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Abstract: We shall present approaches to optimize the
design of a measurement system and schedule dynamically a
versatile measurement resource. The analysis is based on
expressing the system management task as a dynamic
programming problem in which the system state is partially
observable. We shall review the well-known linear-
quadratic-Gaussian case, and discuss and give examples
solutions of discrete state systems. Furthermore, we discuss
on approximate dynamic programming methods to solve
such problems in practice.
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1. INTRODUCTION

Measurement selection is an important task of system
design. As the decisions to operate the system are made
based on information available about the system, it is not
trivial to integrate design of measurements to overall system
design, in particular when measurement subsystem
constitutes a considerable amount of overall system costs.
One cost-efficient option of measurement subsystem design
in many applications is a multipurpose analyzer. However,
choosing such a device leads to a complex dynamic
optimization problem of scheduling which of the possible
measurements is made at each time instant. The scheduling
problem was first phrased and solved in a linear-quadratic
system already by Meier, Peschon and Dressler [1] in 1967.
However, in more complicated cases the problem is
computationally extremely heavy, and has only recently
attracted interest in robotics [see e.g. 2], and also in quality
control at industrial processes [3, 4].  Analyzing the value of
information through dynamically optimized system
performance, measurements can be designed and scheduled
so that the limited measurement resources provide the most
valuable information.

Current industrial problems in which a systematic
approach on measurement scheduling and design provides a
great potential of improvement include design laboratory
activities supporting on-line measurements and controlling
scanning measurements. E.g. in paper industry the quality of
the web produced is measured with a scanning device. At
present the scanner is operated regularly across the web, but

it can be shown that there exist circumstances at which other
scan paths will provide a better uniformity of quality [5].

This paper is organized as follows. Section 2 defines the
measurement scheduling problem as a dynamic optimization
problem. Section 3 discusses both the exact and approximate
solution of this problem for discrete state systems.
Furthermore Section 3 shows how linear-quadratic-Gaussian
case separates into independent measurement scheduling
and  control  problems  in  this  formalism,  which  was  shown
already in [1] in somewhat different formulation. Section 4
outlines, how the measurement design problem is solved
with the scheduling problem as a subtask. Section 5 shows
three examples: the exact solution of a binary state system,
and approximate solutions of a three state problem and a
five state problem, the latter inspired by a paper machine
quality management problem based on laboratory
measurements. Section 6 summarizes the main findings and
outlines future research.

2. DYNAMIC PROGRAMMING WITH UNCERTAIN
MEASUREMENTS – THE SCHEDULING PROBLEM

The system management task is formulated in terms of
system states xt, the control actions ut and the measurement
choice mt. The measurement choice is to be understood as
any combination of simultaneous measurements that the
present measurement system M allows. Given the
operational cost, at any time as h(xt+1,ut,mt+1) the action
optimization with time horizon T and discounting factor
0<  is:
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where p(+)(x0) is the current state information expressed as
state probabilities at time t=0, and after the measurement at
t=0 has been made (posteriority denoted by ‘+’). The
expectation value E{} is to be calculated with respect to the
current state information. Hence u* is a functional of
probability distribution if state is continuous, and a function
in  a d-1 dimensional space if state consist of d discrete
states. In this paper we concentrate on discrete state systems.
Hence p(+)(x0)  is  a d-dimensional vector with additional
constraint that its values are semipositive and add up to one.
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We assume the system to be a Markov chain with action
dependent transition probabilities, i.e. a Markov decision
process. Thus the system dynamics is described with state
transition matrices pij(u) that give the probability of state j at
next time step provided that present action u has been taken
and the present state is i. The measurements are described
with conditional probabilities q(m)(zt

(m)|xt): the probability
that with measurement m a measurement result zt

(m) is
obtained if the true state is xt.

Let us assume firstly that the state information after
measurement at time t is p(+)(xt); secondly, that an action ut
is taken; and thirdly, a measurement mt+1 made with a result
of zt+1. Then by probability propagation of the Markov
chain and the Bayesian interpretation of measurement gives:
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 The latter is the probability of getting the measurement
result zt+1

(m) when previous state information is p(+)(xt). Then
the optimization problem of Eq.(1) can be rewritten as an
iteration (a dynamic programming problem) with VT being
the optimal T-horizon cost:
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If the measurement system is not of multiuse, the
minimization with respect to mt+1 is trivial and the problem
reduces to the standard form of partially observed Markov
decision process (POMDP), see e.g. [2].

In the infinite horizon case the iteration of Eq. (3) turns
into a functional equation:
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The T-horizon measurement choice problem at time t=0
given state information prior p(-)(x0) to measurement is then
formulated as:
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If  the  measurement  cost  is  additive  to  the  cost  of  state
and action, the optimal measurement choice will not depend
on the previous action u-1 other than through p(-)(x0) .

In case of infinite horizon, VT is replaced by V. This
completes the definition of the measurement scheduling
problem.

3. METHODS TO SOLVE THE MEASUREMENT
SCHEDULING PROBLEM

3.1 Exact solution of discrete state case

Sondik proved in 1971 [6,7] that the solution to the
problem in the Eq.(3) can be reformulated as

ppV T
t

t
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where ixpp ti , with 1
i

ip  and   is  a  |x|-

dimensional vector and t is  a  set  of  -  models.  Therefore
the exact solution of Eq. (3) is always piecewise linear and
concave in probability p . Thus each of the  model vectors
define the optimal actions, in our case the control action and
the choice of measurement, for a certain region of
probability p . The solution to the problem for a given time
horizon t can then be presented as the collection of  –
models, t.

The recursion of  –model collection t from  the
collection t-1 is  presented  in  [2].  The  method  is  rather
straightforward. The problem is that as the time horizon
increases, the number of  -models increase rapidly, more
than exponentially. The size of the problem can be
decreased by pruning  – models which do not contribute to
optimality for any probability p . The method to find these
pruned vectors is, however, time-consuming and hard.

This exact solution can be directly only used for small
problems with few states and/or short time optimization
horizon.

3.2 Point-based approximate solution for discrete case

The exact solution optimizes the solution over all
probabilities. The difficulty is the increasing number of  –
models as optimization time horizon increases. The idea of
point-based solution is to solve the problem in a fixed set of
probability  points.  This  is  based  on  fact  that  at  any
probability point only one  –model is active in the
minimization of eq. (6). Obviously, the selection of
probability points is critical for the point-based method, but
if the points are selected properly, the solution is close to
exact optimal solution even for high number of discrete
states and long time horizon.

 Several methods to select points have been presented in
[2]. In our case studies points are selected randomly or set in
a regular grid.

When the set of probability points is selected, the
optimal  -models are calculated for each probability point.
The set of  –models can be pruned taking away the
identical models. Thus, the number of the  -models is at
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most the number of probability points. As a result the
recursion becomes simpler and faster. The method is
presented more specific e.g. in [2].

  3.3 Linear-quadratic-Gaussian case

The transition dynamics and measurement description of
linear Gaussian case with continuous valued state vector can
be written as:
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where Nd( , ) is a d-dimensional Gaussian distribution with
mean  and covariance matrix .

Let us further assume that state, action and measurement
costs are additive and that state and action costs are
quadratic:
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If the initial state information is Gaussian, p(+)(xt) = Nd( , ),
then by induction with Eq. (3) one can show that
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Furthermore, when applying this in Eq.(3), one finds that the
cost inside the minimization in Eq. (3) is a sum of two
terms: one depending on present state covariance matrix and
measurement choice, and another one depending on present
state expectation value and control action. Thus the optimal
choice of measurement depends only on which
measurements have been made in past but not on which
measurement values were obtained. As a result the choice of
measurement schedule for the linear-quadratic-Gaussian
case is a policy: as the system runs and measurement values
are obtained, no additional information assisting in the
choice of future measurements is obtained.
Correspondingly, the optimal action depends only on the
present state estimate, not through which measurement
choices the estimate has been obtained.

The separability of measurement scheduling and control
was already proven in [1]. However, we included this short
discussion from within the formalism of Section 2, because
of the practical importance for the measurement community.

4. MEASUREMENT SYSTEM DESIGN PROBLEM

The optimal performance achievable depends on the
measurement system M. If we assume that the cost
h(xt+1,ut,mt+1) is scaled to real monetary costs, the cost per
time unit, when system is operated optimally with a
measurement system M, is given as
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Function f(p(+)(x0)) allocates a probability density to
facing a control problem with initial information p(+)(x0); i.e.
it is a probability density on state probabilities. The
prefactor in Eq. (10) normalizes the sum of discount
weighting factors in Eq. (1) to one so that comparing
formulations with different time horizon can be directly
compared.

The probability f(p(+)(x0)) may be thought of arising from
a component of regular behavior of the system and/or of
abnormal behavior. Regular behavior means that the system
behaves according to the system model pij(u). This
component of f(p(+)(x0)) can simply be obtained simulating
the system with optimal control actions and measurement
choices according to solution of Eq. (1), and then estimating
the probability density with observations of p(+)(x0) during
the simulation. Abnormal component arises due to that the
system is subject to unforeseeable disturbances: the system
model pij(u) is not valid at such instants. It is the designers’
task to specify the abnormal scenarios and their probability
of occurrence. The corresponding component in W(M),
Eq.(10), describes the system performance when recovering
from abnormality.

In the design the operational performance is weighed
against investment cost C(M). If the measurement
investment is to be uniformly depreciated in time Td (in
units of time steps in operation), the design problem is

)()(min MCMWTdM
(11).

Similarly, a discounted depreciation problem may be
formulated as a Net Present Value problem, see e.g. [8].

5. CASE STUDIES

This section present three simple case studies of joint
dynamic optimization of control and measurement action.
First a two-state system is briefly analyzed through exact
solution, and then the exact and point-based approximate
solutions of a three state system are compared. Finally a
short simulation study of a five-state system corresponding
to a simple quality management case is discussed

5.1 Two-state system

The simplest case to illustrate the method is a two-state
system with two action alternatives and two measurement
alternatives. Two-state control problem was addressed
already in [9].

In our example the states are “good” and “poor”. Being
in the “poor” state incurs an additional cost of 0.9 units. The
actions are “run as usual”, and “make a correction”. Under
the first action the transition probability from “good” to
“poor” is 0.3 and that of the opposite transition 0.2. Under
the corrective action the “good” state remains with
probability 0.9 and the “poor” state turns into “good” with
probability 0.8. The additional cost of corrective action is
0.5 units. Furthermore, the state can be measured at an
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additional cost of 0.04 units, and the probability of
measurement giving the erroneous state is 0.05. The
discount factor is 0.95.

Figure 1.  Value function of a two-state system.

Figure 1 presents the value function V and decisions  of
the infinite horizon case, Eq. (4) as the function of the
probability of present state being “good”. The infinite
horizon solution was obtained by iteration of finite horizon
case, Eq. (3) with the exact piecewise linear methods of
section 3.1, Eq. (6). If the state is “poor” with high
probability, corrective action is made and verified with
followup measurement. If there is high uncertainty about the
state, corrective action is made, but as a result the
probability of “good” state is so high that no followup
measurement is needed during the next step but only on
further steps. When there is high certainty about state being
“good”, the state is monitored with measurement, but no
corrective actions are needed. However, simpler policies
throughout low and medium probability of state being
“good” of either both making the corrective action and
measurement or only making corrective action are only
slightly suboptimal.

In finite horizon case, the horizon affects strongly the
policy.  With  horizons  1  and  2,  no  measurements  are  ever
made. With horizon 3, measurements are always made.
From horizon 4 on, the decision policy is as in infinite
horizon case with decision limits converged down to 0.001
accuracy in p(state=1) at horizon 7. The average level of V,
not relevant to decisions, converges only after horizon 40,
due to discount factor being close to 1.

The exact solution in this case is simple as the number of
piecewise linear components considered in V remains small,
at most 24 if models are pruned at each step. In hindsight,
the identical result would have been obtained with the
approximate method of Section 3.2 minimally with three
points (e.g. 0, 0.4 and 1). If points are chosen at random, or
uniformly, the probability of obtaining the exact solution for
the binary system, with the approximate method is high with
only 10...20 points.

5.2 Three state system

Our second example is a system with three states:
“good”, “acceptable”, “poor”. The system is controlled by
three actions. The first action, the cheapest one, decreases
slightly the probability of the “good” state. The second
control option turns the system into a better state and the
third one turns the system surely into “good”.

Similar, but not the same, problem with three states was
presented by Smallwood and Sondik in 1973 [7].

The problem is solved using point-based solution, in
which a grid of points is selected. The results for time
horizon T = 2, T = 3 and T = 5 are presented in the Figures
2, 3 and 4. Grid points are shown with asterisk-marks in the
Fig. 2. Decision borders are shown by lines.

Figure 2. Decision planes when time horizon t = 2. Grid points are
shown with asterisk-marks and decision borders by lines. In the area A
the optimal decision is to make the control action 1 and not to measure.

In the area B the optimal decision is to control 2 and not to measure.

At the end of the horizontal axis the probability vector is
[1 0 0], the system is certainly at “good” state. At the end of
the vertical axis probability vector is [0 1 0], the system is
certainly at “acceptable” state, and in origin [0 0 1], the
system is certainly at “poor” state.

Figure 3. Decision planes when time horizon T = 3. In the area A the
optimal decision is to make the control action 1 and not to measure. In
the area B the optimal decision is to control 2 and not to measure. In

the area C the optimal decision is to control 3 and not to measure.

362



For time horizon T = 2 only two decisions exists: to
control 1 or 2 and never to measure. For time horizon t = 3
number of decisions is increased to three, but measuring still
never measuring. That is logical as measuring costs and for
short decision horizons it is reasonable to only act.

Figure 4. Decision planes when time horizon T = 5. In the area A the
optimal decision is to make the control action 1 and not to measure. In
the area B the optimal decision is to control 2 and not to measure. In
the area C the optimal decision is to control 3 and not to measure. In

the area D the optimal decision is to control 1 and to measure.

For time horizon T = 5 the number of decision planes is
increased to four, with “control 1 and measure” as a one
option  as  shown  in  the  Fig.  4.  Precisely  the  same  result  is
obtained with the exact solution method.

As  the  time  horizon  grows  the  area  of  control  action  3
increases and the area of control action 1 decreases. That is
logical as in the long term it becomes more important to
ensure the better result and with control action 3 the system
is surely turned into “good” state. Also the importance of
measuring grows with the longer time horizon.

Figure 5. Decision planes when time horizon t = 5 and the points are
selected randomly (50 points).

The same result, i.e. the same decision planes, is
achieved also using 50 uniformly distributed random points
as shown in the Fig. 5. As only four points - one from each
plane - is needed to obtain the optimal result, the number of

random points could be less and still that probability to
obtain the optimal solution would be high enough.

As it can be seen from the figures, horizon affects
strongly the decision borders and the optimal decisions.
With  higher  time  horizons  (T>6), the number of decision
borders further increases and the figures are no longer
illustrative  as  can  be  seen  in  the  Fig.  6  where  the  horizon
T=8. There are 10 decision planes, but as the border lines
cross, the planes are not easy to see. Despite the illustration
problem the calculation is still straight forward and quick to
compute.

Figure 6. Decision borders for time horizon T = 8 using point-based
approximate method with points selected from the grid.

The solution obtained by the point-based method with
T =  8  differs  slightly  of  the  solution  obtained  using  exact
method where 12 decision planes exist (Fig. 7). However, as
the missing planes are rather small and as the calculation
time using exact method is 400-fold it is justified to use
point-based approximate method instead.

Figure 7. Decision borders for time horizon T = 8 using exact solution
method.

5.3 Paper machine quality control case

As a five-state model we present an example which is
inspired by a quality management problem in papermaking.
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Table 1. Example of simulated result from the paper quality case. The control and measurement actions are optimized with time horizon of
T=4. The first line shows the measurement decision with measured value or '-' denoting not a measurement. The second line gives the optimal

control action. The third line gives the true process state that is not observable to optimizer. Note the different scale of measurements and states.

t=0 t=1 t=2 t=3 t=4 t=5 t=6 t=7 t=8 t=9 t=10 t=11 t=12 t=13 t=14
Measured value - - 14 16 - 16 - 13 11 - - 13 11 - -
Optimal control 4 3 3 1 3 1 3 3 4 1 3 3 4 1 3

True value 2 4 5 5 5 5 4 3 4 5 4 4 4 5 5

The target of the case is to control quality variable tear
strength optimally. Five states have been defined for tear
strength, 1 referring to “poor” state and 5 to “good” state.
The costs of quality at states 1 to 5 are 10, 5, 2, 1 and 0
units.

Tear strength is controlled by fiber furnish fraction
ratio which is discretized into four values. The costs of
control actions from 1 to 4 are 1, 2, 3 and 4 units.
Measurement options are again to measure or not to
measure, with costs 0.3 and 0 units. Thus, 8 action
alternatives exist.

The case is simulated by running two simulators in
parallel. The first simulator optimizes the control and
measurement actions and acts according to them. The
second simulator is the so called “true state simulator”
which calculates the evolution of the target system. The
true state is not known by the first simulator, as the state
is known only through uncertain measurement of the
second simulator.

The information about the state of the quality, the
probability vector, is updated after each control and
measurement action. The control and measurement
actions are optimized based on the information about the
current quality state.

As the point space in a five-state system is wide, it is
difficult to assess the correct number of points and
optimal solution is hard to find. Using 100 points, the
number of solution planes on the first run is around 30.
Using 1000 points the number of planes is around 100 and
using 10000 points around 230. However, even though
the solution differs with different number of points, the
quality is manageable with fewer points also. Good
suboptimal results can be achieved by using only 100
points.

An example of results is shown in the Table 1. The
problem is solved using point-based solution with 500
points. The corner points are selected beforehand and
other points randomly from a uniform distribution. The
optimization time horizon in this simulation is 4 time
steps. At the beginning the quality is at a state 2, but
recovers to good quality quite quickly and stays in good
quality.

6. DISCUSSION AND FUTURE WORK

We have presented the measurement scheduling and
design problems of a stochastic dynamic system in terms
of dynamic programming. We have provided examples in
which both exact and point-based approximate methods to
solve the dynamic optimization problem have been
applied. We have presented the solution of the problem in

the simplest of cases, a binary state system, and in the
three-state system. The presented five-state system
follows an industrial quality management case [3,4].

An obvious problem of the point-based approximate
solution is the selection of points. It cannot be guaranteed
that the optimal solution is found using the approximate
solution. On the other hand using the exact solution the
calculation time grows extremely rapidly as time horizon
increases.

The dynamic programming approach relies heavily on
the system model pij(u).  This  raises  –  as  in  all  model-
based control or optimization problems – the issue of
robustness against model inaccuracy. Such robustness
problems can be addressed with the well-known method
of Q-learning in infinite horizon dynamic programming
problems [10, 11]. However, applying Q-learning in the
case of uncertain measurements has not been presented in
literature.

At present, we are working on a practical application
at papermaking: the overall quality control, in particular
managing paper strength and brightness. This control is
based on laboratory measurements that are rather
uncertain as only few paper sheets are taken to represent
the machine reel of 40 metric tons of paper. Furthermore,
the effects of the main control actions – furnish
component ratio and dosage of bleaching chemicals – are
known somewhat vaguely due to nonlinearities, complex
interactions and long dead times. Therefore, the present
description that discretizes the quality parameters,
measurement results and control actions and presents the
system dynamics through conditional probabilities
appears appropriate.

The decisions about strength/brightness control
actions are made by several operators and currently there
is little if any communication to make the actions
coherent. The optimization approach outlined in this
paper may serve in addition to automated quality
management tool as a operations’ decision support tool
for harmonizing the operator actions.

In Section 4 we presented a systematic approach for
designing measurement systems. Although there are
obvious difficulties in applying it in practice – e.g.
defining the control scenarios – the approach puts the
process system dynamics design and measurement/control
design on an equal footing. Currently we are studying
how this approach can be applied to concurrent design of
material and information flows of a paper production
system.
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