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Abstract— For a complex autonomous robotic system such
as a humanoid robot, the learning-based state prediction is
considered effective to develop the body and environment model
autonomously. In this paper we investigate a model of changes
detection directly included in the evaluation process of the
learning algorithm. The model is characterized by a function
called confidence, which returns a high value if the robot’s
actual state data match the predicted state data. The robot
then creates the confidence map for each sensor based on the
prediction error, which allows the robot to notice if the current
sensory state is predictable (experienced) or not. We consider
the confidence function as the first step to self diagnosis and self
adaptation. The approach was experimentally validated using
the humanoid robot James.

Keywords: Sensory Motor Prediction, Neural Networks,
Learning, Humanoid robot, Self Confidence

I. I NTRODUCTION

Learning in robotics is one of the practical solutions
allowing an autonomous robot to perceive its body and
the environment. As discussed in the context of theframe
problem [1], the robot’s body and the environment are too
complex to be modeled. Even if the kinematics and the
dynamics of the body are known, a real sensory input to the
body would be different to one derived from the theoretical
model, because the sensory input is always influenced by
the interaction with the environment. For instance, when
we grasp an object, the physical state of our arm such as
a weight and momentum becomes different to those at the
normal state. However, it is difficult to evaluate all potential
variation in advance, since real data can vary quite a lot and
the behavior of the external environment is not necessarily
controlled by the robot: in this example, the state of the
arm is always different depending on the grasped object. On
the other hand, learning provides a data-driven solution: the
robot explores the environment and extracts knowledge to
build an internal model of the body and the environment.

Learning based motor control system is well studied in
the literature [2][3][4][5][6][7]. M. Haruno et al. proposed
a modular control approach [3], which couples a forward
model (state predictor) and an inverse model (controller).
The forward model predicts the next state from a current
state and a motor command (an efference copy), while the
inverse model generates a motor command from the current
state and the predicted state. The desired motor command
is not available, but the feedback error learning procedure

(FEL) provides a suitable approximation [4]. The prediction
error contributes to gate learning of the forward and inverse
models, and to weight output of the inverse models for the
final motor command.

The efference copy is an important idea for forward model
learning [5][6]. Motor prediction based on a copy of motor
command compensates the delays and noise in the senso-
rimotor system. Moreover, motor prediction allows differ-
entiating self-generated movement from externally imposed
forces/disturbances. The work of Helmholtz, for example,
suggests the existence of motor prediction in the brain:
“When the eye is moved without using the eye muscles, the
retinal locations of visual objects change, but the predicted
eye position is not updated, leading to the false perception
that the world is moving” (cited in [7]).

Learning-based perception is applicable not only for motor
control but also to model the environment owing to mul-
tiple sensorial modalities, such as vision, audition, touch,
force/torque, and inertial sensing. In a similar approach,
we developed a learning system aiming at predicting fu-
ture sensing data based on current sensing data and motor
command [8]. The system proved to perform reliably for
short-term prediction (about 10 time steps). But once the
internal models of the self and environment are learned, what
happens if changes occur either in the environment or the
robotic system? In most studies on motor prediction based on
sensor data, the configuration of the robot and environment
are assumed static. In such condition, the study can focus
on the complexity of a given task such as grasping with
improved accuracy [9], blind reaching [10], sensorimotor
coordination [11], or objects classification [12]. In realistic
daily situations, a procedure detecting the changes to reset
the learning process and adapt the system to a new situation
is necessary. Such procedure is also the starting point for fast
and reliable self diagnosis and self adaptation.

In this paper we investigate a model of changes detection
directly included in the evaluation process of the learning
algorithm. The model is represented by a function called
confidence, which returns a high value if the robot’s actual
state matches the predicted state. Section II describes the
proposed framework of sensory prediction. Section III de-
scribes the experimental results using the humanoid robotic
platform James. Two applications are described involving
different types of sensing and motor data in order to show the
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Fig. 1. Framework.

generality of our approach. Section IV discusses the experi-
mental results and generalization of the proposed approach.
Finally, Section IV gives conclusion with some future tasks.

II. M ETHOD

A. Framework of sensory prediction

A humanoid robot integrates a lot of sensors and motors,
which allow the robot to interact with an external environ-
ment. Fig.1 shows a robot and its environment. The robotic
platform obtains sensing information from the environment
via its sensors and acts on the environment using motors.
Only this information is available to autonomous robots to
define the self, the environment, and the relation between
them. The main idea of the proposed sensory motor learning
is to exploit this causal relation which consists in a condition,
a cause, and its effect represented by the sensory input and
motor output. If the robot learns this causal relation from its
experience, then the robot can also acquire an internal model
of the self and the environment.

Fig.2 illustrates the structure of the proposed learning
system and its interaction with the robot and the environment.
Let s[t] ∈ Rns denote the sensory state vector for thens

sensors, andu[t] ∈ Rnm be the motor command vector for
the nm motors at timet. The learning system predicts the
next sensory feedback:s∗[t], which is assumed to receive at
time t + δt the current sensory states[t] and the next motor
command:u[t]. The prediction is defined as:

s∗[t] := Φ(s[t], u[t]). (1)

The real sensory feedback:s[t + δt] is given at timet +
δt and it is used for learning of an approximation of the
functionΦ(·, ·). u[t] is given by a stochastic motor command
generator such as:

u[t] := Ψ[t]. (2)

We adopted a stochastic functionΨ in order to generate a
random movement for the collection of the learning samples
and the evaluation of learning. However, the motor command
generator is generally not limited to stochastic functions.

B. Confidence for prediction

The prediction error means a gap between the robot
perceptions and the robot’s predictions∗ [8]. Therefore,
if the sensory prediction is accurate enough, sudden large
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Fig. 2. Sensory prediction system.

components of the prediction error vector suggest changes in
the body of the robot or in the environment. The prediction
error vector:e[t] ∈ Rns for the sensory states[t] is defined
as:

e[t] := s∗[t − δt] − s[t], (3)

wheres∗[t − δt] indicates the prediction ofs[t] executed at
time t − δt. The components ofe[t] are denotedei[t] (i =
1, · · · , ns) such asei[t] ∈ (−∞, +∞). Here, let us introduce
a transformation ofei[t] into finite variables:ci[t] ∈ [0, 1]
such as

ci[t] := exp(−e2
i [t] / 2σ2), (4)

where the varianceσ2 determines sensitivity. Accumulation
of ci depending on the sensory statesi provides a confidence
map of thei-th sensory modalities. LetCi[si] denote the
confidence map: a high value ofCi at si means that the
prediction atsi is reliable. The update rule of the confidence
map at timet + δt is defined as:

Ci[si, t + δt] := (1 − α)Ci[si, t] + αci[t]. (5)

The constant parameterα ∈ [0, 1] is an update weight, and
Ci is initialized at zero.si is quantized and used for the
update ofCi. The gap betweenCi[si] and the current value
of ci gives saliency for the current sensory state. Ifci is
much lower thanCi, it means that the current sensory state
is abnormal comparing to its experience.

C. Implementation by neural networks

The mapping functionΦ(·) for the sensory prediction was
implemented with Multi Layer Perceptron (MLP) as shown
in Fig.3 [8][13]. MLP is a universal function approximator,
which parameters can be optimized by learning. We adopted
the MLP with three layers and the conventional gradient
descent method as a learning strategy [13].

Let nh andno denote the numbers of the units in the first
and second layer, respectively. Here, the prediction function
Φ(·) is defined as follows,

Φk(x) =
no∑

j=1

wo
jk · ϕ(

nh∑
i=1

wh
ijxj + wh

0j) + wo
0k (6)

where Φk(·) represents thek-th component of the funtion
Φ(·), andx denotes a combined vector ofs and u: xT =
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Fig. 3. Multi Layer Perceptron (MLP).

(sT , uT ). wh denotes the weight coefficients connecting the
first to second layer, andwo connecting the second to third
layer.wh

0j andwo
0k are bias coefficients. As shown in Fig.3,

the activation functionϕ(·) of the units in the second layer
is a differentiable non-linear function, while the activation
functions of the units in the first and the third layers are
identity functions. We adopted the hyperbolic tangent asϕ(·)
in the second layer as follows.

ϕ(v) = tanh(
v

τ
), (7)

whereτ is a constant value to control non-linearity andv is
a weighted sum of the inputs into the units.

The parameters of the functionwh
ij andwo

jk are modified
for each inputx[t] to minimize the error|e[t]|2 defined by
Eq.(3) using gradient descent:

∆wh
ij [t] = −η

∂

∂wh
ij

|e[t]|2, ∆wo
jk[t] = −η

∂

∂wo
jk

|e[t]|2,

(8)
whereη is a constant learning rate.

III. E XPERIMENT

We show two experiments of sensory prediction learning:
Exp.1somatosensory predictionand Exp.2visual prediction.
Using two different experimental settings, we will show that
the confidence function defined in Eq.(5) allows reliable
online detection of any changes occurring in the robot body
or environment when proceeding with prediction.

A. Experimental setting

Both experiments of the sensory prediction learning were
performed using the humanoid robot James [12]. James is a
fixed upper-body robotic platform dedicated to vision-based
manipulation studies. It is composed of a seven dof arm with
a dexterous nine dof hand and a seven dof head as shown
in Fig.4. It is equipped with binocular vision, force/torque,
tactile, inertial sensors and encoders. Low-level input and
output of sensors and motors are processed in local control
cards, and high-level information can be handled in local
networks independently and asynchronously [14].

The procedure of prediction learning is organized in three
stages as illustrated in Fig.5: 1-exploration: the robot moves
its body randomly (motor babbling) in order to collect
learning samples; 2-learning: the robot learns the collected
learning samples off line; 3-evaluation: the robot randomly
moves its arm again to evaluate the learning.

Exp.1 (Somatosensory prediction learning) uses the en-
coder data of the left arm as input, whereas Exp.2 (the visual

Fig. 4. The humanoid robot James [12].
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(Movements)

Learning

(Off Line)

Fig. 5. Procedure of prediction learning.

prediction learning) uses the image data of the left eye as
input. In both cases output data are motor control sent to
the actuators of the left arm, and the head respectively: the
velocity command is sent to the joints during the first half of
the intervalδt, while it is set to zero during the second half
of this interval. Therefore, James moves and stops at each
time steps. The inputs and outputs of each experiment are
summarized in Tab.I.

In order to observe disturbance to prediction, which is our
main source of interest in these experiments, we divided the
evaluation stage (stage 3) into two halves, and implemented
random disturbance during the second one (Fig.6). The
detail of disturbance in each experiment is specified in the
following sections.

The experimental parameters are presented in Tab.II,
where T1 and T3 [ts] (time steps) denote iteration of stage 1
and 3, respectively. The generated trajectories in both stages
were different. T2 [ts] denotes the learning iteration in
stage 2. To match domains of input/output values and initial
weight coefficients, all inputs and outputs values for the
neural networks were normalized, and the initial weight
coefficients were randomly selected from the finite domain
as defined in Tab.II. The number of the units in the middle
layer of neural networks is generally connected to the power

TABLE I

INPUT AND OUTPUT VARIABLES FOREXP.1 AND EXP.2.

Exp. No input output

Exp. 1 s[t] = (q1[t], q2[t]) u[t] = (u1[t], u2[t])
Somatosensory q1: shoulder pitch u1: shoulder pitch

Prediction q2: elbow pitch u2: elbow pitch
Exp. 2 s[t] = (x1[t], x2[t]) u[t] = (u1[t], u2[t])
Visual x1: horizontal position u1: neck yaw

Prediction x2: vertical position u2: eye pitch
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Fig. 6. Disturbance noise inside and outside the body.

TABLE II

EXPERIMENTAL PARAMETERS.

Parameter Exp. 1 Exp. 2

T1 200 [ts] 400 [ts]
T2 100K [ts] 5M [ts]
T3 200 [ts] 400 [ts]
δt 1.0 [s] 4.0 [s]
no 2 2
nh 10 30
η 0.01 0.01
τ 1.0 1.0

Initial wh, wo [-0.01, +0.01] [-0.01, +0.01]
Su {−1, 0, +1} {−1, 0, +1}
G 15.0 10.0
α 0.05 0.05

of function approximation. We assigned more units at the
Exp.2 to deal with nonlinear position change in the view.
A value of ui[t] (i = 1, 2) was randomly selected from a
finite set:Su = {−1, 0, +1} for simplicity, and input to the
networks, whereas the proportionally amplified value by the
gain G was sent to the motors.

B. Experiment 1

The somatosensory prediction (prediction of encoder in-
formation) was performed using James left arm. Fig.7 shows
a sequence of arm movements during the exploration stage.
Both the sensory input vector and command output vector
correspond to shoulder and elbow pitch (Tab.I).

During the disturbance period in the evaluation stage, we
randomly modified the motor commandu[t] sent to the
motors. This modification differentiates the motor command
for the motors to that for the predictorΦ(·, ·). The modifi-
cation is illustrated as “Noise 1” in Fig.6. This modification
simulates a random disturbanceinside the robot body. In
human, such situation is pathology in nerves to transmit the
motor command from the brain to the muscles.

Fig.8 (top) shows temporal sequences of sensory predic-
tion: q∗1 [t], q∗2 [t] and real sensory feedback:q1[t], q2[t] during
the evaluation stage. The joint position values are normalized
in [-1, +1] based on the maximal range of the joint angles.
The period from 0 to 99 [ts] is with no disturbance, while the
period from 100 to 199 [ts] is disturbed. Prediction accuracy
of the shoulder pitch (q1) was better than that of the elbow
(q2) in the first half period. The accuracy is considered to
depend on some conditions such as learning parameters and
fidelity of sensors and motors. Actually, the motor and gear

Fig. 7. Sequence of James arm movements during the exploration stage.
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Fig. 8. Sequences of real and predicted joint positions (top), and
corresponding absolute prediction error (bottom).

of joint 1 is larger and more robust than those of joint 2.
Fig.8 (bottom) shows the corresponding prediction error. In
the disturbed period, we can see that the prediction does not
work well. This means that the robot can detect the abnormal
state.

Fig.9 shows the convergence of the confidence map for
joint 1. The top figure shows the growing up of confidence
maps by movement. The middle and bottom figure shows
the convergence of the confidence map, and its degeneration
by the disturbance, respectively. The confidence value of the
left end and right end domain was lower than that of the
center, because the center position is often experienced in
the random-walk trajectory. The confidence map represented
the confident domain of sensory state, which suggests abnor-
mality of the sensory state.

C. Experiment 2

The visual prediction was performed using James head in
the same manner as the previous experiment (Fig.10). The
sensory input vector is the horizontal and vertical coordinate
of an attention object on an image obtained from the left eye

12th IMEKO TC1 & TC7 Joint Symposium on Man Science & Measurement
September, 3–5, 2008, Annecy, France 

272



 0

 0.2

 0.4

 0.6

 0.8

 1

C
on

fid
en

ce

Position [-1.0,+1.0]

Time Step 0
Time Step 1
Time Step 2
Time Step 3
Time Step 4
Time Step 5
Time Step 6
Time Step 7
Time Step 8
Time Step 9

 0

 0.2

 0.4

 0.6

 0.8

 1

C
on

fid
en

ce

Position [-1.0,+1.0]

Time Step 90
Time Step 91
Time Step 92
Time Step 93
Time Step 94
Time Step 95
Time Step 96
Time Step 97
Time Step 98
Time Step 99

 0

 0.2

 0.4

 0.6

 0.8

 1

C
on

fid
en

ce

Position [-1.0,+1.0]

Time Step 190
Time Step 191
Time Step 192
Time Step 193
Time Step 194
Time Step 195
Time Step 196
Time Step 197
Time Step 198
Time Step 199

Fig. 9. Convergence of the confidence map of sensory prediction in period
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camera. The command output vector corresponds to the yaw
joint of the neck and the pitch joint of the left eye. These
joints movements generate the horizontal and vertical view
shift (Tab.I).

Let us assume the attention object as a small green ball
mounted on the left arm of James. Here, the position of
the ball and arm are fixed. The object is detected based on
the color feature. The color format of the obtained image
is transformed from the RGB format to the YUV format to
extract the hue of color robustly. The green regions on the
image are filtered in this domain. The conclusive coordinates
of the attention object is the center of the extracted regions.
The thresholds for filtering were experimentally determined,
which are enough robust to detect the attention object against
external visual noise such as lighting change and passing
people in the experimental field.

During the disturbance period in the evaluation stage, we
randomly modified the position of the attention object by

Joint Movements Object detection

Fig. 10. Experiment setting of visual prediction.

using the left arm movement (Fig.10, blue arrows on the
left arm). The modification is illustrated as “Noise 2” in
Fig.6. This modification simulates the random disturbance
outsidethe robot body, such as external effects occurring in
the environment.

When the robot is sampling data in the exploration stage,
the position of the attention object in the task space is
fixed. Therefore, the prediction system learns the position
change of the attention object in the visual field caused only
by the robot neck and eye movements. Therefore, if the
position of the attention object is changed by random left
arm movements in the evaluation state, the prediction does
not work and this failure suggests that the environmental
condition is modified.

Fig.11 (top) shows temporal sequences of sensory pre-
diction: x∗

1[t − δt], x∗
2[t − δt] and real sensory feedback:

x1[t], x2[t] during the evaluation stage. Eachx∗
i [t−δt] is the

prediction value ofxi[t] at time t − δt. The object position
values are normalized in [-1, +1] based on image dimension.
The period from 0 to 199 [ts] is with no disturbance, while
the period from 200 to 399 [ts] is disturbed.

Fig.11 (bottom) shows the corresponding prediction error.
In the disturbed period, we can see that the prediction does
not work well on average, in opposition to the prediction
in the first half period. During both periods the impulse-
like error appears, but this is not so essential in this ex-
periment. When the attention object goes out of the visual
field during random movements, the neck and eye position
are re-initialized to set the attention object in the center
of the image. This irregular re-initialization, however, is
not informed to the prediction system, which caused this
impulse-like error during both periods.

Fig.12 shows the convergence of the confidence map for
horizontal position:x1[t]. The top figure shows the growing
up of confidence maps by movement. The middle and bottom
figure shows the convergence of the confidence map, and its
degeneration by the disturbance, respectively. The average
confidence value of the end of the normal period (middle
figure) is higher than the end of the disturbance period
(bottom figure).

The effect of the disturbance is well detected in the
difference of these confidence maps. The less difference
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Fig. 11. Sequences of real and predicted positions of the attention object
(top), and corresponding absolute prediction error (bottom).

in the left end and right end domains is originated from
insufficiency of iteration for convergence. If the evaluation
period is enlarged or the update parameterα in the Eq.(5) is
increased, the difference is considered more apparent in the
whole domain.

IV. D ISCUSSION

As shown in experimental results, the confidence map
gives a precise evaluation of the acquired sensorimotor
knowledge of the robot. These experiences allow to safely
detect changes, whether inside (self), or outside (environ-
ment) the robotic system. It is not possible, within the limits
of this paper, to precise where the disturbance comes from.
This self and environment disturbance differentiation can
only be made in acontextual coincidence: if one sense is
isolated, the system needs a reference. For example, visual
prediction with several attention objects differentiates the
case of loosing confidence on one attention object (by envi-
ronment disturbance) from that on all the attention objects
(by self disturbance).

When humans interact with the environment, they con-
firm sensory situation by the use of many sensory sources
(vision, audition, force/torque sensor, inertia sensor, tactile
sensor, somatosensor, etc). All these sensors are independent
but complementary. Then, unless there is a failure in the
central nervous system, it is easy for us to make a clear
distinction between an anomaly in the self and a change in
the environment. Our future work will use heterogeneous
sensing modalities, like mixing vision, audition and tactile
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Fig. 12. Convergence of the confidence map of sensory prediction in period
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information, in order to improve self diagnosis.

V. CONCLUSION

Based on a sensorimotor prediction algorithm previously
implemented [8], we defined a function called confidence,
directly connected to the evaluation process of the sensory
prediction. The aim of this function is to detect inequalities
in the self and environment knowledge when changes occur
in the real self or environment. The notion of robotic
self-confidencewas developed as the first step toward self
diagnosis and self adaptation. The approach was validated
positively in this paper, in simple cases of four dimensional
input and two dimensional output vectors, using two sensory
modalities: somatosensory prediction and visual prediction.

Our global aim is to implement a learning process as a
natural adaptation and self-improvement for the robot. We
must then deal with the high DOF mechanism to show that
our prediction algorithm remains accurate when dealing with
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numerous complementary sensor data, redundant kinematics,
and dynamics. We are improving the learning strategy based
on this confidence map to enhance the learning speed and
to integrate multi-modal sensory prediction toward self-
consciousness and self-diagnosis for autonomous robots.
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