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Abstract: Aerodynamic balances are employed in wind 
tunnels to estimate the forces and moments acting on the 
model under test. This paper proposes a methodology for the 
assessment of uncertainty in the calibration of an internal 
multi-component aerodynamic balance. In order to obtain a 
suitable model to provide aerodynamic loads from the 
balance sensor responses, a calibration is performed prior to 
the tests by applying known weights to the balance. A 
multivariate polynomial fitting by the least squares method 
is used to interpolate the calibration data points. The 
uncertainties of both the applied loads and the readings of 
the sensors are considered in the regression. The data 
reduction includes the estimation of the calibration 
coefficients, the predicted values of the load components 
and their corresponding uncertainties, as well as the 
goodness of fit. 

Keywords: internal strain-gage balance, calibration 
uncertainty, wind tunnel tests. 

1.   INTRODUCTION 

 The staff of the Aerodynamic Division of the Institute of 
Aeronautics and Space, Brazil, has been concerned with the 
quality of the data originating from aerodynamic tests. 
Following international recommendations based on the 
Metre Convention, several studies have been conducted in 
order to improve the metrological reliability of 
measurements, tests and calibration procedures carried out 
in the Subsonic and Transonic Facilities. One of these 
projects is the development of methodology for the 
assessment of uncertainty in the aerodynamic loads acting 
on the test article. 

The instrument used to estimate the aerodynamic loads is 
the aerodynamic balance, whose calibration uncertainty 
contributes significantly to the overall uncertainty in wind 
tunnel testing. 

International organizations, such as the American 
Institute of Aeronautics and Astronautics (AIAA), have 
been exchanging information and collaborating on the 
development of a balance calibration uncertainty 
methodology, but this has been only partially addressed [1]. 

The aim of this study is to present a methodology for the 
uncertainty estimation of internal balance calibration, 
according to international recommendations [2].  

 
1.1.  Aerodynamic loads 

The terminology employed for designating the 
aerodynamic load components is: axial force (AF), side 
force (SF), normal force (NF), rolling moment (RM), 
pitching moment (PM) and yawing moment (YM). 

1.2.  Multi-component aerodynamic  balances 
Basically, there are two kinds of balances: internal and 

external. The former is designed to fit within the test article 
and the latter carries the loads outside the tunnel before they 
are measured (Fig. 1). 

 

 
a) 
 

 
b) 
 

Fig.1. a) External balance. b) Internal balance.  
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The balance measures the loads by using strain-gages 
arranged in a Wheatstone bridge.  

The balance type employed in this study is an internal 
force balance which consists of five forces and one moment: 
NF1, NF2, SF1, SF2, RM and AF [1,3]. NF1 and NF2 are 
combined to calculate the normal force and the pitching 
moment, SF1 and SF2 are combined to calculate the side 
force and the yawing moment. The units for bridge output, 
force and moment are volt, newton and newton×meter, 
respectively. 

2.   METHODS 

2.1.  Internal balance calibration 
The calibration of an internal balance involves the 

application of known weights to the balance and recording 
strain-gages readings at each force and moment 
combination. A set of approximately fifty weights of 
nominal values 2.0, 1.0, 0.5 and 0.25 kg is used to apply the 
calibration loads. These weights are compared against 
standard weights of class F1, according to OIML 
terminology. In total, 81 loading combinations are 
employed. Loading number 1 is replicated eight times, i. e., 
loadings 1, 12, 21, 30, 41, 51, 60, 69 and 81 are similar. 
Table 1 presents some typical loading values. 

 
Table 1. Examples of calibration loadings. 

 
Loading number Aerodynamic 

Component 3 17 58 
AF (N) 0 0 39.2 
SF (N) 0 -39.2 0 
NF (N) -78.4 0 0 

RM (Nm) 0 0 7.64 
PM (Nm) 0 11.76 0 
YM (Nm) -7.35 0 0 

 
Calibration uncertainties in the weights applied for axial 

force are shown in Table 2. The first column identifies the 
numbers of the loadings where AF was charged. The second 
column discriminates the weights and the third is the 
combined uncertainty in the weights. 

 
Table 2. Calibration uncertainties in the applied weights. (×10-05 kg) 

 
loading number weights uncertainty 

8 27;37 5.76 
9 37;34;27;32 7.55 

19 37;30 5.29 
20 37;34;30;27 6.89 
28 34,35 4.54 
29 34;35;38;30 6.88 

31 to 35, 58 27;37;38;35 7.52 
36 to 39 37;35 4.98 

40 34,37 4.88 
57 37;38 5.16 
66 32;42 5.60 
67 32;34;35;42 7.21 
77 32;34 4.88 
78 27;32;34;42 7.77 

The internal balance is mounted inside a cross like 
structure, called the calibration body (Fig. 2).  

The loading is performed by employing a system of 
trays, cables and pulleys (Fig. 3). There are 14 trays for the 
application of weights.  
 

 
 

Fig. 2. Calibration body. 
 

 
 

Fig. 3. Calibration system. 
 
The nominal values of the weights and the identification 

of the trays used in the loading numbers 3, 17 and 58, 
chosen as examples, are presented in Table 3. 

 
Table 3.  Nominal Values of the weights applied to the calibration 

system. 
 

Mass (kg) Tray 
number Loading 3 Loading 17 Loading 58 

T1 0 0 2.0 
T2 0 0 2.0 
T3 0 0 0 
T4 2.5 2.0 0 
T5 2.5 0 0 
T6 0 2.0 0 
T7 0 0 0 
T8 0 0 3.25 
T9 0 4.0 0 

T10 0 0 0 
T11 2.0 0 3.25 
T12 2.0 0 0 
T13 2.0 0 0 
T14 2.0 4.0 0 
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2.2.  Functional relationship 
The mathematical modeling of the calibration relates the 

aerodynamic components F to functions of the strain-gage 
bridges readings R (Eq. 1). The system is multivariate and 
consists of a linear combination of twenty seven functions of 
R [3]. These functions are called basis functions and 
correspond to: R1, R2, R3, R4, R5, R6, R1R1, R1R2, R1R3, R1R4, 
R1R5, R1R6, R2R2, R2R3,…, R6R6 . There are 27 adjustable 
parameters for each one of the six aerodynamic components. 
The model´s dependence on its parameters a and b is linear.   
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As an example, for the axial force AF, Eq. (1) becomes: 
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Cross-product terms involving the input quantities are 

included in the polynomial because it is not possible to 
eliminate the interactions between bridges completely.  

At each one of the 81 loadings, the bridge outputs are 
read several times and the mean values and standard 
deviations are computed. 

 
2.3. Parameters estimation 

According to the least squares methodology described in 
[4], a calibration curve is fitted to each set of the N = 81 data 
points (R, F). Each of the six aerodynamic components is 
arranged in a vector F whose dimension is 81×1. The design 
matrix R of the fitting problem has a dimension of 81×27 
and is constructed from the basis functions.  

Denoted by p̂  the parameters of the fitting, the least 
squares results in: 
 

( ) ( )FVRRVRp 1T11T ⋅⋅⋅⋅⋅= −−−ˆ        (3) 
 

RT: transpose of the matrix R; 
V: covariance matrix; 
V-1: matrix inverse of V. 
 

 Matrix ( ) 11T RVR −− ⋅⋅ is called the error matrix because 
it contains information about uncertainties of the estimated 
parameters. Its diagonal elements correspond to the 
variances (squared uncertainties 2

pu ˆ ) and the off-diagonal 
elements are the covariances of the fitted parameters, 
( )ji p,pu ˆˆ . It can be denoted by pV ˆ . 

 
2.4. The covariance matrix 

The covariance matrix V is related to the uncertainties of 
the applied loads uF. It is made up of the contributions of the 
error sources due to the application of weights in the 
calibration system VW and the uncertainties in the readings 
of the bridges VR: 

 
T

RW DVDVV ⋅⋅+=            (4) 
 
2.5.  Matrix VW 

In this study, VW is considered an 81×81 diagonal matrix. 
Its elements are based on the uncertainties declared in the 
calibration certificates of the weights employed in the 
loading process and also in an estimation of the errors 
caused by the calibration system. The recognized system 
errors are misalignments of cables and pulleys and 
interactions between sensor bridges. A mathematical 
approach was employed to quantify the contribution of such 
errors, which consists of employing the fitting method 
described in section 2.3, but setting the covariance matrix 
equal to the identity in Eq. (3). This corresponds to first 
assigning an uncertainty value equal to 1 to the data points.  

Following this, the uncertainty contribution to the set of 
measurements is approximated by the standard deviation of 
the fitting, S, which is the positive square root of the 
expression: 
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where: 
 
N is the number of data points; 
 m is the number of parameters to be fitted; 
Fi applied is the applied load which corresponds to the weight 
applied to the calibration system; and 
Fi fitted is the fitted load value, evaluated through the least 
squares fitting.  

 
2.6. Matrix T

R DVD ⋅⋅  

The matrix T
R DVD ⋅⋅ corresponds to the variances and 

covariances in F due to uncertainties in the bridge readings 
and it is also 81×81. D is 81×6 and its elements are the 
sensitivity coefficients evaluated by taking the partial 
derivatives jRF/∂∂ in Eq. (1). For the axial force, the 6 
columns of matrix D are formed by: 

 

61,1,651,1,541,1,4

31,1,321,1,211,1,11,1
1

RbRbRb

RbRbR2ba
R
AF

++

++++=
∂
∂

  

 

61,2,651,2,541,2,4

31,2,321,2,211,1,21,2
2

RbRbRb

RbRbRba
R
AF

++

++++=
∂
∂ 2

    (6) 

…          

61,6,651,5,641,4,6

31,3,621,2,611,1,61,6
6

RbRbRb

RbRbRba
R
AF

2++

++++=
∂
∂

 

187



 Parameters a and b of Eqs. (6) were previously estimated 
by performing the least squares as shown in section 2.5.  
 The replication of loading number 1 supplies 
information for the construction of the 6×6 matrix VR (Eq. 
7), which represents the variances and covariances in the 
readings of the sensors. The output readings of the bridges 
resulting from the similar loadings 1, 12, 21, 30, 41, 51, 60, 
69 and 81, are the basis for the calculation of the six 
standard deviations, uRi, and the covariances between 
readings, u(Ri,Rj).  
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2.7.  Goodness-of-fit 
The goodness-of-fit is evaluated through the chi-square 

quantity, 2χ , defined as [5]: 
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where ui is the uncertainty in the applied load. 
 

Taking into account the covariances, in  matrix notation, 
Eq. (8) becomes: 
 

( ) ( )fittedapplied
1T

fittedapplied
2 FFVFFχ −⋅⋅−= −     (9) 

 
 A value for the chi-square which indicates a good fit is 
typically close to the number of degrees of freedom: 
 

mN −=ν                  (10) 
 

This leads to another quantity, the reduced chi-square: 

ν
χχ

2
2 =ν                      (11) 

 
whose desired value is approximately equal to 1. 
  
2.8.  The predicted load values 
 One can use the results of the internal balance calibration 
to predict the aerodynamic forces and moments which 
would act on a model tested in a wind tunnel. The predicted 
aerodynamic values correspond to the fitted loads Ffitted (Eq. 
12). Choosing a particular set of readings, Rj, obtained in the 
calibration process, each aerodynamic component is 
estimated using its corresponding adjusted p̂  parameters: 
 

p̂RF jfitted ⋅=                (12) 
 
Rj is 1×27 and p̂  is 27×1.  

The uncertainty in the predicted aerodynamic component 
is the positive square root of: 
 

T
jp̂jF RVRV

fitted
⋅⋅=               (13) 

 
 Equation (13) is equivalent to applying the law of 
propagation of uncertainty in Eq. (1)[2].  

3.   RESULTS AND DISCUSSION 

The least squares regression provides the fitted 
parameters vector p̂ , its variances and covariances. The 
calibration data reduction also includes the predicted load 
values and their uncertainties. The quality of the fit is 
quantified by the chi-square. 

Code in MATLAB® and Excel® worksheets were used to 
perform the data reduction. 

To check for numerical instabilities in matrix inversion, 
determination of the rank and QR decomposition of matrix V 
was performed. The rank estimate revealed that rows and 
columns of V are linearly independent [6].  

 
3.1 Covariance matrix 
  The uncertainties declared in the calibration certificates 
of the weights are combined with an estimation of the 
uncertainty due to the error caused by the loading system. 
The difficulty of experimentally addressing this estimation 
led to the option of statistically quantifying it.  So, the 
procedure presented in section 2.5 was employed to supply 
the standard deviation S of the fitting.  

Table 4 presents the standard deviations of the six 
aerodynamic components. The axial force and rolling 
moment standard deviations were the lowest estimated 
values and were chosen as an indication of the error 
associated to the calibration system.  

The better behavior of these components was expected 
as individual bridges were employed to measure these 
components, whilst the results of the other components were 
taken from a combination of bridge readings. 

The reason for choosing the lowest values is a question 
of metrological goal in achieving the best level of 
repeatability as possible in the calibration process.  

For the three force components, contributions assigned 
to the diagonal matrix VW, due to the calibration system, are 
around 1.5×10-2 squared. For the three moment components, 
this value is 6.6×10-2 squared.  

This choice is arbitrary and is based on 10 % of the 
standard deviations S, i.e., it is assumed that the system 
contributes only this amount to the dispersion of the data.  

 
Table 4. Standard deviation. Unit: N (force), Nm (moment of force).  

 
load AF SF NF RM PM YM 

S 0.153 0.590 0.403 0.066 0.073 0.125 
 

Bridge readings for loadings described in Table 5 are the 
basis for the covariance matrix VR (Table 6). 

The matrix is diagonally symmetric. Main diagonal 
elements are variances. Off-diagonal elements represent 
covariances. 
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Table 5. Replication for loading number 1. Unit: mV .  
 

Bridges output readings loading 
R1 R2 R3 R4 R5 R6 

1 0.114 -0.085 5.596 -0.170 -0.625 0.127 
12 0.107 -0.076 5.605 -0.186 -0.625 0.134 
21 0.102 -0.111 5.598 -0.171 -0.622 0.125 
30 0.090 0.143 5.617 -0.220 -0.627 0.130 
41 0.114 -0.070 5.602 -0.175 -0.622 0.125 
51 0.114 -0.057 5.606 -0.187 -0.622 0.128 
60 0.119 -0.145 5.597 -0.184 -0.620 0.127 
69 0.083 0.221 5.606 -0.248 -0.625 0.132 
81 0.116 -0.098 5.596 -0.168 -0.621 0.123 

 
 

Table 6. Matrix VR. All elements are multiplied by 1×103. 
 

0,16 -1,28 -0,05 0,26 0,02 -0,02 
-1,28 15,55 0,55 -2,82 -0,20 0,21 
-0,05 0,55 0,05 -0,11 -0,01 0,01 
0,26 -2,82 -0,11 0,72 0,03 -0,06 
0,02 -0,20 -0,01 0,03 0,01 0,00 

-0,02 0,21 0,01 -0,06 0,00 0,01 
 
3.2 Parameters estimation 
 Performing the least squares fitting considering 
uncertainties in the data points (Eq. 3), results in the 
parameters presented in Table 7. 
 

Table 7. Estimated parameters. 
 

 AF SF NF RM PM YM 
p1 -22.048 -0.394 -0.590 -0.031 -0.017 0.017 
p2 -2.392 -6.448 0.187 -0.011 0.005 -1.887 
p3 0.135 -1.214 -1.337 -0.083 -2.135 -0.014 
p4 -0.132 0.511 0.248 -2.380 0.024 0.012 
p5 0.456 0.532 51.079 0.035 -0.284 0.051 
p6 3.272 46.033 -0.228 -0.013 0.013 -0.085 
p7 0.095 -0.116 0.005 -0.007 -0.003 0.006 
p8 0.002 -0.058 0.155 -0.001 0.048 0.008 
p9 0.002 -0.028 0.024 -0.004 0.000 0.007 
p10 0.007 -0.002 0.000 0.022 0.003 0.006 
p11 -0.008 -0.114 -0.156 -0.002 0.013 0.007 
p12 -0.073 -0.025 -1.075 0.001 0.003 0.001 
p13 -0.034 0.029 0.004 -0.002 0.015 0.010 
p14 0.015 0.013 -0.031 0.002 0.000 0.004 
p15 -0.014 -0.007 -0.104 0.005 -0.040 0.001 
p16 0.009 -0.023 -0.032 0.003 -0.002 -0.006 
p17 -0.478 -0.224 0.135 0.014 -0.092 -0.061 
p18 0.020 0.024 0.005 0.001 0.001 0.002 
p19 0.219 -0.045 -0.019 -0.001 0.000 0.030 
p20 -0.213 -0.217 -0.011 -0.002 -0.001 -0.002 
p21 -0.013 -0.020 0.009 0.003 0.002 -0.010 
p22 -0.526 -0.055 -0.011 -0.004 0.002 0.001 
p23 0.128 -1.046 -0.006 0.000 0.000 0.044 
p24 -0.010 -0.032 0.835 -0.003 -0.008 0.004 
p25 0.687 -0.192 0.019 0.031 0.008 0.006 
p26 0.010 0.125 0.078 -0.011 -0.003 0.013 
p27 0.158 0.099 0.712 -0.007 -0.074 0.010 

The values of the applied and fitted aerodynamic forces 
and moments, along with the corresponding uncertainties 
are presented in Table 8, for the loading numbers 3, 17 and 
58. Units: newton (force) and newton×meter (moment).  
 The uncertainties associated with the aerodynamic forces 
(AF, SF, NF), as well as those ones associated with the 
aerodynamic moments (RM, PM, YM) are similar to each 
other, as expected. This fact results from the dependence of 
the values used in the loadings and mainly, from the 
uncertainty values attributed to the system.  

 
Table 8. Applied, predicted and uncertainty of aerodynamic forces 

and moments.  
 

Loading number load 
component 3 17 58 

AFapplied 0 0 39.2 
AFfitted 0.01 0.03 40.77 
uAF 0.11 0.11 0.12 
SFapplied 0 -39.2 0 
SFfitted 0.26 -38.96 0.09 
uSF 0.11 0.11 0.12 
NFapplied -78.40 0 0 
NFfitted -69.08 -0.75 0.01 
uNF 0.11 0.11 0.12 
RMapplied 0 0 7.64 
RMfitted -0.01 0.01 6.44 
uRM 0.05 0.05 0.05 
PMapplied 0 11.76 0 
PMfitted -0.06 11.73 0.04 
uPM 0.05 0.05 0.05 
YMapplied -7.35 0 0 
YMfitted -7.32 -0.07 1.41 
uYM 0.05 0.05 0.05 
 
3.3 Goodness of fit 

The chi-squared 2χ and reduced chi-square 2
νχ  values of 

the fitting are presented in Table 8. 
 

Table 9. Goodness of fit.  
 

Load component 2χ  2
νχ  

AF 56.23 1.04 
SF 835.77 15.48 
NF 390.14 7.22 
RM 56.22 1.04 
PM 70.03 1.30 
YM 203.66 3.77 

  
Estimating the chi-square should result in a value around 

the number of degrees of freedom of the polynomial fit [4]. 
As there are 81 equations and 27 unknowns, the number of 
degrees of freedom is equal to 54. The magnitudes presented 
in Table 9 are greater than expected, revealing that either the 
math model or the quantification of the uncertainties 
presented in the experiment, or even both, should be better 
investigated. Also, the high value of the second element of 
the main diagonal of matrix VR reveals that something might 
not have behaved properly during the calibration. Problems 
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when fixing the internal balance inside the calibration body 
could have been the cause of the high dispersion of the 
bridges readings.  

After improving the configuration of the calibration 
system, studies including short, medium and long term 
calibration data should be performed.  

4.   CONCLUSIONS 

A methodology for the estimation of uncertainty in 
internal balance calibration was proposed. Results of the 
curve fitting include the estimation of the values and 
uncertainties of the fitting parameters, as well as a statistical 
measure of goodness-of-fit. The law of propagation of 
uncertainty was employed to estimate the uncertainties in 
the aerodynamic components.  

The identification of error sources caused by the 
calibration system and their consequent contributions to the 
uncertainty of the load components has still not been 
completely accomplished. A previous value for this 
contribution was mathematically derived assuming that all 
measurements had the same standard deviation and a new 
set of fitting parameters was recomputed. This approach 
makes the method iterative, which implies that an 
independent procedure for the assessment of goodness-of-fit 
must be conducted. A test of a standard aeronautical model, 
such as the AGARD model, employing the calibrated 
internal balance, may be a way to compare the aerodynamic 
loads evaluated by the calibrated data. 

The uncertainties declared in the calibration certificates 
of the weights and the dispersion of the readings of the 
bridges are the only contributions experimentally estimated. 
They are not dominants.  

Other expected influences as misalignment of the 
system, interaction between bridges, and hysteresis effects 
are still to be quantified. 
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