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Abstract: In this work we propose an approach to 
prioritizing order of transmission of sensed data in wireless 
sensor network that are very popular in, for example, 
environmental monitoring. The approach is based on 
determination of a consensus relation which is in "nearest 
distance" from all initial rankings shaped by multiple 
sensors of each network node. Statistically and 
probabilistically based analytical models useful for assuring 
network performance and providing reasonable number 
values n – k and m are proposed and discussed, where n – k 
is a number of packets transmitted to the sink; n is a number 
of the network sensor nodes; k is a number of dropped 
packets due to a congestion; and m is a number of node 
sensors (or rankings). 

Keywords: rankings, consensus relation, sensor data fusion.  

1.   INTRODUCTION 

In addition to the traditional task of providing network 
access to mobile users, wireless networks have also been 
increasing deployed in environments where traditional wired 
network infrastructure cannot be easily deployed due to high 
cost, ease of deployment and accessibility. These 
deployments include community wireless networks, 
construction sites, remote areas and disaster areas etc. Such 
deployments often exploit the use of multihop mesh 
connectivity to reduce cost and improve coverage. In these 
(sensor) networks, data fusion (or data aggregation) 
technique has been put forward as an essential paradigm for 
wireless routing shifting the focus from the traditional 
address-centric approaches for networking to a  data-centric 
approach (see, for example, [1-3]).  

In this paper, we focus on the use of wireless mesh 
networks for monitoring and information collection 
purposes. Such deployments are increasingly common in 
industrial monitoring, security and surveillance applications. 
The important characteristics of these deployments are as 
follows:  
• traffic pattern usually consists of a small number of 

gateways collecting or disseminating information to the 
rest of the network;  

• uncontrolled and potentially hostile environment;  
• need for information aggregation and prioritization due 

to network bandwidth constraints.   

In particular, it would be desirable to investigate the 
issues of gathering information in a robust way in the 
presence of large scale node failure. Namely, congestion 
control is necessary due to large number of node failure. We 
assume that packet scheduling and buffer management can 
be enhanced by taking into account usefulness of 
information gathered from various nodes. One possible 
technique is the use of ordinal statistics to aggregate and 
rank information from different sources.  

In an emergency event, it is not possible and unrealistic 
to perform signaling for resource reservation. In addition, it 
is also not possible for the application to decide in advance 
how important their packets are since the importance 
depends on what else is happening in the network. There are 
correlations and redundancy among events generated. In [4] 
such an example has been presented where location 
information is available in the packet header and the goal is 
to maximize overall network coverage. By themselves, the 
packets are equally important. However, if a packet from 
location (x, y, z) has been transmitted recently, then the 
importance of packets from nearby nodes within some time 
window would be relatively less important. The objective is 
thus to generalize the framework of relative importance. 
Based on correlated events which can be used to compare 
and rank information gathering by different nodes, the most 
important packets will be forwarded or buffered.  

In Section 2 a problem of prioritizing sensed data 
transmission in a wireless sensor network is formulated in 
the form of consensus relation determination. A particular 
practical example is given. In Section 3 a statistical 
analytical model of the consensus determination under 
condition of a congestion and/or loss in the network is 
proposed and discussed. And in Section 4 a probabilistic 
analytical model allowing justification of a reasonable 
number of node sensors or rankings is also proposed and 
discussed. 

2.   PRIORITIZING BY CONSENSUS RELATION  

Suppose we have m rankings on set A = {a1, a2, ..., an} 
of n objects. Then we have the relation set Λ = {λ1,  λ2, ..., 
λm}, where each of m rankings (preference relations) λ = {a1 
; a2 ;...~ as ~ at ;...~ an} may include ;, a strict preference 
relation π, and ~, an equivalence (or indifference) relation ν, 
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so that λ = π∪ν. Such a relation λ is generally called a weak 
order. The relation set Λ is titled a preference profile for the 
given m rankings. We can determine a single preference 
relation that would give an integrative characterization of 
the objects. Let a subspace Π be a set of all n! linear (strict) 
order relations ; on A. Each linear order corresponds to one 
of permutations of first n natural numbers Nn. We use a 
permutation β ∈ Π of the alternatives a1, ..., an to represent 
the preference profile Λ and call it consensus ranking [5].  

Assume now that A is a set of n wireless nodes which are 
placed in a physical environment, for example over an open 
area or a building to be monitored. Each wireless node has a 
number of sensors that measures different attributes. These 
nodes communicate through a wireless network, for 
example ZigBee. An example of such a node is the MICAz 
mote from Crossbow. Sensor nodes can be ranked by m 
attributes.  

The ranking λ can be represented by an (n×n) relation 
matrix R = [rij] whose rows and columns are labeled by the 
objects a and 

1 if 
0 if ~ .
1 if 

i j
ij i j

i j

a a
r a a

a a


= 
−

;

≺
                                             (1) 

The symmetric difference distance function d(λk, λl) 
(Kemeny distance) between two rankings λk

 and λl is defined 
by formula 

 ( , )k ld λ λ = | |k l
ij ij

i j
r r

<
−∑                                           (2) 

and may be understood as the number of disagreements 
between two rankings. 

On the basis of the distance (2) between the rankings, we 
can define the distance ( , )D β Λ from β to the profile Λ and 
then formulate a consensus relation determination problem 
as  

 arg min ( , )D
λ∈Π

β = λ Λ ,                                                    (3) 

where 
1

( , ) ( , )
m

k
k

D d
=

λ Λ = λ λ∑ . 

Algorithm for finding a solution of the problem (3) is 
described, for example, in [5].  

One of possible application of the problem (3) is the case 
where a number of sensors collect multiple attributes and all 
these sensed values are available in a single location. A 
centralized algorithm can then be applied to determine the 
consensus relation [6]. An extension of this approach to a 
networked environment where the sensors are distributed 
can be done in the following way. 

Let these nodes be connected in a tree structure, where 
all nodes send packets along the tree to a single sink node. 
However, due to the need to increase the quality of the 
information and reduce the amount of wireless transmission, 
the sensed data will be ranked so that only the most 
important information will be transmitted to the sink first 
and "unimportant" information may not be forwarded.  

Consider Fig. 1 where there are seven wireless nodes and 
single data sink. The (wireless) network connectivity is such 
that only certain nodes ai (after [2], we will call them 
aggregators) can communicate with one another. For 
example, the sink node can only communicate with node a1, 
in its turn a1 can receive packets from a2, a3, a4 and so on. 
For a3, it receives data from a6 and a7. After ranking all 
packets, including its own, a3 sends packets to a1 in order of 
the ranking. The more important packets are sent earlier. 
Such ranking and prioritization are performed on all nodes, 
aggregators, that receive packets from other nodes. As a 
measure to reduce wireless transmission, nodes may be 
programmed to only transmit a small number of packets.  

 

 
Fig 1.  Topology of wireless sensor nodes 

 
A possible performance measure is the following. 

Assume that the sink can only receive n – k packets, then 
only the most important n – k packets should be transmitted 
to the sink. 

As an illustration, consider an automated building fire 
alarm system. Sensors collecting different information are 
placed in different locations in the building. Examples of 
these information are listed in Table 1. The sensors can be 
connected using the topology shown in Fig. 1.  

 
Table 1. Example of sensed data (n = 7, m = 6) 

Sensor
node 

λ1 λ2 λ3 λ4 λ5 λ6 
Location 

Importance
(0-9) 

Tempe-
rature 

(oC) 

Rate of  
Temperature 

Increase  
(oC/minute) 

Smoke 
Level 
(0 – 1) 

Sprinkle 
Status 
(0/1) 

Human 
Presence

(0/1) 

a1 9 26 0 0 0 0 
a 2 2 55 3 0.6 1 0 
a 3 4 135 20 0.5 1 1 
a 4 7 50 1 0.2 1 0 
a 5 1 450 10 0.8 0 0 
a 6 4 40 15 0.3 1 1 
a 7 5 –1 2 0 0 0 

In this example, a5 detects a fire burning with lots of 
smoke and is spreading to location monitored by a2. At the 
same time, the location monitored by a3 is rapidly heating 
up. Assuming that the sink can only receive updates from k 
= 2 sensors, how should each node prioritize packet 
transmission such that the sink get the two most important 
updates?  

 

a 6   

a 1   

Sink   

a 7 

a2 a 3 a4 

a5 

Aggregators
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The preference profile obtained from the sensor data (see 
Table 1) is as follows: 

λ1: a5 ; a2 ; a3 ; a6 ~ a7 ; a4 ; a1     

λ2: a5 ; a3 ; a2 ; a4 ; a6 ; a1 ; a7 

λ3: a3 ; a6 ; a5 ; a2 ; a7 ; a4 ; a1 

λ4: a5 ; a2 ; a3 ; a6 ; a4 ; a1 ; a7                                  (4) 

λ5: a2 ~ a3 ~ a4 ~ a6 ; a1 ~ a5 ~ a7  
λ6: a3 ~ a6 ; a1 ~ a2 ~ a4 ~ a5 ~ a7           
The solution of the consensus relation determination 

algorithm is           
β = {a5 ; a3 ; a2 ; a4 ; a6 ; a1 ; a7}.                           (5) 

Hence, the packets of the nodes a5 and a3 must be received 
by sink in the first place. 
 Thus, it seems that the method works well. However,  
due to congestion and/or loss in the network, or processing 
delay in the node, some data are missing and the set of data 
differs each cycle/second. Say there is a congestion and 
node a3 can only send two data packets instead of three (a3, 
a6 and a7). Which two packets should it send first to ensure a 
"better" result? The choice seems to be important if say a2 
also has to select to send only a2 or a5. 

In general, we can consider a case where each aggregator 
ai having ni adjacent (neighboring) source nodes needs to 
prioritize the data from them if only (ni – ki) packets can be 
transmitted in one round. That is, ki packets are dropped (not 
transmitted) in this round. In the next round, a new set of 
data will arrive. Generally, each aggregator has to make this 
choice and it is not clear which (ni – ki) data will be 
available. For example, node a3 can send only one packet 
and may have packets from a3 and a6 in one round, and a3 
and a7 in another. 

For the complete network we can have iin k n k− = − ∑  
nodes to be ranked where i are indexes of all aggregators 
and a final consensus relation β' will be different from β of 
ideal case. 

Our aim is to highlight analytically expressed conditions 
under which we could manage the negative effect of the 
network congestion or losses. The possible statistically 
based solution is given in the next section. 
 

3. COPING WITH CONGESTIONS 
 
To deal with the problem we use the Kendall rank 

correlation coefficient [7] that is a non-parametric statistic 
used to measure the degree of correspondence between two 
rankings. Kendall's τ ranges from –1 (no agreement, fully 
inconsistent rankings) to +1 (complete agreement, fully 
consistent rankings). If we want to determine a consistency 
between two consensus relations β1 and β2 (recall that the 
relations are strict orders, i.e. without ties) then τ is defined 
by formula: 

1 22
( 1) ij ij

i j
r r

n n <
τ =

− ∑ ,                                                      (6) 

where 1
ijr  and 2

ijr  are elements of relation matrices of the 

consensus relations β1 and β2 correspondingly. 
As shown in [8], there is a relationship between the 

Kendall's rank correlation coefficient (6) and the Kemeny 
distance (2): 

1 2
1 2

( , )
( , ) 1

( 1)
d
n n

β β
τ β β = −

−
.                                              (7) 

Let us consider two relations β1 and β2 for n nodes fixed. 
The natural requirement is for them to be consistent. 
Designate the respective level of consistency through τ1. For 
n – k nodes where k is number of dropped packets (from k 
nodes) we will have other two relations β'1 and β'2, with 
consistency τ2. Evidently, we should save the same level of 
consistency in both cases. Then  

1 2τ = τ                                                                           (8) 
Denoting 1 1 2( , )d d= β β for the case where the number 

of nodes is equal to n and 2 1 2( , )d d ′ ′= β β for the case where 
the number of nodes is equal to n – k we have expressions 
for corresponding rank correlation coefficients: 

1
1 1

( 1)
d

n n
τ = −

−
 and                                                      (9) 

2
2 1

( )( 1)
d

n k n k
τ = −

− − −
.                                           (10) 

Taking into account condition (8) and expressions (9) 
and (10) we have 

1 2
( 1) ( )( 1)
d d

n n n k n k
=

− − − −
,                                       (11) 

2

1

( )( 1)
( 1)

d n k n k
d n n

− − −
=

−
.                                               (12) 

Define a measure of deviation from the Kemeny distance 
value in the form of relative distance change δ: 

1 2 2

1 1
1

d d d
d d
−

δ = = − .                                                  (13) 

Using expression (12), finally, we have 
( )( 1)1

( 1)
n k n k

n n
− − −

δ = −
−

.                                             (14)  

Knowing some predefined value of δ (see Fig. 2) one 
can select reasonable value of k dropped packets for suitable 
values of n. This control mechanism can be applied at both 
level of group of nodes neighboring some aggregator and 
level of several such groups or complete network. 

Particularly, a random dropping scheme may give 
reasonable approximation if the ratio of k/n is relatively 
small. One way to utilize this observation is as follows. For 
nodes further from the sink, there are less sensor data. 
Hence, an actually ranking of the local data collected can be 
performed, and the more important n – k samples are sent. 
Higher up the tree, with more data, a random dropping 
scheme may suffice. The parameter to be controlled is ki 
where ki is the number of dropped packet allowed for node i. 
These ki needs to be estimated based on the feedback 
information propagated from nodes closer to the sink. Note 
that congestion is normally higher closer to the sink.  
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Fig. 2. Graphic presentation of the relative distance change δ 

 depending on number of dropped packets k for different values of n, 
see equation (14) 

 
Use of an efficient (possibly heuristic) algorithm that  

quickly sort the data into two (maybe more) sets such that 
the elements in one set is likely to be more important than 
the other set would provide an approximate classification 
that seems be very useful to enhance performance beyond 
random dropping. 

 
4. REASONABLE NUMBER OF NODE SENSORS  
 
When planning a surveillance system it is necessary to 

know a reasonable number m of sensors in each node. By 
one of the paper authors, for other application area – quality 
assessing – it was proposed [9] to estimate the value of m 
using simple probabilistic Bernoulli model that allows to 
suppose that m must be in the range from 4 to 10 for most of 
applications. 

 In this section, we are trying to apply the approach to 
the sensor network. Thus, we are interested in estimation of 
an upper bound for the number of sensors (rankings) m. At 
that, we are aware of absolutely exact estimations for m 
cannot be determined. So we will search for its approximate 
values. 

 
4.1. The probabilistic model 

 
We use a probabilistic approach to the problem of 

calculating number of sensors and as the examination model 
we also use a situation where m sensors measure m 
attributes of an object under monitoring (see, for example, 
Table 1).  

Let us use the following simple model based on 
Bernoulli trial. Suppose we have multisensors consisting of 
m sensors measuring attributes independently of each other. 
The attribute values also are independent of whether they 
have been found before.  

Let p be the probability of detecting the average attribute 
by a single "average" sensor (we will call it elementary 
probability).  

Then the probability P of that at least one attribute is 
detected by m sensors is defined as follows: 

1 (1 )mP p= − − ,                                                         (15) 

On the other hand, the probability P can be determined 
taking into account its frequency interpretation. Let Dt be the 
total number of attributes and Df be the number of attributes 
that have been detected at least once by m sensors. Then we 
have  

 f

t

D
P

D
� ,                                                                    (16) 

Finally, having regard to equations (15) and (16), we obtain 
the following expression for the number of attributes found: 

 [1 (1 ) ]m
f tD D p− −� ,                                               (17) 

The similar model (however, referring to Poisson 
process) has been used in [10] in order to estimate the 
amount of evaluation required to detect so called usability 
problems in a user interface design. 

Clearly, the number of sensors can be easily obtained 
from the formula (15), i.e. 

 ln(1 )
ln(1 )

Pm
p

−
=

−
.                                                            (18) 

The graph plotted by formula (15) (see Fig. 3) shows 
that there is some critical value mc of m such that any m > mc 
does not give an essential increase of number of attributes 
found. For example, at p = 0.6, there is no necessity to have 
more than 5 sensors as these five sensors have detected 
practically all attributes. 

One more proposition can be made after consideration of 
Fig. 1: the more the number of a sensor group participants, 
the less the probability of a new attribute detecting.  
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Fig. 3. Probability P depending on m for different values of p, see 

expression (15) 
 
4.2. Probability of new attributes detecting due to 

 additional sensors 
 
It is interesting to investigate how the probability P will 

increase after adding one more sensor to the sensor group. 
The following formula shows how many times the 
probability P(m+1) = P1 is greater than the probability P(m) 
= P: 

1
1 1 (1 ) (1 )1

1 (1 ) 1 (1 )

m

m m
P p p p
P p p

+− − −
= = +

− − − −
.                         (19) 
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It can be seen from Fig. 3 that the increase of sensor number 
by unit results in a minor gain of the probability P of the 
attributes detecting. This gain becomes especially 
insignificant for all numbers m > mc = 4. And the more 
probability p the more this insignificance is. 

p=0.05

0.2
0.6

1

1,2

1,4

1,6

1,8

2

1 4 8 12 16 20

Number of experts m

R
at

io
 P

1 
/ P

 

 
Fig. 4. The ratio P1/P depending on m for  
different values of p, see expression (19) 

 
It is worth to estimate this gain in explicit and more 

general form. Let α be the relative probability growth 
resulting from inclusion of k additional sensors into the 
group consisting of m sensors, i.e. 

 ( ) ( )
( )

kP PP m k P m
P m P

−+ −
α = = ,                                 (20) 

where  

1 (1 ) (1 )m k
kP p p= − − − ,                                            (21) 

From (15), (20) and (21) we have 

1 (1 )(1 )
1 (1 )

k
m

m
pp
p

− −
α = −

− −
.                                           (22) 

Calculations of α are reduced in Table 2 and graphically 
presented in Fig. 5. 

As Table 2 and Fig. 5 indicate an essential gain of 
probability of  revealing new attributes due to attraction of 
additional k sensors exists only if the elementary probability 
p is low (see Fig. 5, p = 0.05). In this case, the dependency 
α(k) has almost linear character. However, already at m = 7, 
doubling of found attributes number (α = 100%) happens 
only where k = 10.   

At p = 0.5, if the sensor group has included 4 sensors, 
addition of new sensor is useless as it gives out no new data 
to test a quality of the object. In case of  p > 0.5, one can see 
the loss of necessity in new sensors as early as k = 5, though 
the sensor group consists of a single member. 

Looking at Table 2 one can see that it is important in 
what fashion a sensor group was set up. Indeed, if p = 0.05, 
m = 2 and k = 8 give the relative growth α = 3.11, whereas 
m = 4 and k = 6 produce only α = 1.16, and at that the total 
number of sensors is the same: m + k = 10. Thus, a 
combination of m and k with their fixed sum results in 
greater growth α, if  m < k. 

Table 2. Values of the relative probability growth α(k) for different 
numbers m, see expression (22) 

 k m = 1 m = 2 m = 4 m = 7 

p 
= 

0.
05

 

0 0 0 0 0 
1 0.95 0.46 0.21 0.11 
2 1.85 0.90 0.42 0.22 
3 2.71 1.32 0.63 0.33 
4 3.52 1.72 0.81 0.42 
5 4.30 2.09 0.99 0.52 
6 5.03 2.45 1.16 0.61 
7 5.73 2.79 1.32 0.70 
8 6.39 3.11 1.48 0.78 
9 7.02 3.42 1.62 0.86 

10 7.62 3.71 1.76 0.93 

p 
= 

0.
5 

0 0 0 0 0 
1 0.5 0.17 0.03 0.004 
2 0.75 0.25 0.05 0.006 
3 0.87 0.29 0.06 0.007 
4 0.94 0.31 0.06 0.007 
5 0.97 0.32 0.06 0.008 
6 0.98 0.33 0.07 0.008 
7 0.99 0.33 0.07 0.008 
8 1.0 0.33 0.07 0.008 
9 1.0 0.33 0.07 0.008 

10 1.0 0.33 0.07 0.008 

p 
= 

0.
8 

0 0 0 0 0 
1 0.2 0.03 0.0013 0 
2 0.24 0.04 0.0015 0 
3 0.25 0.04 0.0016 0 
4 0.25 0.04 0.0016 0 
5 0.25 0.04 0.0016 0 
6 0.25 0.04 0.0016 0 
7 0.25 0.04 0.0016 0 
8 0.25 0.04 0.0016 0 
9 0.25 0.04 0.0016 0 

10 0.25 0.04 0.0016 0 

The number k can be easily determined in explicit form 
using expression (21). That is 

 
ln(1 ) ln(1 )
ln(1 ) ln(1 )

k kP P
k m m m

p P
− −

= − = −
− −

,                       (23) 

In practice, the number k can be calculated on the 
assumption of desirable or critical value of Pk known. 
Surely, the elementary probability p should also be given or 
estimated. 

The probability p is usually recommended to be found 
approximately by results of practical sensor tests. In [10] it 
was proposed to use the following estimations: 

(1)f
t

D
D

p
�                                                                 (24) 

and 

Number of sensors m 
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(2)

2
(1)

f

f

D
p

D
−� ,                                                          (25) 

where Df(1) and Df(2) are average numbers of different 
attributes (events) detected by a single sensor and a pair of 
sensors correspondingly. Expressions (24) and (25) are 
easily derived from (17). 
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Fig. 5. Graphs (for p = 0.05, 0.5 and 0.8) of the relative probability 

growth α depending on number of additional evaluators k for different 
numbers m, see expression (22) 

 
5.   CONCLUSION 

 
It would not be out of place to notice that statistical 

considerations of Section 3 and the probabilistic model 
discussed in Section 4 are based on assumptions that hardly 
characterize real situation of the sensor networking. For 

example, probabilities of different attributes revealing are 
different and often dependent on each other. In this relation, 
developments of new models more exactly describing the 
situations are welcome.  

Nevertheless, the discussed models allow to obtain 
interesting and useful recommendations on assuring wireless 
sensor network performance.  

The proposed in the paper analytical models are ease to 
use and they can be particularly useful for implementation 
of mobile agent technology based sensor networks [11]. 
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