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Abstract: Laboratory measurements are an integral part of 

process and quality management. Quite commonly, 

variables measured are statistically dependent and thus 

measurement of one variable is an indirect measurement of 

the others. Also, measurements are uncertain and thus there 

always is uncertainty about the quality. In this paper we 

formulate the optimal measurement scheduling problem of 

laboratory measurements. In particular, the objective is to 

minimize a weighted sum of measurement costs and 

uncertainty about whether the product confirms with given 

quality constraints or not. This problem is considered in the 

case when the joint probability density of variables is 

Gaussian, and when uncertainty evolves according to 

Ornstein-Uhlenbeck process.  
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1. INTRODUCTION 

 

In industrial processes, such as in papermaking, the product 

quality is measured from end product samples in laboratory. 

This information is typically used for three purposes: firstly 

to validate on-line sensors, secondly to manage quality 

parameters not measurable on line –for example strength of 

paper – and thirdly to decide whether to accept or reject the 

product batch. Each of the purposes set requirements on 

how much uncertainty may be tolerated in the quality 

estimate. It is a common practice to measure all quality 

parameters at regular time intervals [1, 2]. However, this is 

costly and may limit possibilities to measure those quality 

parameters that would be most important for overall 

uncertainty management and thus for decision support. 

Earlier work has considered minimizing information 

measures derived from a covariance matrix [3-5]. We have 

studied the optimal measurement scheduling such that the 

measurement cost is minimized under constraints on quality 

uncertainty, i.e on diagonal elements of the covariance 

matrix [6].  

 

Every quality parameter has its acceptance limits (“quality 

pipe”) set by the product specification. Quality parameters 

are typically statistically dependent and thus measuring a 

subset of them provides information about the others. A 

measurement schedule describes which of the quality 

parameters are measured at which time instants. We seek for 

the optimal measurement schedule over a time horizon such 

that it minimizes the costs of measurement while 

minimizing the uncertainty about whether the product 

quality confirms with acceptance limits or not. This means 

that when we are close to an acceptance limit, the quality 

information must be more accurate than far from the limits. 

 

Our quality information dynamics consists of continuous 

degradation towards the joint a priori probability density of 

quality, and occasional updates when new measurements are 

made. We describe the degradation with probability density 

function dynamics, Fokker-Planck equation [7], and the 

updating with probabilistic description of measurement and 

by applying Bayesian combination of earlier degraded 

information and of fresh measurement information. With 

this information dynamics we are able to assess the quality 

uncertainty at any time with any measurement schedule. 

 

This paper is organized as follows: Section 2 illustrates the 

measurement strategy. Section 3 introduces measurement 

scheduling problem at general form and with only one 

quality parameter. Section 4 illustrates the idea by studying 

the effects of model parameters on quality pipe problem of 

one variable. The general scheduling optimization is further 

discussed at section 5. And section 6 presents some 

conclusions.  

 

2. MEASUREMENT STRATEGY 

 

The process industries make use of hundreds of on-line and 

laboratory measurements to monitor and control the process 

[2]. Information systems are designed with the aim of 

supporting the daily decision making about the process and 

product quality by operators and engineers so that the best 

practice of operation can be achieved continuously. 

Measurements, soft sensors and process simulators form the 

basis for such decision support by reducing the uncertainty 

about the present state of the process and about its future 

evolution. 

 

In process industries, such as papermaking, the quality 

management is commonly based on three level hierarchical 

measurement structures: accurate but costly and infrequent 

laboratory measurements, automated quality analyzers 

sampling more frequently and mimicking laboratory 
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analyses, and indirect but frequent on-line measurements for 

automatic control. In paper mills, measuring frequency of 

analyzers is usually once per machine reel, or 1-3 times an 

hour, whereas laboratory analyses are made at most 3 times 

a day. These frequencies are to be compared with that paper 

web is produced continuously at web speed of up to 30 m/s, 

or 50 tons/h. The decisions supported with all measurement 

information are process and quality management, special 

actions, such as grade changes, recovery from process 

upsets and decisions about rejecting product batches, and 

configuration of the measurement information system itself.  

 

Industrial operational decision support systems are based on 

measurement data and on pre-existing process knowledge. 

However, the uncertainty in the measurements and pre-

existing knowledge is not provided by process information 

system, and thus, uncertainty is rather unfamiliar concept to 

process operators. This leads to one interesting point of the 

measurement strategy – decision making is based on the 

uncertain measurements but decision makers are not so 

familiar with the concept of uncertainty. Therefore the 

decision making should be supported with systems such that 

the uncertainties are described explicitly and consistently, 

allowing systematic combination of information from 

several sources. This information derived from the process 

is used in many ways, but it is poorly known, how and if the 

operators exploit all the information available. Therefore 

there has not been systematic work on optimizing the 

measurement activities. This may lead to situation where 

some measurements are carried out without purpose, only by 

habit, and the common practice continues to be to measure 

all quality parameters at regular time intervals. Obviously 

this is costly and rigid and may limit possibilities to measure 

those quality parameters that would be most important for 

overall quality management and thus for decision support.  

 

However, if end user information requirements, and 

constraints on uncertainty of the measurements are made 

explicit, the optimal arrangement of the measurements and 

decision support system can be determined. Operational 

decision support systems (ODSS) should reflect the 

structure of the statistical decision theory [9-11]. Such an 

ODSS must have description of the state space, the 

consequence space, decision space, that is, the action 

alternatives, the pre-existing knowledge, the measurements, 

the prediction models, the utility function (or the parameters 

of the heuristic criteria), and the stochastic constraints. With 

such architecture the ODSS aids an expert or a group of 

experts in finding decision tasks and helps in experimenting 

with the decision parameters. [12] 

 

As shown at the figure 1 the end user requirements affect the 

decision making tasks and thus information needed and the 

measurements. This leads to our definition about 

measurement strategy that is optimizing of which and when 

measurements should be done to get information worth the 

costs of obtaining it.  

 

 
Figure 1. From measurements to data, information and decisions. Red 

color shows where end user requirements affect and should be taken 

into consideration. 

 

There are basically three main opportunities to exploit 

optimization of measurement strategy. Firstly, we optimize 

the measurements and control actions dynamically for 

optimal system performance, but this typically leads to 

complex calculations. The exception is linear-quadratic 

control in which the control action and measurement 

selection problems are separable and lead to a measurement 

policy optimization [8].  

 

Secondly, we may want to constrain the uncertainty of the 

state information and find the cost-optimal way of satisfying 

the constraints, see [6], and, thirdly, we may want 

measurements maximally informative about whether the 

quality is within specifications or not. This paper 

concentrates on the last one.  
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2. OPTIMIZATION OF MEASUREMENT 

SCHEDULING 

 

This chapter discusses the problem of optimization of 

measurement scheduling with one quality parameter with 

constrain of quality pipe. The scheduling problem was first 

phrased and solved in a linear-quadratic system already by 

Meier et al [8] in 1967.  

 

It is common industrial practice that every quality variable 

has its own quality specifications, acceptance limits. Ideally 

these take into account the measurement uncertainty also, 

but here we consider, how certain we may be whether the 

actual product quality – rather than its measured value – 

conforms with quality specification or not. In this paper we 

want to search surrounds of the question is it possible to 

schedule measurements under the quality pipe constraint, 

figure 2 shows an example about this. At figure black X 

shows the potential times for sampling and red circles 

examples one possibility for measurement scheduling.  
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Figure 2. Measurement scheduling with quality pipe constraint. Black 

X shows the potential times for sampling and red circles one possibility 

for measurement scheduling.  

 

Let us assume a scalar variable x that at time 0 is normally 

distributed: 
 

),;()( 2

000 σµxNxf =
          (1) 

 

In general we are interested in if the quality variables j=1...J 

are within their quality pipes which we choose to be 

symmetric around zero without loss of generality [-xc
(j)

, xc
(j)

]. 

Then at any time instant i the probability of variable j being 

within quality pipe is  
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where the distribution is marginalized to variable j from 

joint distribution.  

 

As the system state is known only through uncertain 

measurements, only probability p can be given. The measure 

of uncertainty in knowing whether a quality parameter j is in 

quality pipe or not is the entropy: 

 
( ) ( ) ( ) ( ) ( )

log (1 ) log(1 )
j j j j j

i i i i i
S p p p p= − − − −                            (3) 

 

Where pi is probability of variable being within quality pipe.  

 

Figure 3 shows values for entropy (Si) with different pi 

values.  
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Figure 3. Entropy values 

 

And with (for normal distribution of quality information)  
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We have an option to make a measurement about x at any 

time instant i. The measurement vector y is uncertain 

representation of x and described with a normal distribution: 
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f y x N y x= Σ          (5) 

 

We are interested in the case in which the information about 

state degrades according to Ornstein-Uhlenbeck (OU) 

process with linear deterministic dynamics described by 

matrix B and stochastic part by diffusion matrix D. This 

means that if no measurements are made, the information 

degrades towards normal distribution with mean xap and 

covariance matrix DB
-1

/2. After a time step of ∆t and no 

measurement made, the normally distributed information 

about quality x remains normally distributed, and the 

distribution parameters are recursively calculated as: 
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A special case of OU process is random walk, 

corresponding to limit B tends to zero. In this paper we limit 

ourselves to one variable. Then the state information without 

measurement develops as: 
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and if measurement are made and result yi, is obtained then 

the information is  
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Our goal is to minimize information cost, that is, that of 

making a measurement to improve information and the one 

related to operating at with poor information 
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with convention of m=0 meaning no measurement, h is the 

cost of measurement with h(0) being 0, and m=1 making the 

measurement at cost h(1)=h. g is a monotonously increasing 

function, such as g(x)=x, or g(x)=exp(x). Expectation is be 

calculated with respect to information at time t=0. 

 

Now, let us consider the one-step ahead problem with 

g(x)=x.  
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where b is a factor scaling entropy cost to be comparable 

with measurement cost, ( )no

N
S  meaning entropy at time N 

when no measurement is done and ( )yes

NS  is corresponding 

entropy when measurement is done at time N and 

expectation is taken with respect to future measurements.  

 

We want to make next measurement when achieved 

information is more than the cost of the measurement. 

Figure 4 show how the two entropy terms depend on N.  
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Figure 4. Entropy with no measurement and measurement at ti with 

values x0 = 0, σσσσ0 = 0.04, D = 0.03, xc = , xap = 0, σσσσap =1.5 and σσσσmeas = 0.04. 

 

When calculating the entropy, initial estimate (x0) and 

variance (σ0), expected (a priori) estimate (xap) and variance 

(σap) with measurement uncertainty (σmeas) is used and p is 

calculated with cumulative distribution function. 

Uncertainty between the measurements evolves according to 

Ornstein-Uhlenbeck process.  

 

4. PARAMETER EFFECTS IN MEASUREMENT 

SCHEDULING 

 

This section studies the effects of initial information and 

model parameters on quality pipe problem of one variable.  

 

Deriving from Eq. (10) we want to minimize the following: 
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Where h is cost of making the measurement, tmeas is time for 

measurement, b is a factor scaling entropy cost to be 

comparable with measurement cost, N is time index and sum 

is difference of entropies. Quality pipe is centered at 0.  

 

Figure 5 shows how parameter D values (0.01, 0.03, 0.1 and 

0.3) affect tmeas (60, 20, 6, 2 corresponding). Parameter D is 

the symmetric diffusion matrix for the OU process.  
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Figure 5 Effect of Parameter D to tmeas 

 

Figure 6 shows affect of initial estimate x0 to tmeas. Values 

for x0 is 1, 0.8, 0.6, 0.4, 0.2, 0 and respectively for tmeas 1, 1, 

12, 30, 53 and 60. When initial estimate is near the edge of 

the quality pipe then entropy is high and next measurement 

should be done quite soon. 
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Figure 6 Effect of initial estimate (x0) to tmeas 

 

It is quite simple to calculate the next tmeas when 

measurement at t0 is made and at given probability we can 

tell if measurement is inside the quality pipe or not. On the 

other hand after the measurement at tmeas everything depends 

on the measurement value, so instead of one value we have 

to consider all the possible values and this leads quite 

complex calculations. If the process is known very well the 

distribution may be used but this also leads to complex 

simulations.  

 

Specifications for quality is usually presented one variable 

at the time so entropy (S) and 
( )j

i
p can be handled also by 

one quality variable at the time although there might be 

correlation between the quality variables.  

 

 

5. DISCUSSION 

 

This discussion chapter presents some ideas how to solve 

this measurement scheduling problem. This problem will 

easily explode, because of the possible variations at 

measurement results. Different solution possibilities for this 

problem will be searched amongst Markov chains, partially 

observable Markov decision process (POMDP) and with 

dynamic programming. These provide some tools against 

the curse of dimensionality. 

 

Markov chain is a stochastic process with the Markov 

property meaning that, given the present state, future states 

are independent of the past states. Future states will be 

reached through a probabilistic process instead of a 

deterministic one. At each instant the system may change its 

state from the current state to another state, or remain in the 

same state, according to a certain probability distribution. 

[13] 

 

Partially Observable Markov Decision Process (POMDP) is 

a generalization of a Markov Decision Process. A POMDP 

models an agent decision process in which it is assumed that 

the system dynamics are determined by an MDP, but the 

agent cannot directly observe the underlying state. Instead, it 

must infer a distribution over the state based on a model of 

the world and some local observations. The POMDP 

framework is general enough to model a variety of real-

world sequential decision processes. Applications include 

planning under uncertainty in general. An exact solution to a 

POMDP yields the so-called optimal action for each 

possible belief over the world states. The optimal action 

maximizes (or minimizes) the expected reward (or cost) of 

the agent over a possibly infinite horizon. The sequence of 

optimal actions is known as the optimal policy of the agent 

for interacting with its environment. [14,15] 

 

Dynamic programming is a method of solving problems 

exhibiting the properties of overlapping sub problems and 

optimal substructure that takes much less time than naive 

methods. [16] 

 

Advantages of measurement optimization and scheduling 

include the process of acquiring the values for uncertainties 

and quality pipes of different variables. Although this may 

be time consuming it is rewarding itself because the 

knowledge about the process grows. 

 

6. CONCLUSIONS 

 

In this paper we have discussed the optimal measurement 

strategy optimization problem of laboratory measurements 

under the constraint that variables has quality pipe. This 

problem is considered in the case when the joint probability 

density of variables is Gaussian, and when uncertainty 

evolves according to Ornstein-Uhlenbeck process. This 

paper has concentrated mainly presenting the scheduling 

problem.  

 

223



Formulation of the problem is presented at general form and 

with the case of one quality variable. The effects of model 

parameters on quality pipe problem of one variable have 

been considered. Some ideas for solution is thought over.  

 

This paper is mainly research plan trying to formulate a 

problem and finding some possible solutions for it. We hope 

that in the future we have solution for this measurement 

scheduling (with quality pipe constraint) problem and this 

paper serves as our guide.  
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