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Abstract: A discussion about some key concepts and terms 
in measurement is proposed for promoting a fruitful 
dialogue among scientists of different disciplines having an 
experimental basis. This revision of terms requires both the 
examination of their current use in the involved 
communities and an investigation on their role in scientific 
theories. In the present paper, this second aspect is mainly 
pursued and key terms such as (measure) value, measuring 
system, measurement value and measurement model are 
discussed. Two theories of measurement are considered, 
deterministic and probabilistic, the former is apt to describe 
an ideal measurement process, the latter is able to account 
for uncertainty. The meaning of the measure value in a 
probabilistic contest is elicited and a new taxonomy of 
uncertainty sources is proposed. Lastly, the role of 
modelling in measurement is discussed. 

Keywords: measurement science, measurement of 
quantities related to human perception, probabilistic theory 
of measurement.  

1.   INTRODUCTION 

For many years the clarification of terminology has been 
a major concern in metrology and measurement and has 
been pursued by the development of the International 
vocabulary of metrology (VIM) [1-3], now at its third 
edition as well as by intensive research about the foundation 
of measurement [4-5]. The motivation behind the first and, 
even more, the second revision of the VIM has been to “take 
account of the needs of chemistry and related fields” [2] and 
to “cover measurements in chemistry and laboratory 
medicine for the first time” [3], since “it is taken from 
granted that there is no fundamental difference in the basic 
principles of measurement in physics, chemistry, laboratory 
medicine, biology and engineering”. Therefore there is a 
trend to increase the number of disciplines that may benefit 
from a reorganisation of measurement knowledge. In this 
regard an even more ambitious perspective may be 
envisaged. Recently the European Community has paid 
close attention to the problem of the measurement of 
quntities related to human perception, issuing a Call named 
Measuring the Impossible, in the NEST (New and Emerging 
Science and Technology) programme of the 6th Framework 
Programme [6]. In this context a Coordination Action, 
MINET (Measuring the Impossible Network) [7] has been 
launched aiming to promote a close dialogue among 

different discipline scientists working in this field. In the so 
far developed coordination activities, including workshops 
and “think tank” events [8], the need of finding a common 
language has been soon raised. We think that this is a new 
and challenging frontier worthy of serious investigation. 

It is necessary to consider the current understanding of 
basic concepts and the current use of basic terms in the 
involved communities, as well as the links between terms 
and theories. In the present paper, we pursue particularly 
this second aspect. After a brief introductory discussion, we 
concentrate on four key concepts and terms, (measure) 
value, measuring system, measurement value and 
measurement model, and we discuss them with reference to 
two measurement theories, deterministic and probabilistic. 

2.   SOME BASIC CONCEPTS AND TERMS 

Let us try to identify a minimum set of terms virtually 
necessary for any discourse about measurement. 

We first need a term for denoting what we (want to) 
measure. We could call this a property, characteristic, 
attribute, feature of something. Let us choose, for example, 
characteristic. Then we have to name what carries 
(expresses, manifests) the characteristic under investigation: 
it may be an object, an event or even a person. In this case 
the differences are substantial, yet we will still use a unique 
term, object, but making clear that this is just a conventional 
term for denoting what carries the property. Then we have to 
distinguish between measurable and non measurable 
characteristics: for the former the term quantity may be 
used, although this term has somehow a stronger meaning, 
since it is understood to imply an underlying metric scale. 
Furthermore, since objects manifest the characteristic of 
interest in different ways (levels, degrees), we will call state 
the way in which an object manifests a characteristic.  

Now we are ready for introducing measurement. Yet we 
do not want to discuss here a definition of measurement, but 
rather some key concepts and terms related to it. A summary 
of the main terms considered in this paper is shown in Table 
1.  
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Table 1. General terms for measurement. 

Object the carrier of the characteristic to be measured; it may be a physical object, 
an event or a person  

Characteristic or property (of an object) what we want to measure 
Measurable characteristic 
(or quantity) 

a characteristic that may be measured 

State (of an object, with respect to a 
given characteristic)  

particular way in which an object manifests a characteristic 

Empirical relation a relation that may be observed between two or more objects, with 
reference to the characteristic of interest 

Empirical structure  
(or empirical relational system) 

a set of objects and a set of empirical relations on it 

Nominal, difference, interval, extensive different types of empirical structures 
Numerical structure   
(or numerical relational system) 

a set of numbers and a set of numerical relations on it 

Scale  (general meaning) the set of formal conditions for measurement (an 
empirical structure, a numerical structure and a measure function 
constituting an homomorphism between them) 

(Reference) scale  (specific meaning) a series of standard objects with corresponding 
numerical values properly assigned 

Nominal, ordinal, interval, ratio different types of scales 
Measuring system (or instrument) an empirical system able to interact with objects carrying the characteristic 

under investigation and to produce, as a result of the interaction, an 
observable output, on the basis of which it is possible to assign a value to 
the object to be measured 

Measurement process the process through which a value is assigned to a measurand, normally 
based on the use of a measuring system 

Calibration the operation through which the characteristics of the measuring system are 
assessed 

Model  an abstract systems that represents, to some extent and from some 
standpoint, a real system (or a class of real systems) 

(Natural) law a functional relation (or a model) that links one or more characteristics of 
real objects  

Measurement model a model assumed for founding the measurability of some characteristic or 
for performing some measurement  

  

3.   (MEASURE) VALUE 

Measurement concerns the description of objects 
through numbers. We will call (measure) values such 
numbers. But how do they describe objects (with respect 
to the characteristic under investigation)?  The most 
accredited solution comes from the representational 
theory, according to which measure values describe the 
objects in that they reproduce, in a numerical domain, the 
empirical relations holding among them [4, 9]. This is 
called a representation. Yet we may consider either a 
deterministic or a probabilistic representation and the 
interpretation of the measure value is different in the two 
cases. Let us see what happens. 

3.1.  Deterministic representation 
The representational framework could be summarised 

as follows. Consider a set of objects A showing the 
characteristic x. Assume that some classes of empirical 
relations can be observed about those objects with respect 
to x: if they satisfy some properties, it is possible to assign 
numbers, that we call measure values, to the objects in 
such a way that the relations among those numbers 
reproduce the empirical relations. This assignment is in 
general not unique since there are admissible 
transformations maintaining the same representational 
properties. Yet, suppose that we fix by proper conventions 

the degrees of freedom and then we make the assignment 
strictly unique. This assumption simplifies the discussion 
and does not reduce the discourse generality. Therefore, 
for any object a, in the set A, the measure value is that 
value fulfilling all the constraints resulting from the 
empirical relations (plus the additional conventional 
constraints), once that they have been mapped into the 
corresponding numerical ones. For example, consider the 
set { }, ,=A a b c  and suppose that the following empirical 
relations hold: ; ∼a b c . If we map them in a numerical 
domain, we obtain the conditions ( ) ( ) ( )> =m a m b m c , 
i.e., a system of inequalities, which are satisfied by the 
following measure values: ( ) 2=m a , ( ) 1=m b  

and ( ) 1=m c . The representation for ordinal, interval and 
ratio scales is summarised in Table 2. 

This framework is deterministic and consequently it 
provides an idealised (oversimplified) picture of the 
empirical reality. For example this description implies that 
for any couple of objects, say a and b, a definite and 
perfectly reproducible relation always holds. Let us then 
see how this limitation may be overcome. 
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Table 2. Synopsis of the theory [10] – deterministic versus probabilistic approach. 

The measurement scale 
Scale type Deterministic approach Probabilistic approach 
Order ( ) ( )⇔ ≥a b m a m bX  ( ) ( )= ≥

a b
a b P x xP X  

Interval 
( ) ( ) ( ) ( )

∆ ∆ ⇔

− ≥ −
ab cd

m a m b m c m d
 

( )
( )

∆ ∆ =

= − ≥ −
ab cd

b a d c
P x x x x

P
 

Ratio ( ) ( ) ( )⇔ = +∼ Da b c m a m b m c ( ) ( )= = +∼ D
a b c

a b c P x x xP  
The measurement process 

Process  Deterministic approach Probabilistic approach 
Observation ( )=y f x  ( )|P y x  

Restitution 
( )1ˆ −=x f y  

( ) ( ) ( )
1

| | |
−

∈

=  
  
∑
x X

P x y P y x P y x ; ( )ˆ |µ=x x y  

Measurement ( )ˆ = =x g x x  ( ) ( )[ ] ( )ˆ ˆ| | |µ
∈

= δ −∑
y Y

P x x x x y P y x  

   

3.2.  Probabilistic representation 
A more realistic description of empirical relations may 

be obtained by a probabilistic representation [10]. 
Consider again the simple example above and suppose 
now that element a is fairy “distant” from b and c, so that 
whenever we compare it with them we observe that it is 
greater. We may express this by assigning 

( ) ( ) 1= =; ;a b a cP P , where P  is a probability 
function defined over empirical relations. On the other 
hand, suppose that b and c are very close to each other, so 
that when we compare them, sometimes we observe that 
they are equivalent, some other times that they differ1. For 
example, it may happen that ( ) ( ) 0.1= =; ;b c c bP P  

and ( ) 0.8=∼P a b 2. This is basically how a probabilistic 
framework works [11]. Note the difference with the 
deterministic one: in that case we have only one possible 
order3, ; ∼a b c , whilst in this we have three of them, 

1. 1X : ; ∼a b c , 
2. 2X : ; ;a b c , 
3. 3X : ; ;a c b , 

where we have introduced the notation iX for denoting 
the i–th  order. It is easy to verify that these orders, 
although all possible, have different probabilities, namely 

1. ( )1 0.8P =X , 

2. ( )2 0.1P =X , 

3. ( )3 0.1P =X . 
But what about the measure value in this context? As 

we have several different possible empirical orders, we 
                                                           
1 Incidentally, we may note that generally at this level it will not 
be possible to decide whether this variability is due to the 
comparator or if it is inherent to the objects. 
2 Note that, of course, it must be ( ) ( ) ( ) 1+ + =∼ ; ;P b c P b c P c b   
Note also that in this paper we are not interested in how we can 
actually evaluate the probabilities involved, but only in their 
meaning, in what they express. 
3 In general we would say only one possible empirical relational 
structure. 

have also different possible value assignments. It is 
apparent that, corresponding with each empirical order, 
the following assignments are appropriate: 

1. 1X ⇒ ( ) 2=m a , ( ) 1=m b , ( ) 1=m c , 

2. 2X ⇒ ( ) 3=m a , ( ) 2=m b , ( ) 1=m c , 

3. 3X ⇒ ( ) 3=m a , ( ) 1=m b , ( ) 2=m c . 
Then a “natural” mathematical approach consists in 

describing each object by a random variable accounting 
for the different numerical values that may be associated 
to the object. Let us denote by xa, xb and xc such random 
variables. As result their probability distributions will be 
as follows: 

1. ( )3 0.2aP x = = , 

( )2 0.8aP x = = , ( )1 0.0aP x = = ,  

2. ( )3 0.0bP x = = , 

( )2 0.1bP x = = , ( )1 0.9= =bP x ,  

3. ( )3 0.0cP x = = , 

( )2 0.1cP x = = , ( )1 0.9= =cP x . 
The notion of measure value still holds, but with a 

fairy different interpretation. Now the measure value is a 
random variable associated to each object, whose values 
are the values satisfying the possible empirical structures; 
each value has a probability related to the probabilities of 
the empirical structures4. Incidentally, note that the 
different values that each random variable may assume 
can be interpreted as representations of the possible states 
of the object (with respect to the characteristic under 
investigation). As result, whilst in the deterministic 
framework each object is uniquely associated to a state, 
which in turn is uniquely represented by a number, in this 
case each object can exhibit different states, each of them 
uniquely represented by a number. A probabilistic 
representation for ordinal, interval and ratio scale is 
summarised in Table 2, along with a comparison with the 
deterministic one. 
                                                           
4 Precisely, the probability of each value equals the sum of the 
probabilities of the empirical structures in which that value is 
appropriate. 
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In conclusion, we can say that the notion of measure 
value is essential for a measurement theory and that in a 
probabilistic theory the measure value becomes a random 
variable, which is able of properly accounting for the 
uncertainty, which is inherent to the empirical relations 
founding the measurability of the characteristic under 
consideration. Note some consequences: 

1. this representation accounts for the uncertainty of 
primary standards; it may be particularly useful 
for “extreme” scales of great current 
metrological interest, such as the “nanoscale” 
[12]; 

2. it provides a theory for the measurement of 
quantities related to human perception, much 
needed, as we have discussed in the introductory 
section [13]; 

3. it accounts for the intrinsic (or definition) 
uncertainty, as we will discuss later on [3, 14]. 

A distinction between the measure value and the 
measurement value is now in order. This is where the 
notion of measuring system comes into play. 

4.   THE MEASURING SYSTEM 

So far we have discussed the meaning of the measure 
value. Let us now discuss how it may be assigned to a real 
object. In principle, we could proceed as follows. 

Suppose that A is finite, with N elements and n < N  
possible states. We examine all the objects and we test all 
the relations (of interest) among them and we assign the 
measure values according to them. This is what is actually 
done, sometimes, in psychological or sociological scaling, 
when a limited number of objects are considered and the 
results are intended to hold basically for the set under test. 
The limitation of this method is evident: as soon as the 
number of objects increases it becomes inapplicable. Yet 
this method remains essential for starting, at least in 
principle, any measurement process. In general, we can 
say that any measurement process requires the previous 
construction of a reference scale. This process involves, 
at least in principle, the following steps: 

• select object samples, one for each of the n 
possible states, and form with them a series of 
standards { }| 1,...,= =iS s i n , 

• assign a measure to each of them following the 
procedure described above and 

• form a reference scale, that is the association of 
each standard with its measure value 

( )( ){ }, | 1,...,= =i iR s m s i n . 

Once that the reference scale is available, the 
measurement of the object a, not included in the reference 
scale, may be done by comparing it with the scale, which 
in turn may be done either directly or indirectly by a 
calibrated measuring system [15]. In both cases we will 
call measuring system (MS) the device that we use for 
performing the measurement, once that the reference scale 
is given. 

Thus, we propose to define the MS as an empirical 
system that is able to interact with objects carrying the 

quantity under investigation and to produce, as result of 
the interaction, an observable output, the (instrument) 
indication, on the basis of which it is possible to assign a 
value to the object to measure. Therefore we can 
distinguish two phases in the measurement process (MP) ,  

• the production of indications by the MS and 
• their interpretation yielding the assignment of 

measurement values to the objects. 
We call observation the former, restitution the latter 

[16]. We need to distinguish the two phases: observation 
is in general a chain of physical transformations, possibly 
including perception and judgement, if we consider the 
psychological measurement as well, whilst observation is 
a data processing phase. We make a distinction also 
between measuring system and measuring process: a 
measurement process is based on the use of a measuring 
system but it includes the measuring system and the way 
it is used, the measurement procedure. The restitution may 
be embedded in the measuring system or it may be 
implemented by a post–processing of the instrument 
indications. Anyway, since the MP is strongly 
characterised by the MS, sometimes we will use the two 
terms quite freely. Note also that we have introduced the 
term measurement value to denote the MP final output  
and we have distinguished it from the measure value 
discussed earlier. In the ideal model, as we will see in a 
moment, these two values coincide, whilst generally in the 
probabilistic model they differ, as a consequence of the 
uncertainty sources associated to the measuring system. 
Let us now see how the MS and the MP may be modelled, 
first in a deterministic and then in a probabilistic way. 

4.1.  Deterministic model of the measuring system and 
of the measurement process  

Observation may be simply modelled as a mapping, 
ϕ , from the set of objects, A, into the set of indications, 
Y, that is :ϕ 6A Y . Now a major question arises: what is 
the property actually characterising the MS? 

The answer is relatively simple, since the MS has to be 
sensitive to the object state, but not to its “identity”, in 
other words, different objects in the same state, for 
example having the same length, mass… must give rise to 
the same response. This is reasonable and also easy to 
state: it must be that, for each a, b in A,  

( ) ( )ϕ ϕ↔ =∼a b a b .  (1) 

Yet there is another, more usual, way of characterising 
the measuring system: we may consider the way it 
responds to the states of the input object, or, equivalently, 
to their (measure) values, since states and values are in a 
one to one correspondence. Let then X be the set of the 
measure value, then we may introduce another function, f, 
which we call the MS characteristic function, : 6f X Y , 
linked to ϕ  by the equality 

( ) ( )ϕ =   a f m a .  (2) 

After observing the indication y, we must be able to 
identify the state/value of the object, which caused it. This 
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is possible if the function f is invertible. If we denote by 
ˆˆ ∈x X  the measurement value, restitution is simply 

described by a mapping, ˆ: 6g Y X , such that 

( ) ( )1ˆ −= =x g y f y .  (3) 

Finally, the whole measurement process is described 
by the mapping ˆ: 6h X X , resulting from the 
concatenation of observation and restitution, that is 

( ) ( ) ( )1ˆ −= = = =      x h x g f x f f x x , (4) 

which, in the ideal case, results into a unitary 
transformation. Note anyway, that although the 
measurement transformation in the ideal case is unitary, it 
is essential to consider it, since the measure value x is an 
unobservable variable (if we would be able to directly 
observe the value of the measurand we would not need to 
do any measurement!) whilst x̂  is an observable variable, 
since it results from a numerical processing of the 
observable indication y. 
The deterministic model of the measurement process is 
summarised in Figure 1. 

m○
○

-1 = mm

  

Fig. 1.  Deterministic framework for measurement 

4.2. Probabilistic model of the measurement process  
The deterministic model paves the way to the 

probabilistic one, which is more realistic. In this 
perspective, observation is no more describable by a 
deterministic function, since for each object under test we 
will no more obtain a unique indication, y, but rather a 
plurality of possible indications, ruled by a probability 
distribution. Instead of the function ( )ϕ=y a , now we 
have a parametrical random variable ya, characterised by a 
conditional probability distribution ( )|P y a .  
Yet we still require that the MS responds only to the 
object state, and is not affected by the object identity. This 
may be stated now by requiring that, for each , ∈a b A , 

( ) ( )| |= = =a bP y x x P y x x .  (5) 

Observation may be also described by a parametrical 
random variable yx, characterised by a conditional 
probability distribution ( )|P y x , replacing the 

characteristic function ( )=y f x . In our notation, P 
denotes a probability distribution for a random variable 
and its argument specifies the variable it refers to. 

Now f can be re–interpreted as ( ) ( )= µ xf x y , where 
µ  is a proper position parameter for xy  (as the expected 

value, if appropriate), which is consistent with the way in 
which an instrument characteristic function is usually 
understood. 

In analogy with the deterministic case, restitution is 
now the probabilistic inversion of the observation 
transformation, which can be obtained with the Bayes–
Laplace rule, as 

( ) ( )| |∝P x y P y x ,  (6) 

if we assume a uniform prior distribution for x, which is 
usually appropriate in this context. The measurement 
value can be defined as 

( )ˆ | ,x x y= µ    

which is still a deterministic function of the indication y, 
and we can derive any required uncertainty figure from 
the distribution (6). 
Lastly, the overall measurement process can be described 
by the concatenation of observation and restitution, 
yielding a parametrical random variable ˆxx , characterised 
by 

( ) ( ) ( )ˆ ˆ| | |µ= δ −  ∑ y
P x x x x y P y x ,  (7) 

where δ  is a discrete Dirac operator. It is reasonable to 
expect, although we do not have a formal proof for this, 
that the probabilistic mapping characterising the overall 
measurement process is still unitary in the average, that is 

( )ˆ |µ =x x x ,  (8) 

which corresponds to assert that the measurement process 
is unbiased. 

Note the difference between (6) and (7) [21]: 
• the former is appropriate for providing the final 

result, with a proper uncertainty statement, 
whenever a specific measurement has been done 
and the indication y actually acquired, 

• the latter is appropriate for declaring (or 
evaluating) the performance of a measuring 
process for any hypothetical value of the 
measurand x. 

The probabilistic model in its various branches is depicted 
in Figure 2. 
 

P(
y|a

)

 
Fig. 1.  Probabilistic framework for measurement 

 
In this probabilistic framework both the measure value 

and the measurement value are represented as random 
variables: this is a key point worthy of a thorough 
discussion. 
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5.   MEASUREMENT VALUE AND UNCERTAINTY 
SOURCES 

We have seen that in the probabilistic framework the 
measure value itself becomes a random variable 
accounting from the uncertainty related to the empirical 
relations, which are no more considered as perfectly 
determinable. In particular this will be the uncertainty to 
be assigned to the elements of the reference scale. This 
complies with the common assumption that the 
uncertainty of the standards forming the reference scale is 
the minimum uncertainty achievable for the characteristic 
under investigation. By extension, we can assume as well 
that the uncertainty related to the measure value may be 
viewed as “intrinsic” to the characteristic under 
investigation: it seems reasonable to assume that we 
would attain at minimum uncertainty if we were able to 
directly compare all the objects among them, provided 
that, if we have different ways of making this comparison 
we choose the most accurate. Yet, what we obtain at the 
end of the measurement process is not the measure, but 
rather the measurement value. This value is again a 
random variable and it is very reasonable to assume that 
its uncertainty will be in general greater than the measure 
value, since it will include also a quota due to the 
measurement process. This is what we want to discuss 
now. We have seen that the MS may be characterised by 
the distribution ( )|P y x . The point is that this distribution 
may be obtained, at least in principle, by calibration. Let 
us then discuss calibration. Calibration is based on the 
application of a standards series S to the measuring 
system and the observation, recording and processing of 
the corresponding observations y. Then, in principle, the 
result that we obtain is a probability distribution ( )|P y s , 

whilst our goal is ( )|P y x : in fact we do not observe 
directly the input values, x, but rather the standards s. 
How can we obtain the ( )|P y x ? We should remember 
that we have already established the reference scale and as 
consequent we have assigned to each standard s the 
random variable xS, or, equivalently, we know the 
distribution ( )|P x s . Using again the Bayes–Laplace rule, 
we may invert it and obtain 

( ) ( )| |∝P s x P x s ,  (9) 

from which we calculate 

( ) ( ) ( )| | |=∑ s
P y x P y s P s x . (10) 

Note now that the distribution ( )|P y x  includes two 
uncertainty contributions, 

• the uncertainty due to the transformation 
performed by the MS, 

• an additional uncertainty quota due to the fact 
that we cannot directly observe the input for the 
calibration. 

The latter is basically the uncertainty of the reference 
scale, that is the minimum uncertainty that we can have 
for the characteristic under consideration. Moreover, in 

the measurement process we can have two main kinds of 
uncertainty sources, related respectively to random 
variations and systematic effects. We have already seen 
that the former may be described by the 
distribution ( )|P y x . The systematic effect due to an 
influence parameter, sayθ , may be modelled by 
considering the distribution ( )| ,θP y x , conditioned also 
by θ  . In this case restitution will be provided by 

( ) ( ) ( )| | ,
θ

θ θ=∑P x y P x y P , (11) 

where  

( ) ( )| , | ,θ θ∝P x y P y x .  (12) 

When we measure the object a, we provide the result 
through the distribution ( )|P x y . Note now the meaning 
of this result: this is the appropriate description if we 
assume that the object, in the moment (or in the time 
interval) in which we perform the measurement can be 
described by a constant value or, in other terms, is in a 
constant well defined state. This description is not the 
same as that provided by the random variable ˆax , which 
also accounts for the possible indetermination of the 
state/value of the object. Properly we have 

( ) ( ) ( )ˆ ˆ| | |=∑ x
P x a P x x P x a . (14) 

To summarise, in the association of a measurement 
value to an object, we have, in the most general case, four 
fundamental sources of uncertainty: 

1. the object intrinsic uncertainty, 
2. the uncertainty due to the measurement 

transformation, both resulting from  
a. random variations and to  
b. systematic effects, 

3. the uncertainty related to the standards used for 
calibration. 

6.   MEASUREMENT MODEL 

So far we have often used the term “model” and it 
could be useful to briefly discuss it. We think that 
scientific and technical knowledge heavily relies on 
models: perhaps we could even say that in the scientific 
investigation we always propose models and check if they 
fit or not with some aspects of the empirical reality. This 
is the meaning of Galileo’s “sensible experiences”: we 
design experiments basing ourselves on assumptions, 
which are models, either embryonic or fully developed in 
general theories, and then we check whether they verify or 
falsify the assumptions. Tentatively, we can say that a 
model is an abstract system intended to represent, to some 
extent and from some standpoint, a real system (or a class 
of real systems). The relationship between a model and a 
theory is also of import. We will not make a sharp 
distinction between the two, rather we will consider a 
theory as a very general model. Depending on the 
discourse level, we will decide what to consider a theory 
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and what a model. In some cases, the model may be 
regarded as a special instance of a theory. 

Let us now consider a key question: how can we check 
whether a proposed model actually represents the part of 
reality it intends to represent? This is the time where the 
measurement comes into play: the very task of 
measurement is to check the agreement between models 
and reality, i.e., between abstract (mental) systems and 
empirical systems.5 But there is another side of the 
problem, particularly relevant here. Measurement, as a 
scientific activity, is subjected to being modelled itself. 
This leads us to the concept of measurement model, that 
we define as a model assumed for founding the 
measurability of a characteristic or for performing a 
measurement. Three cases may be envisaged. 

6.1.  Modelling for measurability 
Concerning measurability [19], we can distinguish two 

levels, either measurability in the large or local 
measurability. For the former, we intend the problem of 
proving the measurability of a characteristic in general 
(for example whether hardness is measurable or not) or to 
select the best way of constructing a reference scale (the 
best way for implementing the metre falls in this 
category). 
For local measurability we intend the problem related to 
measuring a special class of objects (for example a class 
of workpieces, such as mechanical pivots). In general, for 
both levels we can consider three types of models. 
 
1. Models based on the internal properties of a 

characteristic  
To found the measurability of length we can use the 

model of “length of a segment” if we are considering a 
class of rods, or, more generally, objects that are similar 
to segments, whilst we may use the model of “distance 
between parallel planes”, if we deal with objects like 
blocks, and so on. It would be not easy to define length in 
general. A good question is: in which way the above 
models guarantee the measurability of length? They do 
that since in the considered models the property of order 
and the operation of addition are defined: as far as the 
model fits well the empirical reality, the real objects 
(rods) will show, to some extent, similar properties to the 
reference abstracts ones (segments). On the other hand 
there may be cases, for example in the field of perception, 
in which we do not have a well established model 
guaranteeing the measurability, rather we may prove it by 
empirically assessing that required properties are satisfied. 
Note that in this last case we are using the representational 
framework itself as a model: we may perhaps say that, at 
least in this case, the representational framework is the 
most general model to found measurability. In the 
following we will turn this remark into a general claim.6  
                                                           
5 Incidentally, note that in the agreement assessment, implying a 
decision, uncertainty plays a fundamental role. 
6 Note that we have said that a theory could be seen just as a 
very general model, so we consistently speak of a 
representational theory. 
 

 
2. Models dealing with influence quantities 

In a mature domain of knowledge, the characteristics 
under consideration are not isolated, but rather they form 
a system and they are linked by relations (sets of 
equations) accepted in the system. This is the case for the 
international system of metrology. On the other hand, a 
real object is usually characterised by a set of quantities, 
linked by equations. Even if one is interested in only one 
of them, the others must be also accounted for, since they 
can affect the measurement. Then, usually the model used 
for founding measurability and designing measurement in 
the local context includes some quantities, one of which is 
the measurand, the others the influence quantities. The 
model “founds” measurability in the sense that it allows 
evaluating whether the effect of influence quantities is 
acceptable for the target uncertainty. If it is not, the model 
may lead the design of corrections. Suppose for example 
that we are considering length, l, and we want to account 
for the influence of temperature, t, as well. Consider two 
rods, a, b, and suppose that if they are at the same 
temperature, a has a greater length than b, that is ;a b . 
Suppose now that temperature may be different from one 
object to another. Then we must evaluate with the model 
whether it may happen that due to temperature variations 
we could observe ;b a . The model will enable us to 
prevent this from happening and/or to evaluate the 
uncertainty related to this thermal effect. The final 
question is anyway reducible to deciding on a 
representational framework. 
 
3. Models for derived measurement 

The most direct way of assessing measurability is by 
checking the existence of appropriate internal properties 
for the characteristic under consideration. A remarkable 
alternative is the use of “natural laws”. For example, a 
physical quantity such as density, ρ , may be measured 
indirectly by measuring mass, m, and volume, V, and 
using the relation ρ = m V . A psychophysical quantity 
such as loudness, L, may be measured indirectly by first 
measuring the related physical intensity, I, and then 
applying an accepted psychophysical law, such us Stevens 
law βα=L I . It seems that we have eluded the 
representational framework, yet there are arguments for 
claiming that it still applies: see Ref. [19] for a discussion. 
Finally, we can perhaps summarise this issue, modelling 
for measurement, by saying that a class of measurement 
models concerns the measurand and could be seen as 
related to measurability. The most general of these 
models is the representational framework itself. 

6.2.  Modelling for measurement  
The second instance in which we use a measurement 

model is for performing measurement. In this paper we do 
not have to consider only the measurand object but also 
the measuring system and the interaction between the two. 
We have already seen that virtually the most general 
model for the measurement process can be formulated by 
the chaining of observation and distribution and 
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describing the observation through a parametrical 
conditional probability distribution. Again, this model 
may be interpreted as describing the measurement process 
in general or as a framework leading the development of 
specific targeted models for the specific cases. From a 
foundational standpoint, it is important to note that often 
models in science and in engineering are formulated by 
identifying a set of variables and assuming a set of 
equations containing these variables. 

When we model a measurement process by an input-
output model, where the input is the value of the 
measurand, x, the output is the measurement value, x̂ , 
and the relation linking them is provided by the formula 
(7), we are following the pattern just seen. This is why we 
have called this description a model of the measurement 
process in Ref [16]. But if this is the “model”, consider 
now the description ˆ6a x , provided by the formula (14). 
With respect to the previous one, this is somehow a meta-
modelling, since it involves a relation (mapping) between 
characteristics of objects and variables describing them, 
rather them from variables to other variables. It could be 
objected that the object characteristics, when they appear 
in our discourse, become abstract entities as well, as terms 
of a discussion. This is true, but this description is still 
structurally different from the previous one (this is what 
we meant with the term meta–modelling) and this 
structural difference holds for measurement in general.  

This is a very remarkable feature of measurement 
modelling emphasising the fundamental role of 
measurement in science, pointed out also, by different 
arguments, by other authors [5, 20].  

7.   CONCLUSIONS 

In this paper we have discussed some key concepts 
and terms in measurement, which are particularly 
significant in the perspective of developing a general 
theory of measurement virtually applicable in all the 
domains of science. We have considered the importance 
of the measure value notion, as a necessary term for 
clarifying the meaning of measurement comparing its 
interpretation in a deterministic and in a probabilistic 
theory. We have discussed the notions of measuring 
system and measurement process providing a general 
probabilistic model for them. We dealt with the difference 
between the measure and the measurement value showing 
how this allows establishing a taxonomy of uncertainty 
sources. We examined the notion of measurement model 
in its association with the measurand and the 
measurement process. We outlined the special character 
of measurement modelling, showing how it reveals, from 
a special perspective, the foundational role of 
measurement for science and engineering. 

We conclude by outlining once again the need of 
promoting theoretical and foundational studies in 
measurement, since this discipline, though (or, perhaps, 
because of) dealing mainly with experimentation, poses 
theoretical questions which are not less challenging than 
those arousing in other, apparently more theoretically 
oriented, disciplines. 

REFERENCES 

[1] BIPM, IEC, ISO, OIML, International vocabulary of basic 
and general terms in metrology, ISO, Genève, 1984 

[2] BIPM,IEC,IFCC,ISO,IUPAC,IUPAP,OIML, International 
Vocabulary of Basic and General Terms in Metrology, 2nd 
ed., ISO, Genève, 1993 

[3] ISO IEC Guide 99, International vocabulary of  metrology 
– Basic and general concepts and associated terms (VIM), 
3rd ed., ISO, Geneva, 2007 

[4] L. Finkelstein, Foundational problems of measurement, in: 
Kariya and L. Finkelstein, Measurement science- a 
discussion, Ohmsha Press, Amsterdam 2000, 13-21 

[5] L. Mari, Epistemology of measurement, Measurement 34 
(2003) 17-30  

[6] http://cordis.europa.eu/nest/home.html 
[7] http://minet.wordpress.com/ 
[8] R. Dybkaer, Cross disciplinary terminology for properties 

of systems, MINET, Think Tank event I, Hermann-
Riestschel-Institut/Fachgebiet Hei- und Raumlufttechnik 
Berlin, 27 April 2007 

[9] D. H. Cropley, Towards formulating a semiotic theory of 
measurement information, Measurement 24 (1998) 237-
262 

[10]  G. B. Rossi, A probabilistic theory of measurement, 
Measurement, 39 (2006) 34-50 

[11] M. Regenwetter, M. Regenwetter, Random utility 
representations of finite m-ary relations, Journal of 
Mathematical Psychology, 40 (1996) 219-234. 

[12] T. J. Esward, Mathematical modelling for metrology at the 
nanoscale, NPL Report MSCG/M05/647, 2005 

[13] G. B. Rossi, F. Crenna, M. Panero, Panel or jury testing 
methods in a metrological perspective, Metrologia 42 
(2005) 97-109 

[14] R.C. Michelini and G.B. Rossi: Measurement uncertainty: 
a probabilistic theory for intensive entities, Measurement, 
15 (1995) 143-157. 

[15] L. Mari, Beyond the representational viewpoint: a new 
formalization of measurement, Measurement, 27 (2000)  

[16] G.B. Rossi, A probabilistic model for measurement 
process, Measurement 34 (2003) 85-99. 

[17] B. Berglund, Quality assurance in environmental 
psychophysics, in S.J. Bolanowski, G. A. Gescheider 
(Eds.), Ratio scaling of psychological magnitudes – In 
honour of the memory of S.S. Stevens, Hillsdale, N.J., 
Erlabuam, 1991, ch. 11, pp. 140-162 

[18] B. Berglund, E. Harju, Master scaling of perceived 
intensity of touch, cold and warmth, European Journal of 
Pain, 7 (2003) 323-334 

[19]  G. B. Rossi, Measurability, Measurement 40 (2007)  
[20] R. Morawski, Realists’ versus instrumentalists’ 

understanding of measurement, XVII IMEKO World 
Congress, 2003 

[21]  G. B. Rossi, An attempt to interpret some problems in 
measurement science on the basis of Kuhn’s theory of 
paradigms, Measurement 39 (2006) 512-521 

44


