the architecture of the agents. 

The agents are built following hybrid architectures, i.e. a 

composition of some pure types of architecture. Indeed, the 

agents will be of a cognitive type in case of a configuration 

alteration, it will be necessary for them to communicate and 

to manipulate their knowledge in order to have an efficient 

collaboration. On the other hand, in a normal mode, it will 
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be necessary for them to be reactive using a stimuli/response 

paradigm to be most efficient. 

We evaluated in [6] the impact of the time real aspects on 

the design of the agents and showed that they must be taken 

into account for each ability of the agents and at each level 

of the design as reminded on figure 4. 

 

 

Fig. 4. Distribution of real-time constraints (recommended temporal 

mechanism (S)ynchronous or (A)synchronous) 

 

Agent applicative tasks design phase. We must build the 

external shell of the agent i.e. elaborate the interface with 

the external world for each sensors and effectors. It is time, 

here, to choose a technological solution for them and to 

complete the context diagram to specify all information 

about the signal.  The next step is to design the internal shell 

of the agent. We begin by the elaborated actions according 

to the task tree. 

It is necessary at this stage to arrange the components 

to build the application: the architecture of the agent will be 

used as a pattern, at a very high level, for the components 

decomposition. The components have an external and an 

internal description. The internal description can be an 

assembly of components, or a formatted description of a 

decisional algorithm. At this level the designer has to build 

agents applicative tasks. 

6. IMPLEMENTATION PHASE 

Partitioning Phase. The main use of codesign techniques 

appears in the software/hardware partitioning of the abstract 

components defined in the third level. Also it is essential to 

study the different partitioning criteria. 

A first level relates to agent parts for which the partitioning 

question doesn't exist. Indeed some elements must be 

hardware as input/output device such as for example the 

sensors and the actuators. 

The second level relates to features for which there are 

several choices of implementation. We present below, those 

which can be considered to be relevant for the agents 

according to previous works we have made in this field and 

codesign works like [7]:  cost, performance, flexibility, 

fault-tolerance, ergonomic constraints and the algorithmic 

complexity. 

The cost is present at all the stages of a system design life 

cycle. On very small series, we must decrease, as much as 

possible, the price of the software/hardware development 

and the hardware material. In the case of great series, we 

must reduce manufacturing costs. 

The performance depends on the considered problem.  A 

real-time application for which the robustness is a function 

of the occupation processor time is an example of system 

where this criterion is very important. A hardware 

partitioning is often privileged. 

The flexibility plays in favor of the software.  Software 

modifications have generally a less significant impact on the 

whole system than a hardware change. However, the 

flexibility of the EPLD (Electrical Programmable Logic 

Device) and other FPGA (Field Programmable Gate Array) 

increases quickly. For example, these architectures are 

reprogrammable in-situ: it is possible to modify their 

specifications without extracting them from the electronic 

chart. 

From their nature, software systems are less fault tolerant 

than hardware components like EPLD. Indeed, 

microcontrollers use memories, stack structures with 

possible overflow etc. The internal fault tolerance will be 

thus a criterion which will play in favor of a hardware 

partitioning. 

The ergonomic constraints gather all the system physical 

characteristics like weight, volume, power consumption, 

thermal release etc.  Depending on the application, this 

criterion can be highly critical (case of the aeronautics 

embedded applications).  One more time, the designer must 

appreciate correctly this criterion. 

The algorithmic complexity has a great importance for some 

applications.  The software part will be more important if 

tasks are very complex. In fact, it is very difficult to make 

hardware synthesis of highly cognitive features. 

 

Co-simulation and co-validation Phases. This activity 

allows to simulate the collaboration between software part, 

hardware part and their interface. 

 

Implementation Phase. At this level, each component is 

completely specified with common graphic specifications 

for the hardware part and the software  

part.  For each component, the designer has already selected 

if he wishes hardware or software implementation. 

This level must ensure the automatic generation of the code 

for the components for which implementation  

software has been selected. The code is made in a portable 

language like Java or C++. 

We use a Hardware Description Language which provides a 

formal or symbolic description of a component or of a 

hardware circuit and it interconnections. In our method the 

hardware components are specified in VHDL [8]. 

7. CASE OF STUDY 

We illustrate the requirements definition and the society 

phase of our method with the EnvSys project [1].  It is a 

simplified version of the real analysis. 

6.1 Requirement definition 
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Preliminary Approach This project (Fig. 5.) aims the 

wireless instrumentation of underground river systems. 

More precisely, our work on this project focuses on the 

design of a communication management of this system. The 

measures must reach to a workstation located at the exit of 

the underground river system. 

 

 

Fig. 5. Illustration of the EnvSys project 

 

The workstation is a computer which collects the 

measures coming from the various sensors. They are stored 

in a text file. These records are saved with this format: 

<idsensor><idmeasure_1><data1><TAB>...<TAB><idmeasure_n><datan><RC>. 

idsensor is the identifier of the sensor which sends the 

measures (2 bytes), idmeasure_1 is the identifier of the type of 

measure (1 byte - 1: temperature, 2:pressure, 3:ph), datan is 

the measure.  

These measures are used by an analyst (viewable on site 

or remotely) The workstation also enables to know the IDs 

of the reached sensors. It enables speleologists to verify that 

their deployed sensors are always present and reachable. 

The sensors are immersed in the underground river 

system. They are autonomous from an energy point of view 

(batteries).  They can ensure several functions: 

• A measure function: it is the first role of a sensor. It 

interacts with its environment to carry out an 

information.  

• A relay function: Each sensor has a limited 

transmission range. It is therefore necessary that 

each sensor help others to send their measurements 

to the workstation.  

In the complete analysis we must characterize the wireless 

communication and the fault tolerance requirement. 

 

Study of  actors The system consists of a set of sensors and 

a workstation. The actors acting on this system are: 

• The speleologists: he put the sensors in the cave. 

He checks periodically that the sensors transmit 

their measures or if they need to be replaced. 

• The analyst: he analyzes the collected data. 

When he put a sensor in the cave, the speleologist must 

know how many other sensors are in its range. When he 

finished this operation (and when he wants to verify that the 

system works i.e. that the data necessary to the analyst are 

collected by sensors) he may launch a test. The analyst can 

view the data which arrives in the workstation, store them or 

destroy them.  

 

Use case analysis We can identify the different use cases:  

• The use case configuration that allows the creation 

of the network and the addition of sensors.  

• The use case measure that allows to collect all the 

measures on the workstation. During this use case, 

the user can: 

o manage the data (analyst), 

o check the topology i.e. sensors that are 

still in working condition and participate 

in the collecting data task (speleologist). 

The next figure (Fig. 6.) illustrates these cases of use and 

their organization. 

 

 

Fig. 6. EnvSys use case diagram 

 

Service requirement analysis We give here an abstract of 

the different sequence diagrams.  The following diagram 

(figure 7) introduces the services by the actors "speleologist" 

and "analyst" when the system is used to instrumente the 

underground river system. 

 

Fig. 7. An example of  sequence diagram 
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Particular mode analysis. In normal measurement mode, 

the data arrive at the workstation. If fi is the sending 

frequency used by sensor i to transmit its measures, then if 

during the period Tmini = 1/f_i + tdelivery there is no reveived 

message from i, we have been rejected for the normal mode. 

It may be necessary to add sensors. The analyst must 

determine whether the missing data can distort the analysis 

of results. 

A mode of preparation has been identified. It is linked to the 

use case “configuration”. In this use case, the speleologist 

must to know the neighbourhood of the deployed sensor. 

6.2 Society phase 

 

Situation phase  The environment is the underground river 

system. The environment consists in the information 

measurable by the sensors: in our case we will consider, as a 

first step, only the temperature.  

Sensors are located but may not acquire their geographical 

position. The environment, as the majority of physical 

environments, is deterministic, not episodic, dynamic and 

continuous. 

The components of our system are:  

• The workstation: this station receives measures 

from the sensors. It allows the user to manage data 

or discover the network topology. 

⇒ This entity is not autonomous. The 

workstation will not become an agent.  

• The sensors: As seen above, the sensor must 

interact with the environment to extract data. It 

must then send these data to a workstation. They 

have a limited amount of energy. This amount of 

energy should enable the measurements process 

and message delivery tasks. Sensors must 

cooperate because they involve a multihop 

communication. There are numerous paths to 

enable a communication. A sensor must decide 

himself whether he can still help other sensors to 

communicate 

⇒ They are active entities. They are autonomous 

and involve the cooperation. 

⇒ They become agents. 

To address the communication problem, we will use the 

MWAC model specially designed for this type of problem 

[9]. 

 

Individual phase Tree of capabilities. The agent must 

perform measure primitive tasks and send these measures to 

the workstation. An agent is unable to send its measure to 

the collection station at this part of the analysis. 

Building representation of itself and of the environment. An 

agent has an identifier and knows its energy level. However, 

the agent does not require to have a representation of its 

environment. Indeed, relevant information would be its 

geographical position, but it can not acquire it.  

The required data on the environment which will be 

acquired, lead to define the agent sensors. In our case we 

consider only the temperature. 

  

 

Fig. 8. Tree of capabilities and building representation of itself and the 

environment (individual phase) 

 

Context diagram. When a speleologist places a sensor, he 

must know how many other sensors are in its range: it is 

necessary to have a screen. He requires a sensor to carry out 

the temperature. 

Establish the behaviour of agents. The behaviour of the 

agent is actually very simple. It will periodically call upon 

its sensors to establish measures. He requires to send the 

measure to the workstation. 

 

Social phase Defining the knowledge about others. We 

require the help of others agents to deliver messages to the 

workstation. It is impossible to know its geographical 

position. We will use the MWAC model to enable a reliable 

communication between the agents. The knowledge of 

others is taken into account with this model. Thus knowing 

another sensor is to know  his triplet <id,role,group>. 

Role is REPRESENTANT or SIMPLE MEMBER or 

CONNECTION. A group is identified by the representant 

identifier. 

This analysis is in fact the result of several iterations. In a 

first time the organization is not defined: a neighbour is 

identified only by its id. Once the model MWAC chosen and 

therefore the organization defined, an agent will be 

identified by the triplet <id  ,role, group>. 

During the next iteration of this process, we will introduce 

additional data on others (list of neighbours, adjacent list of 

groups and list of route fragments) and the addition of data 

on itself (the role). A tree consolidated with the results of all 

these iterations can be found on figure 7. 

Defining the communication primitives. The communication 

primitive are the one proposed by the MWAC model 

(sending function, receiving messages). 

Defining collaborative actions/perceptions. No more 

collaborative actions/perceptions are required than defined 

in the MWAC model. 

Organizational aspect. An organization is inherited from the 

MWAC model. 

When the system is being instrumented, there is no special 

requirement in organizations and in interactions. 

However, in a configuration phase, it is necessary to define 

a protocol for the communication between an agent and its 

neighbours. Indeed, this mode requires that an agent knows 

how many other agents sensors are reachable. We define a 

communication protocol (Fig. 9).  
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Fig. 9. A simplified communication protocol 

 

 At this stage it is therefore necessary to start a new iteration 

of the previous process: 

• Adding to the agent of a button because the 

speleologist needs to define the mode (positioning 

mode or not). The complete context diagram is 

shown on figure 10. 

• Adding to the agent the data  to memorize the mode 

or not (the complete  data/capabilities tree  is 

visible in figure 11). A privitive/action scheme is 

shown on figure 12. 

 

Integration phase  

Identifing social influence. In a positioning mode, agents 

must refuse to join a group. Indeed, it follows many re-

organizations. These re-organizations lead to unnecessary 

energy losses. 

Defining the social behaviour of the agent. During the 

positioning mode, we require to degrade  the interaction  

protocols inherited from the MWAC model. We just have to 

correct this problem, to modify the decision module of the 

agent he chooses for any role. It aborts the smooth running 

of the MWAC inherited protocol. 

 

 

Fig. 10. Context diagram of an agent 

 

Fig. 11. Consolidate tree of capabilities and building representation of 

self and the environment (iteration between the individual phase and 

the social phase) 

 

Fig. 12. Primitives and actions scheme 

 

7. CONCLUSION 

 

We have proposed in this paper a method to approach 

domains where collaborative entities are connected to 

physical devices they have to control or to supervise like in 

wireless instrumentation systems. We examined how a 

traditional multiagent design cycle must be enriched in this 

context. 

Our method has been validated on several real world 

projects as for underground river instrumentation, an 

application of collective robotics to paletization in a 

manufacturing process or to build the software infrastructure 

for UWB sensor localization. 

Our future work concerns the MASC tools (MultiAgent 

System Codesign) associated with the DIAMOND method. 

The agent design with components and the code generation 

in Java and C languages are operational. The VDHL 

specification generation is partially developed.  

Model wireless instrumentation systems are a recent field. 

Very few works address the problem of the analysis of self-

organized instrumentation systems. This work proposes 

some innovative contributions in term of hybrid 

software/hardware multiagent lifecycle.  
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