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Abstract: The problems involving the validation of 
metrological software are explored in this paper. This 
important module of measuring systems fulfills the 
mathematical processing of measured data. The concept of 
validation and their realization is considered based on 
building a conceptual model of software components under 
examination. The presented method helps software 
validation through estimating intervals specified within 
which the estimates of quantities indirectly measured should 
lie.  
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1.   INTRODUCTION 

Software engineering considers software to be a separate 
product. Quality assurance regarding the software means 
that software shows correctness and consistency with 
respect to provided references or standards. The basis of 
objective conclusions can be measurements of quality 
metrics in real environment of software implementation and 
activity.  

The process of software evaluation is a validation 
process [1]. In this article we present the validation involved 
metrological programs, since they are most frequently used 
components of software in coordinate measurements.  

Establishing whether the validated software is capable to 
give results within the stated intervals depends strongly 
upon the measurement task, becoming therefore a starting 
point for studies leading to an estimation of acceptance 
criteria in the form of permitted ranges. For software 
addressed for coordinate metrology applications bias and 
precision are basic measures indicating result’s accuracy. 
Intuitively rather not in formal way speaking a precision 
expresses a potential imperfection in activity of 
measurement model due to our lack of knowledge while a 
bias is a recognizable imperfection.  

In order to deal with validation problem the conception 
had been formulated based on building a conceptual model 
of software components under examination and their 
analysis. The analysis incorporated the parameters estimated 
in fundamental metrological programs. They have been 
developed to perform parametric identification of substitute 
geometric features [2].  

 

2.   VALIDATION PLAN  

Validation strategy establishing is the first, most 
important operation in validation process that consists in a 
choice of appropriate suitable testing model in general. 
Unfortunately, the universal rules for correct validation of 
complex measuring systems do not exist.  

Usually two approaches are taken. First an „axiomatic“ 
approach relays on modeling technique and leads to the 
validation of theoretical model underlying the validated 
software. Second, an „empirical“ is applicable on closed and 
unavailable for experimenter software structure, where the 
software being tested may not be apparent. The robust and 
effective apparatus for simulations experiments, based on 
black box concept, or formalized methodology of 
experiments with reference artifacts decide these empirical 
methods are very popular. This way of testing seems to be 
indispensable in such cases, when building of sufficient 
adequate model of object is difficult or just impossible, e.g. 
in testing of software packages, which were developed for 
special purposes. The modeling techniques give more depth 
and exhaustive knowledge about inspected object, and it is 
sometimes the preliminary step of validation process (pre-
validation).  

The validation is realized with regard to the integrated 
testing rules, i.e. component testing. The modular approach 
is applied, substituting the validated original by their 
mathematical representations.  

3.   DECOMPOSITION RULE 

The software quality evaluation of real measuring 
systems by a complete examination is practically unfeasible 
because of its complexity. System decoupling enables 
replacing an evaluation of entire software product by the 
particular layers design analyzing. Highest quality demands 
are formulated with respect to the metrological software 
integrated with such measuring systems like CMM-s. The 
subjects under consideration are programs being the 
consistent parts of this software module. The programs of 
concern are programs for parametric identification of such 
features as a straight line, a circle, a sphere, a plane, a 
cylinder and a cone. 
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4.   THE COMPONENT MODEL Searching of the Newton’s correction can be interpreted 
as linear approximation of the residual function r  with 

its linear representation .  

)( p
jj ppp )()( rJ +δ

The ability of realization the wide variety of measuring 
tasks by them allows the module decomposition and 
producing the model in mathematical term for each relevant 
task separately. Each identified by program feature can be 
defined as a function, taking general implicit form (1).  

 , (1) 0=),( puF

The equations system (4), being the base for further 
parameters assessments in program, is representing the 
source functional relations between input and output model 
variables.  

The results of this local linear approximation have 
simple geometric interpretation. They form in -data space 
a solution vector lying in plane tangent to m -dimensional 
surface representing function at fixed value  of  - 
components.  

n

p~ m

where , , is a vector modelling the 
input, i. e. quantities measured directly, a vector of intrinsic 
parameters , , denotes program 
outcomes, i.e. quantities measured indirectly
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parameters representing geometric feature depends on the 
type of it. The function of the form (1) represents quite often 
a nonlinear model with respect to both input quantities and 
parameters.  

6.   ERRORS – VARIABLES MODEL 

5.   PROGRAMS 

The estimation of unknown parameters is a task, realized 
by each program being a consistent part of analyzed 
software module. Each program minimizes an objective 
function Q (2), defined as a norm of orthogonal residuals 
between given feature model of the form (1) and 
observations of -independent variables, known after 
measurements.  
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In our analysis any  measured data point is associated 
with three Cartesian coordinates in the form of vector 

. The direct measured quantities in 
expression (1) one considers to be realizations of separate 
random variables of random vector U . One 
assumes that each data point is associated with 

, - realization of random error 

vector. A vector estimate :

thi
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 iteration is assessed from given -data, mapping a real 
object, including the errors. Therefore the vector values are 
considered to be observations of random variables 

thj n

P , 
inferred from input quantities values and their errors.  where dupfupr −= ),(),(

),( up
 denotes a vector of 

residuals,  is a redefined function (1),  is a vector 
of observations.  

f d
An estimator of bias and precision concept is proposed 

of the form (5). 

 s
jjj ppppp ∆)( *** ++=−+= ε)) .  (5) Analyzed programs were based upon the Gauss-Newton 

method. The basis of this method is local approximation of 
Q function using Taylor series expansion with its first and 
second order terms (2), within the small neighbourhood of 
fixed point , close to a stationary point (corresponding to 
the minimum of  Q). 

p~

 0)~)(()( =−∇+∇≅∇ pppQpQQ 21 , (3) 

The random error ε  unknown from sign and value after 
measurement is resulting from random effects associating 
with actual experiment realization. The systematic error ∆  
is arising rather due to the systematic effects e.g. an offset in 
input data being in relationship with an experiment strategy. 
It can be intrinsic to measurement strategy by particular 
choice of probed regions or density of measurement pattern. 
We introduce into analysis the quantity potential true value 

. It is representing the entire measured surface, when the 
number of data points and replicate trials in experiment 
hypothetically increase up to infinity (6) or one can deduce 
with a suitably small uncertainty which might be zero that 

 is a true value of estimate for sufficiently data 
representation of measured profile (6).  

j

s

*p

*p

where , and J stands 
an Jacobian matrix of objective function Q.  

(p)(p)o(p)r(p)r(p)Q T JJ≅+∇∇=∇2

Referring to the fact, that the gradient of function should 
equal to zero at stationary point, an estimation of optimal 
parameters  relies on substituting  iteration of non-
linear model by its linear approximation and successively 
refining this approximation by a correction in each iteration 
step near approximated parameter . Newton’s correction 
in subsequent j-th iterations follows from solving the 
equations given in (4).  

p thj

p
 s

j pppppBias ∆][][ ** =−=−= ))) E  . (6) 

Experiment replications for the same model, under 
repeatability conditions, indicate that the estimates resulting 
from random character of input data thereby are changing 
randomly in neighbourhood of expected value p) : 

 .  (4) 0=−− ))(()( jj ppp rJ δ

                                                           
1 For the sake of clearness only the matrices will be next representing by 
boldface letters  pp j )) =][E .  
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7.   BIAS ESTIMATION 

A bias in estimates cannot be determined exactly 
because it depends on true values of  quantities (7).  p

 ppppPBias j −=−= )) ][][ E . (7) 

We utilize to this end a quantity called parameter effects 
curvature (PE) and techniques developed by Bates and 
Watts [4] derived from Box theory [3]. This measure as well 
as intrinsic curvature (IN) is used in fact to characterize a 
degree of nonlinearity in measurement model to be 
analyzed, i.e. closeness of linear approximation to the 
nonlinear model.  We cannot say with absolutely certainty that we know 

exactly the correct value of parameter’s estimate even if we 
know the limits within which form deviations of profile 
have to be kept or possible random variations.  The 
computed values vary for any real object and in any real 
experiment. The aim of analysis is then to estimate a bias, 
basing on the available knowledge.  

The nonlinearity can be assessed generally by higher 
order terms neglected in linear function approximation made 
by means of Taylor series expansion (3). It can be 
quantitatively expressed by matrix, say , based on 
Hessian structure. It consists of  partial second 
derivatives in fact but one considers only 

H
mxm

21 /)( +mm

n

 
distinct elements because of Hessian symmetry. The 
elements of this matrix are calculated at each point of -
dimensional space of sample giving - vectors. They can be 
projected onto a tangent plane replacing the surface 
spanning the function  values (see Fig.1.a) on which 
the  - vectors of Jacobian matrix are already located and 
onto an orthogonal plane to it also.  

n

)( pf
n

Many contributors to uncertainty of parameter estimate 
one can observe or suspect. Complexity of coordinate 
measurement as well as susceptibility of measurement result 
to many factors makes rational appointing and quantifying 
only these having significant impact into statement of 
uncertainty. Helpful in analysis of importance of factors 
essentially influencing the measurements results is a “fish 
diagram”, known as Ishikawa diagram.  

 

The following consideration was applied. The universal 
measurement task realized for Gaussian features by 
metrological software consists of two stages: assessing the 
estimates of measured quantities, following collecting a set 
of input data. One reduces a number of potential sources of 
inaccuracy into two main factors affecting the results: 
associated with each program quality (simplified model, 
data processing techniques) and relating to coming data, the 
factors that are not avoidable and they cannot be prevent 
from happening. They influence both bias and precision in 
estimates.  

Fig. 1.  a. m-dimensional surface of expected values of model function 
b. Decomposition schema  

Tangential components can be related to nonlinearity in 
estimated parameters, which are of the form of curved 
parameters lines (see Fig. 1. b).  

7.1.  Bias decomposition  
Thus, we perceive two not to excluding sources of bias 

in estimates, damping or eliminating others. These sources 
are a bias present in experimental data and therefore 
affecting the parameters estimates and a bias due to the 
nonlinearity of the assumed model. This latter does not 
depend upon experimental sample quality directly but it 
depends mainly on particular parameterization used in 
mathematical model. Both of them, parameterization and 
model, are apparently arbitrary for a given object in 
coordinate technique.  

According to figure one can decompose a vector 
representing the function in tangent plane. First the matrix 
compounded of matrices J 2 and  is evaluated at given 
point 

H
p~ . In order to obtain the tangential and orthogonal 

components we apply the QR factorization technique. This 
method factors a matrix having  size evaluated 
in - sample space values as a product of orthogonal matrix 
Q by upper triangular matrix 

23 /)+m(m
n

R~  [4], such that:  
Two components of overall bias in parameters are 

provided by (8).   [ ] 







=

0
RQHJ
~

. (9) 

 ][][][][ ***)( pBiaspBiasppppPBias j +=−+−= ))E . (8) 
The first  columns of Q matrix are the vectors 

related to tangent plane and  columns are to 
orthogonal one. In this way the projected matrix can be 
attainable. We form thus matrix A multiplying the matrix of 
second derivatives by matrix Q .  

nxm
)( mnnx −

T

This distinction between these two main bias components is 
in conformance with experience and observations of 
phenomena accompanying the coordinate measurements.  

7.2.  Bias due nonlinearity 
Following [3-4], an approximate bias in the maximum 

likelihood parameters one can be computed with useful 
formula (10).  

We analyze a bias due to nonlinearity since estimators of 
parameters for nonlinear model, obtained using linear 
regression methods obviously have not the optimal 
properties:                                                            

2 For the convenience we designate Jacobian matrix J 

 . (9) ][][ ** pppBias −=E
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It implicates that  uuupOpp p ∆)(∆ +=∈+

T)∆,...,(∆ mppp 1=

, where 

components of vector ∆  are small 
deviations of  from point p p . 

where: matrix 1−= RL ~ , and 2),( pxfd )−=σ  
represents  estimate of standard deviation under usual 
assumptions.  It is worth to note that in practice we do 
neither use relative measures nor a scaling factor.  

From an analysis (4) at given point it turns out after 
many derivations [5] that parameter estimates in least 
squares sense (2) with respect to the model (1) yields the 
relation (12).  

 ,  (12) up ∆∆ M≅7.3.  Bias due data 
An evaluation of this kind of bias is based on 

perturbation analysis. We do not distinguish between several 
sources of bias in input variables like the software being 
supplied by data does not recognize them as well. However 
the knowledge concerning the possible errors assigned to 
given area of identified object should be in our disposal.  

where H denotes derived conversion matrix.  
The equation (12) expresses, via M matrix, the linear 

relation of the variation of parameters random variables to 
the partial deviations of the observations random variables.  

Corresponding covariance parameters matrix is then 
simply given from its conventional definition, taking the 
form:   Assuming the sufficient number of replications of the 

experiments, the expected values of functions on both sides 
of equations (4) are biased by factors resulting from biased 
data:  

 ,  (13) ΤΜΜΘ ⋅⋅= Ψ

where:  
 JJJJ ∆),()],([)],( * +=≅ upupup )) EE[ , and  matrix Ψ  is a data covariance matrix, presumed 

known.  
The variables of , , under holding the 

presumed conditions, are the linear functions of the vector 
. The confidence intervals associated 

with the estimated parameters are then simply assessed 
basing on confidence regions of probability distribution 
function of ∆ .  

lp∆ ),...,( ml 1=

T)∆,...,(∆∆ kuuu 1=

lp

 rupruprupr ∆),(]),([]),( * +=≅ )) EE[ ,  

where  u  is an arithmetic mean of u . 
Taking into account the imposed structure of matrices 
, ∆J r∆ , as well as knowing the bounds of systematic 

perturbations of input data, the unknown bias can be found 
as a solution to the problem of minimization of the term 
(11). 

9.   NUMERICAL UNCERTAINTY 
 2

2rpargminpBias
p

∆][ −≤ δ
δ

J∆) . (11) Quantifying the software impact on computed results 
uncertainty leads to an analysis of its numerical uncertainty 
[6]. Numerical uncertainty of solution is subject to a lot of 
approximations and limitations in software designing and 
implementation (e.g. effects of floating point operations, 
translations, normalizing). Again instead of distinguishing 
these contributors in numerical analysis, much easy the 
comparison methodology can be employed, regardless the 
sources of numerical inaccuracy. An uncertainty can be 
estimated basing on an interval assessed by comparing the 
software calculations after applying the data sets against 
corresponding “true” results. The mathematical model for 
each geometric feature, expressing the relation between 
input and output quantities, is known. “True” value is 
replaced thus with model value, which is assumed in 
experiment plan. But even basing on mathematical formula 
no one relies on the model values if the reference data set 
does not meet special conditions concerning the way the 
solutions were achieved in numerical algorithms.  

7.4.  Bias aggregation  
Triangle inequality can be used to provide the bounds to 

overall bias (7). Following (8) we get:  

 
222 ][][][ *pBiaspBiaspBias +≤ ) . 

Therefore the root sum squared combination of 
corresponding components can be used to estimate a bias 
limit.  

8.   PRECISION ESTIMATION  

In precision estimation the same model of input and 
output variables like in bias analysis is applied as well. 
Following similar consideration, the system of equations (4) 
is analyzed again. For enough much sample size one 
assumes that expected values can be replaced with their 
mean values pp =)  and uu =) , i.e. using an average of 
values obtained from repeated trials of experiment. This 
model is investigated only in the nearest neighborhood of 
u : )(uOu , where we expect the true values can lie.  

This problem can be stated as follows. The objective is 
to design data sets such that the data are varying according 
to the random phenomena and to established strategy. At the 
same time actual computed values should be indeed 
unchanged and equal to stated model values, excepting their 
numerical uncertainty.  

Numerical uncertainty evaluation can be distinguished in 
the following way. Least squares estimates of these 
parameters minimizing the objective function Q (2) are an 
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projection of actual, dependent variable onto plane, defined 
by independent variables being measured. Hence the least 
squares solution should be characterized by property:  

 .  (14) 0=),( purTJ

An equation (14) imposes conditions for each 
independent variable in minimized function. They determine 
the particular requirements involving data set designing [7]: 

 , ,  (15) ∑
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where  denotes  value of one from  independent 
variables,  is a number of observations equal to number of 
data.  

iu
n

thi k

The null spaces technique [8] can provide a solution to 
such problems (15). Null space of mxn -dimensional matrix 

 is a set of all vectors with  components for which 
product of this matrix and the vector equals zero. To get the 
vector values a factorization of transpose of Jacobian matrix 
has been employed by means of singular value 
decomposition (16) [9].  

J m

 . (16) USVJ =T

For presumed matrix J the columns  of V matrix, such 
that corresponding  are equal to zero form an orthogonal 

basis of null space of J . Basing on null space properties, 
the next step in data set generation is scaling residuals by 
choosing the factor from normal distribution. The generated 
points should lie at computed distances from feature surface 
specified by the model parameters. The absolute differences 
between model and actual values give the interval, from 
which the uncertainty  can be assessed.   
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10.   THE PRACTICAL EXAMPLE 

According to standard [2] validated program can be 
accepted as providing results fit for their intended use if 
none of the differences, designated conventionally by q , 
between test results and reference values does not exceed 
the prescribed ranges of errors, agreed as specification for 
particular application area of software. Due to these quality 
metrics that would yield the requirements an uncertainty 
should be finally established that is consistent with 
philosophy of Guide [6].   

We can expect that the values obtained from the 
estimation may give us pessimistic judgment of uncertainty. 
Indeed, using ranges of perturbations and triangle inequality 
one can expect overestimated effects of combined bias. 
Greater reliability of results may be obtained by planning an 
experiment such that it more mimics the reality.   

Let us illustrate the concept of accuracy estimation with 
the example for circle program.  

10.1.  Specification 
For a circle in plane we take the intrinsic parameters 

 having model values: center in T
oxp )R,y,( o= x  

axis =0,000 mm, center in  axis =0,000 mm, radius 

R=25.000 mm. Suppose the data set {  consists of 
=8 points, uniformly distributed on the circular profile. 

They are subject to perturbations assigned to given points 
(measured workpiece and strategy) and to random errors 
(measuring device, environment, operator). Let the range of 
perturbations in data in each axis amounts to 0,002 mm, the 
random effects have properties of white noise with 
performance (0, = =0,002 mm).  The residual 
function for a circle feature has known form:  
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where: ( ii yxf −= , 
The matrices J and H are arranged by partially 

differentiating with respect to , , .  oy
The reference data set (Table 2, Fig.2) respecting 

condition (14) makes possible the numerical uncertainty we 
get.  

 
 

Fig. 2.  Distribution of 8 points on a circle profile  

Table 1.  The reference data set.  

Number of 
point , mm ,mm 

1 24,9049 2,1789 

2 16,3089 19,4362 

3 2,1295 24,3406 

4 -19,1308 16,0526 

5 -25,5168 -2,2324 

6 -15,8404 -18,8778 

7 2,1658 -24,7554 

8 19,2379 -16,1426 

10.2.  Numerical results  
Computed values of the bias (9), bias (11) are shown in 
Table 2.  
For estimating a precision given (13) the mean values of 

8
1{ ix  is assessed after 100 generations of data sets and 

respectively ,( yx oo  are calculated based upon values 
acquired through circle fitting to these generated data sets.   
Corresponding uncertainty U , numerical U  and overall 

 are shown in Table 2 as well.  U
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 Table 2.  The simulation results.  

Contributors ox , mm oy ,mm R ,mm 

)( *pBias  1,061E-4 1,060E-4 2,10E-4 

)( pBias )
 0,050 E-4 0,0601 E-4 0,0901 E-4 

PU  2,03E-3 2,02 E-3 2,9 E-3 

NU  2,68E-6  1,72E-6 1,01 E-6 

U  2,093E-3 2,109E-3 3,043E-3 

 

11.   DISCUSSION  

Modeling technique and simulation investigations 
conducted on presumed models is the ground of validation 
approach presented in this article. Several methods have 
been proposed. Generally, the procedure to follow in 
uncertainty analysis relies on identifying all relevant and 
significant sources of errors affecting accuracy, qualifying 
them to contributing a bias and a precision separately, 
creating an appropriate mathematical model individually for 
each of them and finally aggregating all representations as 
contributors to combined uncertainty. An uncertainty due to 
numerical round-off effects is taken into consideration in 
uncertainty analysis as well.  

The methods may be useful in formulating the criteria 
for the assessment of compliance of software results with 
requirements. Basic rule of standard procedures [2] is that 
the outcomes of software subject testing have to be 
compared with corresponding reference values. It allows 
establishing if there are no essential discrepancies between 
them. For that reason in the context of metrological software 
validation the uncertainty estimation through determination 
of coverage interval is important.   

Nevertheless our approach has this advantage that an 
effort has been made to respect a bias in uncertainty 
statement. Highly significant attention is put on dominating 
random effects in majority standards in respect that the 
measurement results are susceptible to many unidentified 
sources of inaccuracy. Taking strong dependence of results 
inaccuracy on measurement strategy into account each 
arranged measurement in coordinate metrology may be 
regarded as particular measurement method and therefore be 
evaluated by appropriate metrics [10].  The measurement 
results according to this particular “method” may be 
considered to comply with requirements regarding 
prescribed bias limits (results are reliable) and a precision 
(results are certain) if they were specified for this  “intended 
use” of software. The authors claim systematic errors as 
recognizable with sign and value components of results, 
which can and should be use in corrections. The bias 
analyzed here characterizes better the properties of indirect 
measured variables depending on given measurement model 
and on properties of direct measured variables.  

The properties of least squares estimate are still under 
interest because of big popularity of least squares estimators 
in practice. We have been referred to early works directed to 

this area, exploring and applying Box theory and Bates-
Watts technique to deal with problem of bias estimation.  

However the question appears of haw to combine a bias 
and a precision in uncertainty if the bias varies depending on 
many factors and an assessment it’s limit is only possible. 
This kind of information estimated from judgment and 
experience according to recommendations [6] is usually 
classified as uncertainty of type B. Authors suggest these 
two components should be separately estimated, tested and 
apart from uncertainty interval separately reported in 
validation certification.  

12.   CONCLUSIONS 

Summing up the formal model for bias and precision 
estimation developed here due to computer implementation 
allows carrying out practical software examination as well 
as utilizing it in software validation. 

Unlike to others methods applied in validation 
alternatively, it makes possible monitoring of chosen 
variable behavior, and allowing an analysis of the impact 
into overall uncertainty of certain separately considered 
factors. 

Disadvantageous aspects of the evaluation using the 
modeling technique are unfortunately appearing likewise. 
This way of validation needs the model building and, as also 
in such cases, its adequacy remains a factor deciding on 
effectiveness of usage, that is an undoubtedly shortcoming. 
The validation requires the pre-validation, checking if a 
coherence of the simulated and real data appears, on which 
the inference about accuracy is to be carried on. 

The methods used in software validation are under 
development. The procedures are still improved and brought 
to maturity like the metrological software is at the same time 
changing. It is worth pointing out that similar analysis can 
be extended to other nonlinear models and therefore it can 
be useful in many software applications in metrology.  
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