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Abstract: Spectrophotometry is getting more and more 
often the method of choice not only in laboratory analysis of 
(bio)chemical substances, but also in the off-laboratory 
identification and testing of physical properties of various 
products, in particular – of various organic mixtures 
including food products and ingredients. Specialized 
spectrophotometers, called spectrophotometric analyzers are 
designed for such applications. This keynote lecture is on 
the state of the art and developmental trends in the domain 
of spectrophotometric analyzers of food with particular 
emphasis on wine analyzers. The following issues are 
covered: philosophical and methodological background of 
food analysis, physical and metrological principles of 
spectrophotometry, the role of measurement data processing 
in spectrophotometry, food analyzers on the market and 
their future. General considerations are illustrated with 
examples, predominantly related to wine analysis. 

Keywords: spectrophotometry, chemometrics, spectral data 
processing, food analysis, wine analysis. 

1. PHILOSOPHICAL BACKGROUND 

 The pragmatic Americans used to say: "You are what 
you eat." On the other hand, the elevation of mind over 
body, of reason over senses, of man over beast, and of 
culture over nature is a characteristic feature of the Western 
philosophical tradition. In particular, the dismissal of food 
as a proper subject for philosophical inquiry is deeply rooted 
in the history of thought. The denigration of food and 
cooking can be traced as far back as Plato for whom cooking 
was a simple practical skill, as opposed to a genuine art like 
medicine. There are at least two alternative explanations for 
such views, viz.: food and taste have been ignored because 
they have been mistakenly regarded as unimportant, or – 
they have been regarded as too important to be exposed to 
risky philosophical rumination. The situation is changing 
now in contemporary Western societies because there has 
been a significant shift in how we define ourselves: today 
we are inclined to link our identities much more to what we 
consume than to our social roles as we used to do a 
generation or two ago. 

 Despite philosophical abnegation of food issues, the 
practice of food preparation and refinement has flourished 
for centuries, and inspired research-and-invention-oriented 
minds. Today, we may speak about a fully developed 
discipline of science and technology. Enough to say that the 
Institute of Food Technologists – the largest international, 
non-profit professional organization involved in the 
advancement of food science and technology – is 
encompassing 23 000 members worldwide. Its Committee 
on Higher Education provided the following definition of 
food science: "Food science is the discipline in which the 
engineering, biological, and physical sciences are used to 
study the nature of foods, the causes of deterioration, the 
principles underlying food processing, and the improvement 
of foods for the consuming public" [1]. This definition is 
emphasizing the empirical nature of food science and – 
consequently – its strong affinity to measurement and 
instrumentation. This is the aspect of food science we are 
here interested in. A variety of measurement methods and 
techniques that are currently applied in food science and 
technology is encompassing both simple tools and 
procedures for measuring mass or temperature and very 
sophisticated ones, such as computer-based measuring 
systems of chromatography combined with mass 
spectrometry. This lecture is devoted to food applications of 
spectrophotometry, with particular emphasis on the methods 
for processing raw spectrophotometric data. The choice of 
that measurement technique is motivated by a rapid increase 
of its applications both in terms of the repertory of 
measurands and in terms of the number of installed 
spectrophotometric transducers, instruments and systems. 
This increase is a response to a growing demand for 
adequate methods of food analysis, driven by several 
factors. Despite the legislative efforts, aimed at protecting 
consumers and ensuring fair trade, food scandals are 
reported quite frequently. Their origin is most often related 
to pesticide residues, veterinary drug residues, endocrine 
disruptors, processing contaminants, packaging materials 
and natural toxins. On top of that, genetically modified food 
products and ingredients have become an issue, at least in 
the European Union.  
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2. PRACTICAL BACKGROUND 

 In July 2006, an exciting news appeared in the media, 
both popular and professional, announcing that a research 
team of NEC System Technologies and Mia University in 
Japan designed and prototyped a robot able to check 
whether the contents of a bottle of wine corresponds to its 
label [2]. The robot's performance was limited to several 
dozens of kinds of wine, but the promise of its database 
extension open prospects for further developments. 
Automatic analyzers of beverages, based on various 
measurement principles, had been known for some time, but 
that happening opened a new chapter in their development 
since wine testing is a task much more complex than testing 
of any other kind of alimentary product. Why? Because its 
aim is not only to differentiate between white and red wine, 
between port and champagne, or between French and 
Chilean Cabernet Sauvignon ... A robot for wine testing is 
expected to be able to state, with sufficiently low 
uncertainty, that the contents of a bottle has all the features 
promised by its label, while even a very modest label is 
providing a lot of information about the geographical origin 
and vintage of wine, the sort of grapes it has been made of, 
the type of barrels it has been aged in, etc. Much more 
information remains behind the scene: sensory properties of 
wine, identified by someliers using organoleptic means, and 
its chemical properties, identified by oenology expert 
equipped with sophisticated analytical instruments. 
 The robot for wine testing, launched in 2006, was a 
successful fusion of two powerful technologies: near-
infrared spectrophotometry and measurement data 
processing. During last two decades, this approach has 
provided a quite universal solution for the analysis and 
testing of many alimentary products, especially outside 
analytical laboratories. Spectrophotometric analyzers for 
grain and fruits, milk and beer, chocolate and cheese, etc., 
are today manufactured by numerous companies all over the 
world. Their intensive development is motivated by many 
factors, including growing awareness of the nutritional 
issues, and increased incidence of fraud in the domain of 
fabrication and distribution of such products as wine, olive 
oil or cheese. This keynote lecture contains an outline of a 
broad engineering and application background of that 
technology and a more detailed review of the state of the art 
in the domain of measurement data processing dedicated to 
spectrophotometric analyzers.  
 The R&D works on automatic wine testing are smoothly 
moving forward because the practical value of the results 
already achieved is opening prospects for wide application 
of robots in wine production and distribution, and – 
consequently attracting potential sponsors and investors. 
The motivation is, of course, of economic nature: a robot for 
checking the contents of a bottle of wine will become an 
effective tool for fighting the fraud on the wine markets. 
Let's consider a simple example in order to imagine the 
financial dimension of this social issue. Let's assume that 
900 bottles of wine, priced EUR 20 per bottle, has been 
mixed with 100 bottles of wine, priced EUR 5 per bottle. 
The sold of 1000 bottles of this mixture, at the price of 
EUR 20 per bottle, will generate the extra income of 
EUR 1 500! That's why the robot is attracting an interest of 

wine makers, wine dealers, custom officers... The detection 
of fraud by means of a robot will be much easier, quicker 
and cheaper than by means of today's procedures referring to 
time-consuming laboratory analyses and expensive experts' 
services. 
 The Japanese robot, whose size is comparable with two 
four-bottle wine containers, is able to analyze and identify a 
5-ml sample of wine within 30 seconds. Its functioning is 
based on the principle of spectrophotometry in the near-
infrared range and on the sophisticated algorithms for 
processing raw spectrophotometric data by means of an 
internal computer. This technological combination seems 
today to engender the most promising solutions in the 
domain of wine robotics. 

3. SPECTROPHOTOMETRIC ANALYZERS 

 Spectrophotometric tools, and – consequently – the 
methods for interpretation of spectrophotometric data, are of 
increasing importance for analytical laboratories, as well as 
for environmental, biomedical and industrial monitoring. On 
the one hand, the development of corresponding 
applications is driven by a growing demand for this kind of 
tools, the demand implied by the advancement of standards 
related to environment protection, health care, individual 
and collective security, as well as by the widespread use of 
optical means for inspection of industrial procedures. On the 
other hand, however, this development is due to the market 
availability of miniature spectrophotometers: mini- and 
micro-spectrophotometers [3-9].  
 The term "spectrophotometric analyzer" is used here for 
various spectrophotometric sensors, devices, instruments, 
probes and testers dedicated to measuring physical and/or 
chemical parameters characterizing a pre-defined class of 
chemical or biochemical substances. Thus, a 
spectrophotometric transducer (ST) is the heart of any such 
analyzer. It is converting an optical signal into a sequence of 
raw data [ ]TNyy ~...~~

1=y  representative of the spectrum 
( )λx  of that signal, where λ  is wavelength, x  is light 

intensity, N  is the number of data, and the tilde placed over 
1y , ..., Ny  is to indicate that the data are subject to various 

disturbances of ST-external and ST-internal origin. The 
wavelength values cover a broader or narrower subrange 
[ ]maxmin , λλ  of one of the following standard intervals: 200–
300 nm – middle-ultraviolet radiation (MUV), 300–380 nm 
– near-ultraviolet radiation (UV), 380–750 nm – visible 
radiation (Vis), 750–2,500 nm – near-infrared radiation 
(NIR) or 2.5–10 μm – middle-infrared radiation (MIR). 
Several physical principles and corresponding devices may 
be used for ST design: 
− a dispersive element (a grating or a linear variable filter) 

that enables separation of spectral components in space; 
− a tuneable filter that enables separation of spectral 

components in time; 
− an optical heterodyne that enables shifting the spectrum 

in a wavelength range where its analysis is easier; 
− an interferometer providing the data whose Fourier 

transform is representative of the spectrum. 
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The use of one of them, most frequently applied today, viz. 
of a dispersive element, is explained in Fig. 1: 
− An optical signal to be converted into a digital 

representation of its spectrum is separated into N  
optical signals, corresponding to narrow subranges of 
wavelength λ  by a dispersive element, e.g. a grating. 

− Each of those signals is reaching a corresponding 
photodetector PD converting it into a current 
proportional to its intensity. 

− The output currents of the photodetector matrix are 
scanned by an analogue-to-digital converter and, one by 
one, coded. 
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Fig. 1. A spectrophotometric transducer (ST) based on a dispersive 

element – the principle of functioning. 
 

 
Fig. 2. A spectrophotometer based on a dispersive element – the 

principle of functioning. 
 

 A functional diagram of a spectrophotometric analyzer, 
based on the ST from Fig. 1, is shown in Fig. 2. Its 
functioning may be explained as follows: 
− First, the source optical signal is converted into the data 

0
~y  representative of its intensity spectrum ( )λ0x . 

− Next, the same source optical signal is passed through a 
cuvette, containing a sample of the substance to be 
analyzed, and converted into the data 1

~y  representative 
of its intensity spectrum, modified by a sample, ( )λ1x . 

− Finally, the intensity data 0
~y  and 1

~y  are processed by a 
digital processor (a controller, a microprocessor, a digital 
signal processor or a personal computer) in order to 
obtain an estimate of the target parameters of the sample, 
such as concentrations Jcc ...,,1  of selected compounds 
of that sample. 

 The estimation of target parameters is, as a rule, an ill-
conditioned numerical problem of measurand 

reconstruction. Therefore, its solution may require not only 
simple conversion of codes and estimation of the 
transmittance or absorbance spectrum on the basis of two 
intensity spectra, but also some more sophisticated 
operations, aimed at extraction of information hidden in the 
data, such as estimation of the optical noise level, estimation 
of the spectrum with a better resolution than the resolution 
of the ST or estimation of concentrations on the basis of pre-
processed data. In some cases, estimation of some 
intermediate or auxiliary parameters, such as positions and 
magnitudes of spectral peaks, may be necessary, because the 
positions of peaks in the absorbance spectrum may facilitate 
identification of the compounds which are present in the 
sample; and their magnitudes may facilitate estimation of 
the concentrations of the identified compounds. 
 The complexity of spectrophotometric data processing 
significantly depends on the technological and functional 
imperfections of the ST. Their external manifestations – 
such as noise-type disturbances in the data or blurring and 
overlapping of spectral peaks – must be taken into account 
during data processing. Therefore, the corresponding 
algorithms, as a rule, require considerable amount of 
information on the mathematical model of the ST (or on the 
mathematical model of the ST data at its output). This 
information is acquired during an operation, performed off-
line, called calibration of the ST, which is including not only 
scaling of wavelength axis and intensity axis, but also the 
identification of a forward or of an inverse mathematical 
model of the ST – the identification based on the use of the 
ST data corresponding to some standards of the spectrum or 
of a class of substances the analyzer is designed for.  
 The interpretation of the intensity spectra ( )λ0x  and 
( )λ1x , in terms of concentrations (or other physical or 

chemical parameters) characterizing a sample under study, 
may be simplified if those spectra are transformed into the 
transmittance spectrum defined as: 

 ( ) ( )
( )λ
λλ

0

1

x
xxTr =  (1) 

The data 0
~y  and 1

~y  should be then converted into the 

transmittance data, representative of ( )λTrx , according to 
the formula: 

 
nn

nnTr
n by

by
y

−

−
=

,0

,1
~
~

~   for Nn ...,,1=  (2) 

where [ ]TNbb ...1=b  is the ST response to the zero-
intensity optical signal. The interpretability of spectra may 
be further improved by using the absorbance scale defined 
as follows: 

 ( ) ( )( )λλ TrAb xx 10log−=  (3) 

and the corresponding absorbance data: 

 ( )Tr
n

Ab
n yy ~log~

10−=   for Nn ...,,1=  (4) 

An example of transmittance data is shown in Fig. 3. The 
result of their transformation into absorbance data – in 
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Fig. 4. The absorbance data emphasize the most informative 
parts of the spectrum, viz. absorption peaks whose 
parameters, positions and magnitudes, are determined by the 
qualitative and quantitative composition of the sample under 
study. The image of those data is a finger-print enabling the 
identification of the sample. 
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Fig. 3. The data representative of the transmittance spectrum 

of red wine. 
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Fig. 4. The data representative of the absorbance spectrum of red wine. 

4. SPECTROPHOTOMETRIC ANALYZERS OF FOOD 

 The term spectrophotometric analyzer of food (SAF) is 
used here for various spectrophotometric sensors, devices, 
instruments, probes and testers dedicated to measuring 
physical and (bio)chemical parameters characterizing food 
products (including beverages) and ingredients. 
 As mentioned in Section 2, NIR spectrophotometry is of 
particular usefulness for food analysis because the spectra of 
organic samples comprise broad bands arising from 
overlapping absorption peaks corresponding to C-H, O-H 
and N-H chemical bonds. The main advantage of NIR 
spectrophotometry, when applied for routine analysis of 
food, is its simplicity and speed: usually no sample 
preparation is necessary and the time of analysis is not 
greater than 1 minute. Another advantage of NIR 
spectrophotometry is that it allows several constituents to be 
identified concurrently. Finally, the relatively weak 
absorption due to water enables one to analyze high-
moisture food products and ingredients. 
 The driving forces behind the development of SAFs may 
be easily identified on the basis of the general structure of 
the food business, shown in Fig. 5, and of the specification 
of needs of its main actors, provided in Table 1.  
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Fig. 5. The general structure of the food business. 
 

Table 1. The motivation for using spectrophotometric analyzers by the main actors of the food business. 

 Specific examples of SAFs Reasons to use SAFs 
Providers 
of raw materials 

Analyzers of fruits ripeness 
Analyzers of moisture content in grains 
Analyzers of meat tenderness 
Analyzers of raw milk 

Checking the quality of raw materials 
Specification of raw materials enabling their labelling 
Precise classification of raw materials enabling their better pricing 

Food 
producers 

Analyzers of olive oil: chemical contents 
Analyzers of olive oil: geographical origin 
Analyzers of chocolate products 
Analyzers of cheese 

Monitoring of the production from the verification and selection of raw materials to the final products 
Providing data necessary for manufacturing control 
Specification of final products enabling their labelling 
Precise classification of final products enabling their better pricing 

Food 
distributors 

Analyzers of flour 
Analyzers of honey: chemical contents (sugars)  
Analyzers of honey: floral origin 
Analyzers of coffee grains 

Checking the quality of products to be distributed 
Monitoring of the quality of stored products 
Precise classification of products to be distributed, enabling their better pricing 
Increased productivity 

Food 
vendors 

Analyzers of water (for restaurants) 
Analyzers of bread 
Analyzers of diary products 
Analyzers of fruits (aging) 

Checking the quality of products to be sold 
Monitoring of the quality of stored products 
Precise classification of products for sale, enabling their better pricing 

Food 
consumers 

Analyzers of mineral water 
Analyzers of wine 
Analyzers of beer 
Analyzers of tee 

Checking the quality of purchased products 
Monitoring of the quality of stored products 
Improved selectivity in purchasing food products (based on better quality price evaluation) 

Supervisors Analyzers for microbiologial evaluation of food 
Analyzers for toxicological evaluation of food 

Checking the quality of food products in situ 
Increased effectiveness of supervision  
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 All those actors are potential users of SAFs, but the 
measurement needs are today better defined and the use of 
SAFs is more common among the food producers and 
supervisors of food business than among the providers of 
raw materials, food distributors, food vendors and individual 
consumers. It may be predicted, however, that the 
significant lowering of the prices of SAFs will quickly 
increase the demand among the members of the latter group 
of food business actors. As shown in Table 1, there are 
several reasons for using SAFs by the main actors of the 
food business. They may be summarized as follows:  
− checking the quality of food; 
− monitoring of the food production process;  
− providing data necessary for production control; 
− specification of food products necessary for their 

labelling; 
− precise classification of food products enabling their 

better pricing. 
There are more-or-less evident economic benefits behind 
each of them. Precise classification, for example, enables 
one to minimize losses due to aging of food by replacing a 
worst-case approach with a realistic-case approach since the 
selection and grading of food may be based on the objective 
measurement results rather than on the "best-before" date. 

4. MATHEMATICAL MODELLING OF 
SPECTROPHOTOMETRIC DATA 

 The contents of this and two following sections are 
based on an author's review paper, devoted to 
spectrophotometric data processing [10], where many more 
details and explanations may be found. 

  4.1. Mathematical modelling of intensity data 
 The intensity data, provided by an ST, may be modelled 
using a white-box approach, a black-box approach, or a 
grey-box approach combining some advantages of white-
box and black-box approaches [11]. 50 years of experience 
behind modelling of spectrophotometric data seems to 
support the conclusion that the approximation power of the 
Wiener operator, i.e. of a superposition of a linear integral 
operator with a nonlinear algebraic operator, is sufficient for 
adequate modelling of the relationship between the intensity 
spectrum ( )λx  and the corresponding raw data y~ . Let the 
variable nŷ  denote the mathematical model of the "noise-
free" version of the datum ny~ . Then this operator may be 
given the following form:  

 ( ) ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−= ∫

+∞

∞−
nnnn xgFy α;d)(ˆ λλλλ  for Nn ...,,1=  (5) 

where: 
− ( )λng  is the response of the ST, measured at the output 

of the n th photodiode, to a tuneable monochromator 
producing an optical signal whose spectrum is close to 
( ) ( )lx −≡ λδλ  where l  is moving from minλ  to maxλ ; 

− ( )nF α;•  is an a priori known function (e.g. an algebraic 
polynomial, a cubic spline) whose parameters, 

[ ]Tnnn ...2,1, αα=α , have to be determined during the ST 
calibration.  

 4.2. Mathematical modelling of transmittance data and 
their dependence on concentrations 
 The reasoning presented for the intensity-domain data 
may be applied to the transmittance-domain data. As a rule, 
due to the compensation of some irregularities by the 
division of corresponding intensity data, the function 
( )nF α;•  may be less complex in this case, and the 

variability of nα  and ( )λng  along the wavelength axis – 
less important. Consequently, in many cases this variability 
may be ignored, and the corresponding model of the 
transmittance-domain data may be simplified by fixing: 

αα ≡n  and ( ) ( )λλ ggn ≡  for Nn ...,,1= . This analysis 
justifies the use of the following mathematical model of the 
relationship between the transmittance spectrum ( )λTrx  and 

the corresponding data [ ]TTr
N

TrTr yy ~...~~
1=y : 

 ( ) ( ) n
Tr

n
Tr
n dxgy ηλλλλ +−= ∫

+∞

∞−

~    for Nn ...,,1=  (6) 

where the additive residuals nη  represent the total 
uncertainty of data modelling.  
 For the purpose of modelling the dependence of the data 
on concentrations, one may use the Lambert-Beer laws of 
absorption to relate ( )λTrx  in Eq.(6) to the vector of 

concentrations [ ]TJcc ...1=c : 
− the absorbance of a solution of a single component is 

proportional to its concentration; 
− the absorbance spectrum of a multicomponent solution: 

 ( ) ( )[ ]λλ TrAb xx 10log−=  (7) 

 equals the linear combination: 

 ( ) ( ) ( )λλλ Ab
JJ

AbAb xcxcx ++= ...11  (8) 

of the normalized absorbance spectra of the components 
( ) ( )λλ Ab

J
Ab xx ...,,1 . 

Eq.(6), Eq.(7) and Eq.(8) should undergo discretization to 
become a useful basis for the development of numerical 
methods for estimation of concentrations. Thus, Eq.(6) is 
replaced with:  

 ηxGy +⋅= TrTr~  (9) 

where:  

 [ ]TNηη ...1=η  (10) 

 ( ) ( )[ ]TM
TrTrTr xx λλ ′′= ...1x  (11) 

 ( )
1

1 minmax
min −

−
−+=′

M
mm

λλλλ  for Mm ...,,1=  (12) 
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and G  is a rectangular matrix whose values depend on the 
values of the function ( )λg  and on the chosen method of 
numerical integration. The discretization of Eq.(7) and 
Eq.(8), consistent with Eq.(9), yields: 

 ( )( ) ( )( )[ ]TM
TrTrAb xx λλ ′−′−= 10110 log...logx  (13) 

 cXxxx AbAb
JJ

AbAb cc =++= ...11  (14) 

where: 

 ( ) ( )[ ]TM
Ab
j

Ab
j

Ab
j xx λλ ′′= ...1x    for Jj ...,,1=  (15) 

 [ ]TAb
J

AbAb xxX ...1=  (16) 

 The up-to-now developed model of the relationship 
Tryc ~→  characterizes this relationship for one particular 

pair of c  and Try~ . It should be generalized on the 

populations of admissible vectors c  and Try~  to enable the 
use of probabilistic tools. This may be achieved by 
introducing random vectors (denoted hereinafter with 
underlined symbols) for modelling unknowns. The 
randomization of the vector η , representative of modelling 
uncertainty, yields: 

 ηxGy +⋅= TrTr~  (17) 

where [ ]T
N

ηη ...
1

=η . The model of the relationship 

between concentrations and absorbance spectrum, 
corresponding to Eq.(14), takes on the form: 

 εcXx += AbAb  (18) 

where [ ]TJcc  ... 1=c  is the random vector of the 

concentrations to be estimated, [ ]TMεε  ... 1=ε  is the 
random vector of the residual spectrum corresponding to 
unexpected or neglected components of the analyzed 
sample, and CAT is the operator of absorbance-to-
transmittance conversion: 

 [ ] [ ] T
xxAbTTr

M
TrTr Ab

M
Ab

xx ⎥⎦
⎤

⎢⎣
⎡==≡ −− 10  ... 10CAT  ... 1

1 xx  (19) 

The substitution of Eq.(18) to Eq.(19) and then of Eq.(19) to 
Eq.(17) yields a compact-form, discretised and randomized 
model of the data: 

 [ ] ηεcXGy ++⋅= AbTr CAT~  (20) 

 4.3. Soft modelling in latent variables 
 In many practically important cases, the model of 
absorbance data, corresponding to Eq.(18): 

 [ ][ ]ηεcXGy ++⋅= Ab-Ab CATCAT~ 1  (21) 

may be linearized : 

 [ ] ηεcXHy ++= AbAb~  (22) 

The linearity of the relationship between absorbance data 
Aby~  and concentrations c  is a justification for the 

widespread use of the following inverse model for 
estimation of concentrations:  

 Pyc =  (23) 

where y  is a vector of selected elements of the vector Aby~ , 
and P  is a matrix of parameters to be estimated during 
calibration on the basis of the reference data: 

 ...,,,, 2211 ycyc  (24) 

usually arranged into two matrices: 

 [ ]...21 yyY =  and [ ]...21 ccC =  (25) 

and assumed to satisfy the equations: 

 111 γPyc += , 222 γPyc += ,… (26) 

where the vectors 1γ , 2γ , … denote realizations of zero-
mean random noise "buffering" the uncertainty of 
mathematical modelling. 
 The problem of estimation of the parameter matrix P  is 
numerically ill-conditioned because of the collinearity in the 
data matrix Y  [12]. Three kinds of measures are applied to 
remediate this difficulty, viz.: selection of samples whose 
spectral data are used for modelling, selection of wavelength 
values defining the spectral data that are included in the 
vectors ...,, 21 yy , and so-called soft modelling. The latter 
consists in expressing the data in terms of a new, more 
informative, orthogonal variables, called latent variables. 
This is most frequently achieved by a mathematical 
conversion of the data to new axes based on covariance in 
the data Y . The latent variables, being linear combinations 
of the independent spectral data, are created to describe 
independent sources of the observed variation in the the 
data. They are, as a rule, ordered after the size of the 
independent sources of variation that they explain – in order 
to facilitate the decision on the number of latent variables 
that are needed to adequately explain the systematic 
variation in the data Y , and eliminate non-informative and. 
less-informative latent variables. There are numerous 
references containing detailed reviews of the methodology 
and practice of soft modelling, both for experts and for 
beginners [13-16]. 

 4.4. Identification of mathematical models of 
spectrophotometric data  
 Any procedure of spectrophotometric data interpretation 
refers to their more or less complex mathematical model. 
The identification of this model is the goal of ST calibration. 
There are two fundamentally different approaches of the 
problem of calibration that imply substantially different 
solutions for data interpretation, aimed at estimation of 
concentrations: the forward-model-based approach and the 
inverse-model-based approach. The forward-model-based 
approach is aimed at identification of a forward model of the 
ST, i.e. estimation of the parameters of an operator, mapping 

12



the space of real-valued functions ( )c;λx  or the space of 
vectors c  into the space of vectors y~ . The inverse-model-
based approach is aimed at identification of an inverse 
model of the ST, i.e. at estimation of the parameters of an 
operator, mapping the space of vectors y~  into the space of 
real-valued functions ( )c;λx  or the space of vectors c . In 
both cases a set of, reference data: 

 { }calcal
ν

cal
ν

cal ,N,,ν, K21~~~
== ycD  (27) 

is necessary to attain the required validity of the model. It 
should contain concentrations cal

νc~ , characterizing samples 
used for calibration, as measured by a reference instrument, 
and the corresponding spectral data cal

νy~  acquired by means 
of the calibrated ST.  

5. FROM CALIBRATION TO INTERPRETATION 
OF SPECTROPHOTOMETRIC DATA 

 5.1. General considerations 
 The absorption spectrum of a sample ( )c;λx  is sensitive 
to the concentrations c  of the compounds that sample is 
composed of; it may be used, therefore, for measuring those 
concentrations. In most cases, the dimension of the vector c  
is significantly smaller ( 251−=J ) than the number of the 
raw measurement data in the vector y~  ( 1000100 −=N ). 
As a rule, the data provided by STs are highly correlated 
from one wavelength value to the next and from one sample 
to another. This correlation decreases the apparent 
information in the data; but – if an approach is used that 
takes it into account – it is possible to turn the correlation to 
a benefit by taking advantage of the redundancy. Therefore, 
a methodology for solving those problems, as a rule, 
comprises two steps: the compression of the data y~ , i.e. 
their transformation into an estimate yp̂  of a low-
dimensional vector of informative parameters yp : 

 ypy ˆ~ →  (28) 

and subsequent estimation of the concentrations on the basis 
of yp̂ : 

 cp ˆˆ →y  (29) 

The complexity of both steps depends on the number of 
informative parameters: the greater this number, the larger is 
the time required both for ST calibration and for estimation 
of concentrations. The ST calibration, performed on the 
basis of the reference data calD

~ , is aimed at estimation of 
the parameters of the operator of data compression, defined 
by Eq.(28), and of an operator of measurand estimation, 
defined by Eq.(29), provided the structure of both operators 
is chosen in advance. A large variety of algorithms can be 
generated by combining various techniques of data 
compression with various techniques of estimation. The 
compression consists, as a rule, in the selection of the most 
informative among the parameters computed according to 

various principles, such as: projection of the data y~  on a set 
of linearly independent (preferably orthogonal) vectors; 
parameterization of the data y~ , i.e. their approximation by 
means of a known function ( )yny p;ˆ λ  with unknown 
parameters yp ; estimation of the moments of y~ ; soft 
modelling techniques, such as principal component analysis 
(PCA) or partial least squares (PLS). The most self-
imposing tool for estimation of concentrations is a neural 
network being a universal approximator [17], [18], but – for 
the reason of efficiency – multidimensional B-splines and 
wavelet transforms are viable alternatives in many instances 
of calibration. For historical reasons, the algorithms for 
estimation of concentrations are most studied within the 
discipline called chemometrics.  
 Once a soft model, described in Subsection 4.3, has been 
developed, the estimation of the concentrations is a 
sequence of simple algebraic operations. The quality of the 
result of estimation has been already decided during ST 
calibration. All the efforts must be, therefore, concentrated 
on the measurement and computational operations related to 
the procedure of calibration. Both complexity and reliability 
of this procedure depends on the formulation of the 
measurement problem it is designed for; the following 
elements of its formulation should be distinguished: 
− all or only selected compounds of a mixture are to be 

determined; 
− all or only some pure standards are available. 
If all pure standards are available, then it is possible to 
optimize calibration process by designing reference 
mixtures for calibration purposes.  

 5.2. Multivariate ST calibration 
 The univariate calibration is, by definition, related to 
modelling the dependence of the concentration of a single 
compound on a single spectral data point [19], while 
multivariate calibration might involve determining the 
concentrations using the spectral data acquired for tens or 
hundreds of wavelength values. A general scheme of 
multivariate calibration, applied in practice, comprises the 
following steps: 
− selection of the reference samples (mixtures) to be used 

for identification of the model; 
− acquisition and visual evaluation of the spectral data, 

used for calibration, before and after preprocessing; 
− a first modelling trial to decide whether it is possible to 

attain the expected quality of the model and whether 
non-linearity should be introduced in this model; 

− refinement of the model, e.g. by considering elimination 
of possible outliers with respect to the model, selecting 
the model complexity; 

− final validation of the model. 
 The optimum complexity of the model, resulting from 
calibration, is a key issue. As the complexity of the model is 
increasing, the prediction error determined for the data set 

calD
~  is diminishing. To determine the optimum number of 

significant components in a series of spectral data, one may 
look at how the error is decreasing when that number is 
increasing [20-23]. By increasing the complexity of the 
model, one may reduce this error almost to zero, but at the 
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same time make the model produce artefacts when it is 
applied to unknown samples. Validation is the step in which 
the prediction with the chosen model is tested 
independently. An additional set of data valD

~  , independent 
of calD

~  but having the same structure, should be used for 
this purpose: 

 { }valval
ν

val
ν

val ,N,,ν, K21~~~
== ycD  (30) 

 Any calibration procedure includes the estimation of 
model parameters [24], [25]. For the time being, no single 
method for estimation is considered the best in all 
spectrophotometric applications. Sometimes, the most 
traditional tool, i.e. the ordinary least squares estimator is 
sufficient. Its main drawback is its sensitivity to collinear 
components in the spectral data. Therefore, several 
alternative methods have been developed to remediate for 
this drawback. The most commonly used among them is the 
partial least squares estimator. It has gained enormous 
popularity among the researchers, and – consequently – has 
been enhanced and modified in various ways, including the 
incorporation of some nonlinearity and constraints, such as 
the positivity of spectral data and the positivity of 
concentrations of compounds [26-40]. Another alternative 
method developed to remediate for ill-conditioning of the 
parameter estimation, is ridge regression [41], [42] and the 
generalized ridge regression, where each variable gets a 
slightly different ridge parameter [43].  
 It should be noted that the linear-regression approach 
may fail when considerably nonlinear relationships are 
modelled. Quite a number of linearization techniques have 
been proposed to deal with such situations: some of them 
work on the data and others work on the model or on some 
model parameters. In general, the artificial neural networks 
are natural tools for dealing with nonlinear models. They are 
used more and more frequently in spectrophotometric data 
processing, as a rule in combination with various data 
compression techniques, such as principal component 
analysis, to avoid excessive overfitting [44].  
 An important step, related to any method referring to the 
idea of latent variables, is the selection of the most 
informative variables or elimination of non-informative 
variables – cf. examples of techniques developed for this 
purpose [45-48]. 

 5.3. Selection of samples and wavelength values 
 The multivariate calibration requires standards, i.e. 
samples for which the estimates of concentrations, obtained 
by a reference method, are known. Because of the cost or 
time of the reference technique, the number of such 
"standards" cannot be very large (usually not greater than 50 
or 100). Because the model has to be used for the prediction 
on new samples, all possible sources of variation that can be 
encountered later must be included in the calibration data 

calD
~ . This means that the chemical compounds, present in 

the samples to be analyzed, must be included in the samples 
used for calibration, and the range of variation in their 
concentrations should be at least as wide as that expected of 
the samples to be analyzed. There is, however, a practical 
limit on what is available. It is therefore necessary to 

achieve a compromise between the number of samples to be 
analyzed and the prediction error that can be attained. When 
it is possible to artificially generate a number of samples, 
experimental design can and should be used to decide on the 
composition of the calibration samples. In most cases only 
real samples are available, so that an experimental design is 
not possible. This is the case for the analysis of food 
products and ingredients.  
 There are several strategies available for selection of the 
calibration samples representative of the analysis problem to 
be solved. The simplest is random selection, but it implies a 
risk that some sources of variation will be lost. Another 
possibility is based on a priori knowledge about the analysis 
problem: if all the sources of variation are known, then 
samples can be selected on the basis of that knowledge. A 
more detailed analysis of the problem of samples selection 
may be found in the literature [49], [50].  
 For each sample, the spectral data are recorded for many 
wavelength values. An important opportunity to improve the 
numerical conditioning of estimation problem is the proper 
selection of those values. It can be based on a priori 
knowledge of the most informative wavelength values, 
derived from previous experience, or may be performed by 
means of special techniques of selection such as stepwise 
ordinary least squares regression. 

6. PREPROCESSING OF SPECTROPHOTOMETRIC 
DATA 

 6.1. Aims of spectrophotometric data pre-processing 
 The estimation of the concentrations, directly from the 
acquired spectrophotometric data, is in many practically 
important cases problematic due to instrumental 
imperfections of the ST and some quantum phenomena in 
the analyte that produce blurring in the data representative 
of the measured spectrum. Both effects may be eliminated 
or reduced by means of the algorithms of deconvolution or 
generalized deconvolution. As a rule, those algorithms are 
designed and assessed using the criteria of the quality of 
deconvolution, which are not specific of spectrophotometry, 
such as the root-mean-square errors of approximation. 
Consequently, the estimates of the concentrations, 
determined on the basis of the results produced by those 
algorithms, may turn out to be very poor. On the other hand, 
the variational algorithms, used for estimation of 
concentrations, may be very inefficient if not provided with 
a good initial guess of the sought-for estimates [51]. A 
significant improvement may be attained by taking into 
account that the positions of spectral peaks are carrying 
information on the compounds of the analyzed substance, 
and the magnitudes of peaks – on their concentrations. In a 
series of publications [52-54], a methodology for estimation 
of the concentrations, on the basis of spectrophotometric 
data, has been developed; it is comprising the compression 
of spectral data to the estimates of the positions and 
magnitudes of spectral peaks, and qualitative identification 
of the compounds on the basis of those estimates. Not only 
parameters of spectral peaks, but also some other 
morphological features of the spectrum of an analyte may be 
used for identification of its contents. In the paper by 
Benjathapanun et al. [55], for example, the concentrations 
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are estimated using a procedure based on an assumption that 
the list of possible compounds is known a priori: first, the 
spectral data are twice differentiated and partitioned into 
segments along the wavelength axis; next, the presence or 
absence of the compounds from the pre-defined list is 
checked on the basis of the binary codes of the segments, 
using a neural network NN1; finally, the concentrations are 
estimated on the basis of the data corresponding to the most 
informative parts of the spectrum, using a neural network 
NN2.  
 The main aims of spectrophotometric data preprocessing 
may be summarized as follows: 
− the elimination or suppression of those features of the 

spectral data that are not related to the concentrations; 
− the enhancement of those features of the spectral data 

that are carrying information on the concentrations; 
− the improvement of the resolution. 

 6.2. Suppression of undesirable features of 
spectrophotometric data 
 The first goal is traditionally attained by reduction of 
noise present in the data, by elimination of the non-
informative part of the spectrum called baseline or 
background, and by elimination of outliers. More recent are 
methods for elimination of systematic variations in the 
spectral data, being not correlated to the concentrations, 
regardless of the nature of those variations: orthogonal 
signal correction [56] and prewhitening of spectral data by 
their covariance-weighted filtering [57]. 
 The noise in spectral data is most frequently reduced by 
means of moving-window averaging filters [58], in 
particular – by means of the Savitzky-Golay filter. 
Alternatively, it may be suppressed with the filters defined 
in the domain of the discrete Fourier transform or in the 
domain of wavelet transform [59], [60]. Another way of 
reducing noise is the repeated acquisition of the data and 
their averaging [61]; the signal-to-noise ratio (SNR) 
increases then with the square root of the number of data 
vectors. The tutorial information on the noise reduction in 
spectral data may be found in the series of internet papers 
authored by H. Mark and J. Workman [62], more advanced 
– in the Ph.D. thesis by D. Brown [63]. 
 The baseline may be informally defined as a component 
of the data, slowly-changing with wavelength, whose 
subtraction from the data leaves spectral peaks placed on the 
zero level of intensity or absorbance. There are numerous 
heuristic methods for baseline subtraction, referring to this 
informal definition. For example: constant baseline 
differences can be eliminated by using offset correction 
(each vector of spectral data is corrected by subtracting 
either the absorbance value at a selected wavelength or the 
mean value in a selected wavelength range); the constant 
and linear components of the baseline may be removed by 
double differentiation of the data. Further examples may be 
found in the literature [64-67]. 
 Outliers are extreme, very large or very small, 
measurement results. If they are retained in the data, one 
may falsely conclude that they do not follow a normal 
distribution. There are various ways for overcoming this 
problem, the simplest being to remove the outliers. But one 
can also use different criteria for fitting a model.  

 6.3. Enhancement of informative features of 
spectrophotometric data 
 The second aim of data preprocessing is attained mainly 
by numerical differentiation which is enhancing spectral 
differences. Both first and second derivatives are used, but 
the second derivative seems to be applied more frequently. 
This is not the case for the first derivative. An important 
drawback of the use of derivatives is the decrease of the 
SNR implied by the amplification of noise (for that reason, 
smoothing is needed before differentiation). The higher the 
degree of differentiation used, the higher the degradation of 
the SNR. Another drawback is that models, obtained as a 
result of calibration, based on spectral data preprocessed by 
differentiation, are sometimes less robust to instrumental 
changes, such as wavelength shifts which may occur over 
time. The tutorial information on the methods of data 
differentiation may be found in the references [68], [69], a 
review of recent developments in this area – in [70], [71], 
and examples of applications – in [72-75]. 

 6.4. Improvement of spectral data resolution 
 If a method, used for estimation of the vector of 
concentrations c , is ignoring the limitations of the optical 
resolution of the ST, then the preprocessing of the raw data, 
increasing their resolution, may reduce the uncertainty of the 
estimates ĉ . This operation may be viewed as estimation of 
the spectrum ( )λx  on the basis of the data y~ , called 
spectrum reconstruction. The model of spectrometric data, 
defined by Eq.(6), and – consequently – the methods of 
deconvolution, may be used for this purpose. In the majority 
of practically interesting cases, however, the problem of 
spectrum estimation is numerically ill-conditioned, i.e. 
oversensitive to the errors in the data. Consequently, the 
solution of Eq.(6) is, as a rule, buried in the noise "inherited" 
from the data with an amplification coefficient reaching the 
values of hundreds, thousands or millions. Thus, the 
problem of spectrum reconstruction, although very simple 
from the logical point of view, is not trivial and far from 
being definitively solved in practice. Numerous 
sophisticated algorithms for dealing with it have been 
developed since 1931 when P. H. van Cittert proposed a first 
iterative algorithm of deconvolution for improving 
resolution of spectrometric measurements [76]. None of 
them, nevertheless, has turned out to be the best in all 
applications under all possible measurement conditions. 
Consequently, a complex methodology for solving problems 
of spectrum reconstruction has been developed, and 
comparative studies of the methods have been continually 
carried out [77-81]. This methodology refers to the idea of a 
numerical mechanism, called regularization, that consists in 
such a modification of the initial problem that makes it less 
sensitive to the errors in the data. There are various general-
purpose methods for regularization of the problems of 
spectrum reconstruction – all consist in constraining the set 
of admissible solutions. They may be classified into the 
following groups: direct methods, variational methods, 
probabilistic methods, iterative methods, parametric 
methods, and transformation-based methods [82]. As a rule, 
the methods of reconstruction, met in practice, refer to some 
combinations of these elementary methods of regularization. 
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The rapid increase in computing power, available for 
dealing with practical tasks of measurement and 
instrumentation, has radically changed views on the 
applicability of various mathematical methods and 
algorithms for solving problems of spectrum reconstruction. 
The speed and accuracy of computing – offered by general-
purpose computers, digital signal processors and 
application-specific processors – make possible 
implementation of the algorithms which for decades have 
been considered too complex for practical applications. First 
of all, optimization-based approaches of reconstruction 
problems have become very common. They produce 
efficient variational algorithms of calibration or 
reconstruction – due to the strong regularizing properties, 
the possibility of combining all elementary mechanisms of 
regularization, and the convenience of incorporating 
additional constraints of the set of feasible solutions, 
deduced from a priori information on the solution ( )λx  and 
on the disturbances in the data y~ . A variational algorithm of 
spectrum reconstruction is a numerical implementation of 
the operation: 

 ( ) ( ) ( )[ ] ( ){ }X∈= λλλ λ xxx x p̂ ;optargˆ J  (31) 

where J  is a criterion of optimization, and X  is a set of 
admissible solutions, defined on the basis of a priori 
information derived from physical or technical context of 
the measurement problem under consideration. A key issue 
in this case is the choice of the criterion J  in such a way 
as to mathematically express our answer to the question 
what a good spectrum reconstruction means...  

7. EXAMPLE: SPECTROPHOTOMETRIC ANALYSIS 
OF WINE 

 Instruments, designed for measurement of ethanol 
concentration and sugar concentration in wine, were used by 
wine makers already in the first half of the XIXth century, 
and started to be their common tools after 1857 when Louis 
Pasteur explained the biochemical nature of fermentation. 
However, more complete analysis of wine had to wait ca. 
100 years for the development of such modern analytical 
techniques as liquid chromatography (separation of mixture 
components) and mass spectrometry (elemental analysis). 
The time of spectrophotometry came by the end of the 
1980's. 
 From chemical point of view, wine is a water solution of 
numerous (ca. 1000) organic and non-organic substances. 
The most important groups of them are quantified in Fig. 6. 
Even this incomplete list of wine components enables one to 
imagine in how many parameters (variables) wines may 
differ, depending on their geographical origin, sort of grapes 
and technology used for their fabrication. The task to be 
performed by a spectrophotometric wine analyzer 
(estimation of those parameters or recognition of a pattern 
they belong to) is extremely difficult because the spectra of 
very different wines may differ insignificantly. It may be 
successfully carried out only if very high requirements, 
concerning both metrological features of the ST and the in-
built capacity to process the raw data, are satisfied. The 

progress in this domain is, thus, conditioned by parallel 
advancements of micro- and optoelectronics, on the one 
hand, and methods for measurement data processing, on the 
other. The corresponding R&D works are carried out by 
numerous academic and industrial centres employing 
biochemists and enologists, as well as computer and 
measurements experts.  

 

 
Fig. 6. The classification of main components of red wine [83]. 

 
 As a rule, the industrial R&D works are oriented on 
prototyping complete wine analyzers, their testing and 
production. The Danish company Foss is an example of a 
manufacturer involved in this kind of activities. Ten years 
ago, it launched an instrument which is now distributed in 
three versions: WineScanTM FT120 Basic [84], 
WineScanTM Auto [85] and WineScanTM Flex [86]. It is 
based on NIR spectrophotometry (with an option to include 
Vis region of wavelength) and is able to determine: ethanol, 
glucose and fructose, malic acid, volatile acid, total acid and 
pH in finished wine or must under fermentation. Although it 
is rather large and heavy (ca. 70 kg), its functioning requires 
an external computer with a special software package for 
data processing. Similar instruments are manufactured by 
Brimrose Corporation of America, Bruker Optics, NIR 
Technology Australia, Thermo Fisher Scientific and LT 
Industries. 
 The research works carried out by universities and other 
non-industrial institutions are, as a rule, oriented on solving 
selected problems related to partial analysis of wine rather 
than on the design of a complete analyzer, e.g. [87-103]. A 
typical objective of such research works is to attain – by 
means of spectrophotometry – similar metrological 
outcomes as those attainable by means of expensive systems 
of liquid chromatography combined with mass 
spectrometry. The research works of this type are carried 
out, i.a., by the following institutions: 
− Australian Wine Research Institute (Adelaide) and 

Cooperative Research Centre for Viticulture (Glen 
Osmond) in Australia; 

− EMBRAPA Instrumentação Agropecuária (São Carlos) 
in Brazil; 

− Institut National d'Optique (Sainte-Foy, Québec) in 
Canada; 

− College of Biosystems Engineering and Food Science, 
Zhejiang University (Hangzhou) in China; 
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− Laboratoire Génie de l’Environnement Industriel, Ecole 
des Mines d’Alès (Alès) and Unité Mixte de Recherche 
Sciences pour l’Oenologie, INRA (Montpellier) in 
France; 

− Laboratory of Food Chemistry, University of Ioannina 
(Ioannina) in Greece; 

− Forschungsanstalt Geisenheim, Institut Oenologie und 
Getränketechnologie (Geisenheim) in Germany; 

− Istituto Nazionale di Ricerca per gli Alimenti e la 
Nutrizione (Rome) and Istituto Sperimental per 
L’Enologia (Asti) in Italy; 

− Departamento de Fitotecnia, Universidade de Évora 
(Évora) and Instituto dos Vinhos do Douro e Porto 
(Porto) in Portugal; 

− Kmetijski Institut Slovenije (Ljubljana) and Biotehniška 
Fakulteta, Univerza v Ljubljani (Ljubljana) in Slovenia; 

− Departamento de Química Analítica, Nutrición y 
Bromatología, Universidad de Santiago (Santiago de 
Compostela) and Department of Chemistry, University of 
La Rioja (La Rioja) in Spain; 

− Eidgenössische Versuchanstalt für Obst-, Wein- und 
Gartenbau (Wadenswil) in Switzerland; 

− Department of Viticulture and Enology, University of 
California (Davis) in USA. 

The activity of the countries, traditionally involved in wine 
making and distribution (France, Greece, Italy, Spain, 
Portugal) is evident. We have been also accustomed, during 
last 20 years, to the presence of Australian, Californian or 
Chilean wines on our tables. We may be, however, slightly 
surprised by the presence of China, a country which – after 
spectacular successes in some other domains of economy – 
is joining the league of mass producers of wine. 
 Although the objectives of research works, carried out in 
various regions of the world, are similar; their motivation 
may be, however, slightly different. In the countries, 
traditionally associated with wine culture, the improvement 
of laboratory-dedicated techniques of analysis seems to be 
the main driving force. In the countries where industrial 
wine production is aimed (Australia, Brazil, China), the 
motivation of research works is related to the demand for 
automated monitoring of wine production at all its stages. 
The common motive is the need to counteract the 
adulteration of wine by means of robots mentioned in 
Section 2. Their development may be based on two 
approaches: 
− the translation of spectral data into the language of wine 

contents, followed by the translation of wine contents 
into the language of wine labels; 

− the direct identification of wine on the basis of spectral 
data and appropriately compiled libraries. 

The latter approach requires concerted efforts of 
interdisciplinary teams of scientists (biochemists, 
mathematicians, metrologists) and practitioners (engineers 
and someliers) to teach the robots the skills which are up to 
now reserved for human beings. Useless to say, that many 
wine experts, especially in Europe, look with scepticism at 
all the efforts aimed at automatic wine testing. 

8. CONCLUSIONS 

 The research problems related to the spectrophotometric 
analysis and testing of food ingredients and products – such 
as olive oil, cheese, grains, bread, meat, milk or chocolate – 
are approached in a similar way as those related to wine 
analyzers and robots. The existing instruments are rather 
bulky (both in terms of external dimensions and mass), but 
their miniaturization seems to be imminent due to the rapid 
advancements of micro-technologies applicable in 
spectrophotometry. The number of commercially-available 
miniature and relatively cheap spectrophotometric 
transducers has been growing quickly. Their dimensions are 
in the range of millimetres and – consequently – their 
metrological performance is on the whole far below that of 
laboratory instruments, but this deficiency may be at least 
partially compensated by sophisticated algorithms of 
measurement data processing. It seems very probable that 
the on-going progress in the domain of 
microspectrophotometry and digital signal processing will 
lead, in the perspective of 5-10 years, to the widespread use 
of hand-held spectrophotometric analyzers in food 
manufacturing and distribution, next – in restaurants, bars 
and private kitchens. A wine analyzer of size comparable 
with that of a cellular phone and priced below EUR 300, 
would attract many buyers even today... 
 The overview of methods for spectrophotometric 
analysis of food, presented in this lecture, is demonstrating 
richness and diversity of approaches and techniques used for 
solving relevant problems of food analysis. Although the 
methods for solving those problems have been studied 
mathematically for a long time, only recently they have 
found mass applications. This is mostly due to the progress 
in computer technology which has provided the designers of 
the analyzers with miniaturized and computationally 
powerful means of data processing, such as application-
specific integrated circuits or digital signal processors and 
digital signal controllers. But this is also due to the above-
mentioned proliferation of microspectrometers whose 
metrological potential may be fully exploited provided 
appropriate advances in measurement data processing are 
accomplished. Hence the motivation for further 
development of the methods and techniques for 
measurement data processing, dedicated to food analysis, 
including calibration of spectrophotometric transducers, 
especially of microtransducers. The main trends involve 
generalization of the existing methods towards problems 
described by more sophisticated models of the object of 
measurement, spectral data and their relationship. Apart 
from the increased dimensionality, which is of crucial 
importance, the nonlinearity and nonstationarity of the 
models is considered. When looking to the future, one 
should also mention the methods of measurement data 
processing, which are already in use but whose applicability 
potential seems to be far being exhausted, viz.: methods of 
time-frequency analysis, including wavelet transforms and 
Bayesian methods as means for estimation of concentrations 
or parameters of spectrometric transducers. 
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