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Abstract: This  paper  compares  two alternative averaging 
methods commonly adopted to estimate measurand values, 
in  agreement  with  the  guidelines  of  the  Guide  to  the 
Expression  of  Uncertainty  in  Measurement (GUM). 
According to the proposed analysis, validated in a simple 
case  study,  the  choice  of  best  estimation  method  should 
depend  not  only  on  the  amount  of  nonlinearity  of  the 
measurement model, but also on the amount of definitional 
and acquisition uncertainty of the input measurands.
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1. INTRODUCTION

The  Guide  to  the  Expression  of  Uncertainty  in  
Measurement (GUM) [1] introduces a seldom emphasized 
constraint  on  the  measurand.  In  fact,  the  par.  1.2  of  the 
GUM states that “this Guide is primarily concerned with the 
expression  of  uncertainty  in  the  measurement  of  a  well-
defined  physical  quantity  –  the  measurand  –  that  can  be 
characterized  by  an  essentially  unique  value.”  This  is 
plausibly  the  main  reason  why  measurement  results  are 
formally expressed by two terms, namely:
- a single value representing the measurand;
- the corresponding standard uncertainty, estimated as the 

standard  deviation  of  the  average  of  the  sampling 
probability distribution of the quantity to be measured. 

From this formalization, the GUM also derives the concept 
of  expanded  uncertainty  and  the  related  interval-based 
notation.

The attention of most researchers studying fundamental 
measurement  principles  has  been  recently  focused  on 
standard  uncertainty  estimation  techniques,  under  the 
implicit  assumption  that  the  characterization  of  the 
measurand  estimator  does  not  require  any  further 
discussion.  On the contrary, we claim that the analysis of 
best estimator for the measurand value arises fundamental 
philosophical and operative issues. In particular, this paper 
deals with the conceptual and formal relations between the 
(non-)uniqueness  of  the  measurand  value  and  the 
(non-)linearity  of  the  so-called  measurement  model 
function, and shows that sometimes the assumption of the 
GUM about the uniqueness of the measurand value is not 
appropriate.

2. MODELS IN MEASUREMENT:
ON THE UNIQUENESS OF MEASURAND VALUE

An  important  contribution  of  the  GUM  is  its 
reconsideration of the classical distinction between “direct” 
and  “derived”  (or  “indirect”)  measurements.  Given  that 
several  components,  from  both  Type  A  and  Type  B 
evaluations,  generally  contribute  to  the  measurand 
uncertainty,  any measurement  in  which  such  components 
must be combined is indeed an indirect operation. While we 
fully  agree  with  this  standpoint,  denoting  the  (analytical) 
expression f(.) that relates the “input measurand(s)” X to the 
“output measurand”  Y as  the (mathematical) measurement 
model is somehow questionable.

In  fact,  two  models  should  be  considered  in  the 
interpretation  of  measurement  process  and  measurement 
results:
- the  measurand  model,  based  on  some  “background 

knowledge”  about  the  measurand itself  (e.g.,  obtained 
from Physics);

- the  measurement  model,  describing  the  measurement 
process  as  constituted  of  both  an  acquisition  stage, 
aimed at obtaining a value for the input measurands, and 
a  processing  stage,  returning  a  value  for  the  output 
measurand.

The  acknowledgment  that  these  models  unavoidably 
provide  only approximate interpretations of the measurands 
and the measurement process respectively (a  model-based 
version of the classical unknowability of “true values”) is 
conceptualized and formalized in terms of uncertainties. In 
fact, the intrinsic uncertainty (or definitional uncertainty, as 
now it is called in [2]) for each input measurand is part of 
the  measurand  model,  whereas  the  corresponding 
acquisition  uncertainty derives  from  the  measurement 
model.  Notice  that  even though this  second model  might 
also  include  some  uncertainty  contributions  due  to  the 
processing  stage,  we  will  not  consider  this  issue  in  the 
following  (as  also  the  GUM  does),  because  it  is  not 
significant  for  our  purposes. Consider  also  that  the 
definitional  uncertainty results “from the finite amount of 
detail in the definition of a measurand” [2], as possibly due 
to  some  additional  contribution  superimposed  to  the 
quantity to be measured, and is not to be confused with the 
possible time-varying behavior of the measurand itself.

A  synthesis  of  this  interpretation  about  the  models 
mentioned above and their relationships  with  the possible 
uncertainties is shown in Figure 1.
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Fig.1 – Models involved in measurement
and their relation to uncertainties.

In  fact,  the  assumption  related  to  the  “essentially  unique 
value” of the measurand stated in the paragraphs 1.2 and 
3.1.3 of the GUM [1],  as well as the discussion about its 
possible coincidence with the “true value”, is clearly related 
only to the measurand model, and therefore affects only the 
definitional uncertainty. This interpretation is confirmed by 
the  new edition of  the  VIM [2],  that  in  the  definition of 
“true quantity value” (2.11, Note 3) points out that “when 
the definitional uncertainty associated with the measurand is 
considered  to  be  negligible  compared  to  the  other 
components of the measurement uncertainty, the measurand 
may  be  considered  to  have  an  ‘essentially  unique’ true 
quantity value. This is the approach taken by the GUM and 
associated documents, where the word ‘true’ is considered 
to be redundant.”.

Furthermore,  such  a  uniqueness  requirement  does  not 
imply that the measurand has to be characterized by a single 
real number (sometimes referred to also as singleton). As a 
cogent counterexample, if the range of the “model function” 
f(.)  is  the  power  set  of  the  real  set  R,  any  measurement 
result is basically a unique interval of infinite real numbers. 
Hence, “unique value” does not formally mean a single real 
value:  the  condition  that  the  measurand  value  is  a  real 
number does not follow from the assumption of the GUM, 
although it  is  very  plausible  that  such  a  condition  is  the 
actual requirement meant by the GUM. There are, of course, 
at  least  two good reasons justifying this condition [3,  4], 
i.e.:
- one  based  on  ontology:  the  Pythagorean-Platonic-

Galileian-Laplacian-... viewpoint assumes that “numbers 
are in the world”, and that those numbers are rationals 
(and reals, since the XIX century);

- one  based  on  pragmatics:  the  equations  formalizing 
physical  laws  are  formulated  to  be  naturally  and 
efficiently applied to real numbers.

How should the condition of uniqueness be interpreted in 
the realistic situation in which the definitional uncertainty is 
not null?

Whereas  the  GUM suggests  assuming the  definitional 
uncertainty as a component of the uncertainty budget (e.g., 
by  simply  listing  the  “incomplete  definition  of  the 
measurand” among the “possible sources of uncertainty in a 
measurement”,  as  stated  in  the  par.  3.3.2),  we  claim,  in 
accordance with what is stated in [5], that the  comparison 
between  definitional  uncertainty  and  measurement 
uncertainty  (in  the  following  interpreted  as  acquisition 
uncertainty) operates as a discrimination factor:
- if the definitional uncertainty is negligible with respect 

to the acquisition uncertainty, the measurand itself can 

be  regarded  as  a  real-valued  continuous  variable.  We 
will refer to this case as Case A;

- if,  on  the  other  hand,  the  definitional  uncertainty  is 
larger  than  the  acquisition  uncertainty,  then  the 
uniqueness  condition  becomes  critical,  particularly 
when the model function f(.) is not linear. We will refer 
to this case as Case B.

It  should be  noted that,  as  a  consequence  of  this  model-
dependent interpretation, the choice of assuming a unique 
value (actually: a real value, as commented above) is only 
pragmatic, with nothing “essential” in it, as instead claimed 
by the GUM.

By means of a simple example, in the following we will 
analyze these two cases separately, and will propose some 
suggestions  about  how  to  manage  the  effects  of  both 
negligible and large definitional uncertainties.

3. DEFINITIONAL AND ACQUISITION UNCERTAINTY 
IN MEASURAND ESTIMATION: A CASE STUDY

A data  acquisition  board  is  used  to  collect  multiple 
instantaneous  samples  of  a  voltage  signal  applied  to  a 
reference resistor having a nominal resistance of 1  Ω with 
negligible  definitional  uncertainty.  If   the  quantity  to  be 
measured is the power  p dissipated by the resistor and the 
nominal applied voltage v is constant over time, two distinct 
situations may occur:
- if  the  applied  voltage  has  negligible  definitional 

uncertainty  with respect to the acquisition uncertainty 
(Case A), the result of the data acquisition stage can be 
described by the random variable VA=v+Nacq, where Nacq 

is the random variable modeling the uncertainty of the 
measurement process;

- if the applied voltage results from the superposition of a 
constant  value  v  and  some  significant  definitional 
uncertainty  Ndef (e.g.,  due  to  a  50  Hz  sine  wave 
interference) (Case B), the result of the data acquisition 
stage  can  be  described  by  the  random  variable 
VB=v+Ndef+Nacq.  Note  that  the  definitional  uncertainty 
described in this example has nothing to do with the fact 
that  the  underlying  phenomenon  is  possibly  time-
variant;  in  fact,  no  transient  effects  are  taken  into 
account here, and the system is assumed to be observed 
in stationary conditions.

In  the  following,  both  Nacq and  Ndef are  assumed  to  be 
uncorrelated  white  noises,  with  zero  mean  and  variance 
σ acq
2  and σ def

2 , respectively. 
A major difference exists between  Case A and  Case B. 

In  the  first  one,  since  the  measurement  uncertainty  is 
negligible the measurand value p results from:

p=E [v2]=v2 (1)

where E[∙] is the operator returning the expected value of 
the  argument.  On  the  contrary,  in  the  second  case  the 
measurand value is given by:

p=E [vN def 
2]=v2σ def

2 (2)

Such a difference between Cases A and B may have serious 
consequences when the two averaging methods suggested in 
the GUM to reduce the measurement uncertainty are applied 
to  measurement  results.  Assume,  for  instance,  that  K 
samples  V X k

,  k=1,…,K,  of  the  quantity  VX (where  the 
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subscript  X is either  A or  B depending on the specific case 
considered)  are  collected  by  the  data  acquisition  system. 
According  to  [6],  the  measurand  value  can  be  estimated 
using one of the two following alternative methods, i.e.:
- Method  1:  by  averaging  the  acquired  samples  before 

applying the square function:

P X ,1=
1
K
∑
k=1

K

V X k

2

(3)

- Method 2: by averaging the instantaneous power values:

P X ,2=
1
K
∑
k=1

K

V X k

2 (4)

According to the adopted notation, P A ,1 , P A ,2 , P B ,1 , and 
P B ,2  are the  random  variables  modeling  the  measurand 

estimators  obtained  in  Cases  A  or  B  and  by  applying 
Methods  1  or  2,  respectively.  The  following  table 
summarizes the meaning of the Cases and of the Methods 
considered.

Table 1 – Cases and Methods involved in the case study.

Case
A negligible definitional uncertainty

B considerable definitional uncertainty

Method

1 samples  are  averaged  and  then  f(.)  is 
applied to the result

2 f(.) is applied to each collected sample and 
then the results are averaged

In the  Appendix A it  is  shown that  if  the  K collected 
samples are statistically independent, the mean values and 
the variance of the estimators P A,1 , P A,2 , PB ,1 , and PB ,2  
are given respectively by:

E [ P A ,1]=v
2

acq
2

K
(5)

E [ P A ,2]=v
2
 acq

2 (6)

E [ P B ,1]=v
2

def
2
 acq

2

K
(7)

E [ V B ,2]=v
2
def

2
 acq

2 (8)

and

var [ P A ,1]=4 v
2 acq

2

K

acq

K3

2K−3

K 3 acq
4 (9)

var [ P A ,2]=4 v
2 acq

2

K

acq− acq

4

K
(10)

var [ P B ,1]=4 v
2 def

2
 acq

2

K

defacq6 acq

2
 def
2

K3



2K−3

K3
 def

4
acq

4
2 def

2
 acq
2
 (11)

var [ P B ,2]=4 v
2  def

2
acq

2


K



def− def

4
acq− acq

4
4acq

2
 def
2

K
(12)

where  var [.]  is the variance operator and  def  and  acq  
are  the  4th-order  moments  of  the  definitional  and 
acquisition  noise  components,  respectively.  Moreover,  if 
v2≫σ acq

2  and  v2≫σ def
2 ,  as it  usually occurs in practice, 

equations (9), (10), (11), and (12) can be approximated as:

var [ P A ,1 ]≃var [ PA ,2]≃4v
2  acq

2

K
(13)

and:

var [ P B ,1 ]≃var [ PB ,2]≃4 v
2  acq

2
def

2

K
(14)

4. GENERAL CONSIDERATIONS

In general, if f(∙) weakly nonlinear, the variance of both 
estimators  (3)  and  (4)  is  approximately  the  same. 
Nevertheless,  such estimators  are not  always unbiased.  In 
fact, by comparing the equations (5)-(8), it can be clearly 
observed that in  Case A the result of  Method 1  converges 
asymptotically to the quantity to be measured (i.e., p=v2) as 
K→∞,  whereas  in  this  case  the  estimate  obtained  using 
Method 2  is  biased by  the  noise  power  associated to  the 
acquisition process (a similar conclusion is also reached in 
[6]). On the contrary, in Case B both estimators are biased. 
However,  while  the  asymptotic  bias  −σ def

2  introduced by 
Method 1  cannot be controlled or reduced by the user, the 
acquisition noise power biasing the result of Method 2 can 
be made negligible by using a data acquisition system such 
that σ acq≪σ def .

In conclusion:
- Method 1  is asymptotically unbiased if  the definitional 

uncertainty is negligible with respect to the acquisition 
uncertainty;

- Method 2 is instead preferable whenever the uncertainty 
affecting  the  measurement  process  can  be  made 
negligible compared to definitional uncertainty.

The  distinction  between  Methods  1  and  2  is  implicitly 
acknowledged by the GUM itself. In fact, in the note to par. 
4.1.4, the GUM states that, while the estimate of the output 
quantity y should result from:

Y 1= f 
1
K
∑
k=1

K

X k (15)

in some cases the estimate of y may be preferably obtained 
from:

Y 2=
1
K
∑
k=1

K

f X k  (16)

Of  course,  the  GUM  is  correct  in  stating  that  “the  two 
approaches [i.e., Methods 1 and 2] are identical if  f(∙) is a 
linear function of the Xk”. The estimation of the measurand 
value  performed  according  to  (15)  (i.e.  Method  1) is 
generally  computationally  more  efficient  than  the  one 
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resulting from (16) (i.e.,  Method 2). In fact, in the former 
case the function  f(∙)  is  applied just  once,  whereas in the 
latter  it  must  be  computed  K times.  This  justifies  the 
operative preference given to Method 1, whenever linearity 
can be assumed.

On the other hand, in reference  to Method 2  the GUM 
states that “this way of averaging may be preferable when 
f(∙) is a nonlinear function of the input quantities  X1,...,XN” 
([1],  4.1.1,  Note  1),  while  not  making  the  conditions  of 
choice between the two averaging ways explicit.

5. SIMULATION RESULTS AND DATA ANALYSIS

The previous theoretical results have been validated by 
means of some Monte Carlo simulations, by applying both 
Methods  1  and  2  to  Cases  A and  B.  The  details  of  the 
algorithm used to run such simulations are shortly reported 
in the Appendix B. In all simulations,  a  voltage signal of 
nominal  value  5  V with  a  superposed  white,  zero  mean, 
Gaussian acquisition noise has been applied to a reference 
resistor with a nominal resistance of 1 Ω. Each scenario has 
been simulated by performing 2000 runs for each number of 
samples K, ranging from 10 to 1000 with a step of 20. For 
each value of K, P X ,1 , P X ,2  have been estimated and their 
means and variances  have been computed.  Such statistics 
have been also compared with the values given by equations 
(5)-(8) and (13), (14),  in order to check the correctness of 
the theoretical analysis.

The mean and variance values obtained in  Case A (i.e., 
when  the  definitional  uncertainty  is  negligible)  and with 
σ acq =0.5 V are shown in Figures 2 and 3, respectively.

Fig.2 – Mean values of the estimates involved in Case A.

Fig.3 – Variances of the estimates involved in Case A (log scale).

The line resulting from (5) and the corresponding Monte 
Carlo simulation pattern based on  Method 1  are shown in 
the lower part of Figure 2. Notice that both curves converge 
to the nominal value given by (1)  (horizontal dotted line) 
when the number of samples  K ∞ . On the contrary, the 
results of the Monte Carlo simulations performed according 
to Method 2 and the theoretical values obtained from (6) are 
shown in the upper part  of the same figure.  Observe that 
such results are biased by a factor σ acq

2 , as expected.
The  chart  in  Figure  3  shows  the  line  obtained  from 

equation (13), together with the results of the Monte Carlo 
simulation  performed  according  to  Methods  1  and  2, 
displayed as dots. Notice that the dotted lines related to the 
simulation  results  are  almost  indistinguishable  from  the 
theoretical  curve,  thus  confirming  the  assumptions 
underlying (13).

Figures 4 and 5 are similar to the previous ones and they 
show the  mean  values  and  variances  with  respect  to  the 
corresponding theoretical  values  in Case  B,  by  assuming 
that  σ acq =0.1  V  and  σ def =0.5  V,  i.e.,  larger  than  the 
acquisition uncertainty.

The  line  resulting  from  (7)  and  the  corresponding 
simulation  pattern  based  on Method  1  are  shown  in  the 
lower part of Figure 4, whereas the line resulting from (8) 
and the simulation pattern based on  Method 2  are  in the 
upper  part  of  the  same  figure.  In  this  case  the  actual 
measurand  value  is  defined  by  equation  (2)  and  is 
represented as  an  horizontal  dotted  line.  Thus,  Method 1 
introduces  a  −σ def

2   bias  for  K∞ ,  while  the  result  of 

Method 2  is affected by a constant  σ acq
2  bias that can be 

possibly  minimized  by  suitably  reducing  the  acquisition 
uncertainty.

Fig.4 – Mean values of the estimates involved in Case B.

Fig.5 – Variances of the estimates involved in Case B (log scale).

E [ P A ,2]

E [ P A ,1]

var [ P A ,1]≃var [ P A ,2 ]

E [ PB ,1]

E [ PB ,2]

var [ PB ,1]≃var [ PB ,2 ]
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Finally,  the  chart  in  Figure  5  shows the  line  obtained 
from equation (14), together with the results of the Monte 
Carlo simulations performed according to Methods 1 and 2. 
As  in  Case  A,  the  simulation  results  are  in  excellent 
agreement with the theoretical assumptions.

6.  CONCLUSIONS 

In this paper,  we proved that the preferable averaging 
method used to estimate the measurand in case of repeated 
measurements  should rely  on  the  models  involved in  the 
interpretation  of  the  measurement  results,  i.e.,  the 
measurand model and the measurement model. In particular, 
in all situations in which the random behavior of the input 
quantities is assumed to be related mostly to the acquisition 
(or  measurement)  uncertainty  (i.e.,  when  the  definitional 
uncertainty  is  negligible),  the  estimator  (15)  should  be 
applied  to  improve  the quality  of  information  about  the 
measurands before applying f(∙).

Conversely, if the input definitional uncertainty prevails 
on the acquisition uncertainty, the estimator (16) should be 
applied, to avoid, or at least reduce, the biasing effect that 
would  be  introduced  by  the  single  application  of  the 
nonlinear  f(∙).  The  latter  consideration  has  a  further 
implication  when  the  output  measurand  is  obtained  by 
propagating  the  probability  distributions  of  the  input 
measurands using Monte Carlo simulations, as described in 
[7].  In fact, in this case the value representing the output 
measurand is usually estimated by implicitly applying (16) 
and the  expected value is  unbiased only if  the  stochastic 
behavior  of  the  input  quantities  is  mainly  due  to  their 
definitional uncertainty, i.e. if the acquisition uncertainty is 
negligible.

In  conclusion,  even if  the  definitional  uncertainty  and 
the acquisition uncertainty may affect the input measurands 
X to  a  model  function  Y=f(X)  in  the  same  way,  the 
preferable  method to  estimate  the  measurand value when 
performing  K  repeated  measurements  should  be  chosen 
according to the following decisional rules:

→ DECISION RULE 1
If  the  expression  f(∙)  is  a  linear  (or  weakly  nonlinear) 
function, then apply Method 1; else apply decision rule 2.

→ DECISION RULE 2
If  the  law of propagation of uncertainty  may be used (i.e., 
f(∙)  is infinitely differentiable at the mean value of  X) and 
σ def≈0  (or  σ def≪σacq ), then apply Method 1 (according 

to the  interpretation  of  Y as  having  a  unique  value). 
Otherwise, if σ def≫σacq , then Method 2 should be applied.

APPENDIX A:
DERIVATION OF EXPRESSIONS (5)-(12)

Let as refer to NX as the zero mean random variable with 
variance  X

2  and  symmetric  (e.g.,  normal)  probability 
distribution modeling the  overall uncertainty  in  Case A  or 
B. If, in accordance with the example described in Section 
3,  the  estimator  (3)  is  applied  to  K repeated  measured 
voltage  values  Vk,  then the mean and the variance  of  the 
measurand  value  obtained  using  Method  1  are  given 
respectively by:

E [ P X ,1]=E[  v 1K∑k=1
K

N X k
2

]=v2X
2

K
(A.1)

and:

var [ P X ,1]=E [ v 1K∑k=1
K

N X k
2

]−v2 X
2

K 
2

=

=4 v2
 X
2

K

1

K3
E [N X k

4 ]
2K−3 X

4

K3
(A.2)

where  N X k  represents  the  kth  uncertainty  contribution. 
Since in Case A N coincides with the acquisition uncertainty 
Nacq, X

2
= acq

2  and E [N X k

4
]=acq . Accordingly, equations 

(5) and (9) result easily from (A.1) and (A.2).
In  Case  B,  N=Nacq+Ndef,  where  Nacq   and  Ndef are 

statistically  independent.  Thus,  X
2
= acq

2
def

2 , 

E [N X k

4
]=acq6 acq

2
def
2
def  and the equations  (7)  and 

(11) are obtained in the same way as before.
Assume that Method 2 instead of Method 1 is applied to 

the collected data to estimate the measurand value. In this 
case, it follows from (4) that its mean value and variance are 
respectively:

E [ P X ,2]=E[ 1K∑k=1
K

vN X k

2]=v2X

2 (A.3)

and:

var [ P X ,2 ]=E [ 1K 2 ∑
k=1

K

vN X k
2
2

]−v2 X
2 2=  

=4 v2
 X
2

K
−
X
4

K

1
K
E [N X k

4 ] (A.4)

Therefore, by setting X
2
= acq

2  and E [N X k

4
]=acq  in Case 

A and X
2
= acq

2
def

2
 and E [N X k

4
]=acq6 acq

2
def
2
def  

in Case B, the expressions (6), (10), (8) and (12) are finally 
obtained.

APPENDIX B: 
THE SIMULATION ALGORITHM

Monte Carlo simulations have been performed by means 
of a computational engine developed by one of the Authors 
to  model  and simulate  the  evolution  of  dynamic  systems 
according  to  the  state-variable  approach  formalized  in 
System Theory. Such a tool [8], [9] enables the qualitative 
definition of models as directed graphs, whose nodes and 
arrows represent variables and functional relations between 
variables  respectively.  The  quantitative  definition  of  each 
variable is then performed by means of a purely functional 
language,  designed with an  explicit  reference  to  MatLab. 
The  simulation  graph  (shown in  Figure  6)  producing  the 
results  described  in  Section  5  has  been  implemented  as 
follows:
- given  the  chosen  number  of  runs  (runs=2000  in  our 

examples)  and  for  a  given  amount  of  samples  K,  a 
matrix  (runs × K)  of  Gaussian  random  samples  with 
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mean equal to the nominal voltage value and variances 
equal  to  σ acq

2  (Case  A)  and  σ acq
2
σ def

2  (Case  B)  is 
generated;

- such  a  matrix  is  the  basis  for  the  application  of  the 
estimators  (3)  and (4)  and for  the computation of  the 
corresponding mean and standard deviation values;

- such  values  are  also  compared  with  the  theoretical 
expressions (5)-(8) and (13), (14);

- this procedure is repeated by changing the value of K 
within a preset range.

Fig.6 – Simulation graph that implements the Monte Carlo algorithm 
for Case A (screenshot from the computational engine UI).

The simulation code is as follows.

// the system variable ‘time’ is set so to range
// from 10 to 1000 with a step of 20

runs = 2000 // Number of runs
K = time // Number of samples
v_nom = 5 // Nominal applied voltage
sigma_acq = 0.5 // Std dev of acquisition noise
P1th = v_nom^2+(sigma_acq^2)/K // Method 1 theoretical 

//mean value (eq. 5)
P2th = v_nom^2+sigma_acq^2 // Method 2 theoretical

// mean value (eq. 6)
varth = 4*v_nom^2*sigma_acq^2/K // Method 1 & 2

// theoretical variance (eq. 13)
n_acq = matrix(runs,K,gaussian(0,sigma_acq)) // Matrix

// of random noise
v = v_nom+n_acq // Noisy voltage (*)
P1 = mean(v)^2 // Method 1 mean value (eq. 3) (**)
mean1 = mean(P1) // Method 1 Monte Carlo mean (***)
var1 = var(P1) // Method 1 Monte Carlo variance
P2 = mean(v^2) // Method 2 mean value (eq. 4)
mean2 = mean(P2) // Method 2 Monte Carlo mean
var2 = var(P2) // Method 2 Monte Carlo variance

where:
(*):  The operator  ‘+’ is  polymorphic;  in this case it  adds 
element-by-element a scalar and a matrix.
(**), (***): ‘mean’ is a dimensional reduction function: if 
applied to a matrix (case **), it generates the vector of mean 
values computed over each row; if applied to a vector (case 
***), it generates the mean value of its elements.
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