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Abstract—For a complex autonomous robotic system such (FEL) provides a suitable approximation [4]. The prediction
as a humanoid robot, the learning-based state prediction is error contributes to gate learning of the forward and inverse

considered effective to develop the body and environment model models, and to weight output of the inverse models for the
autonomously. In this paper we investigate a model of changes _.
final motor command.

detection directly included in the evaluation process of the . ) )
learning algorithm. The model is characterized by a function The efference copy is an important idea for forward model

called confidence, which returns a high value if the robot's learning [5][6]. Motor prediction based on a copy of motor
actual state data match the predicted state data. The robot command compensates the de|ays and noise in the senso-
then creates the confidence map for each sensor based on theyimotor system. Moreover, motor prediction allows differ-
prediction error, which allows the robot to notice if the current L .

sensory state is predictable (experienced) or not. We consider e”t'a““g_ self-generated movement from externally imposed
the confidence function as the first step to self diagnosis and self forces/disturbances. The work of Helmholtz, for example,
adaptation. The approach was experimentally validated using suggests the existence of motor prediction in the brain:
the humanoid robot James. “When the eye is moved without using the eye muscles, the
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eye position is not updated, leading to the false perception
that the world is moving” (cited in [7]).

Learning-based perception is applicable not only for motor

Learning in robotics is one of the practical solutionscontrol but also to model the environment owing to mul-
allowing an autonomous robot to perceive its body antlple sensorial modalities, such as vision, audition, touch,
the environment. As discussed in the context of ftsene force/torque, and inertial sensing. In a similar approach,
problem[1], the robot’s body and the environment are toowe developed a learning system aiming at predicting fu-
complex to be modeled. Even if the kinematics and thaure sensing data based on current sensing data and motor
dynamics of the body are known, a real sensory input to theommand [8]. The system proved to perform reliably for
body would be different to one derived from the theoreticathort-term prediction (about 10 time steps). But once the
model, because the sensory input is always influenced lternal models of the self and environment are learned, what
the interaction with the environment. For instance, whehappens if changes occur either in the environment or the
we grasp an object, the physical state of our arm such asbotic system? In most studies on motor prediction based on
a weight and momentum becomes different to those at tls@nsor data, the configuration of the robot and environment
normal state. However, it is difficult to evaluate all potentiabre assumed static. In such condition, the study can focus
variation in advance, since real data can vary quite a lot arwh the complexity of a given task such as grasping with
the behavior of the external environment is not necessarilpnproved accuracy [9], blind reaching [10], sensorimotor
controlled by the robot: in this example, the state of theoordination [11], or objects classification [12]. In realistic
arm is always different depending on the grasped object. Qfaily situations, a procedure detecting the changes to reset
the other hand, learning provides a data-driven solution: thtee learning process and adapt the system to a new situation
robot explores the environment and extracts knowledge ie necessary. Such procedure is also the starting point for fast
build an internal model of the body and the environment. and reliable self diagnosis and self adaptation.

Learning based motor control system is well studied in In this paper we investigate a model of changes detection
the literature [2][3][4][5][6][7]. M. Haruno et al. proposed directly included in the evaluation process of the learning
a modular control approach [3], which couples a forwaralgorithm. The model is represented by a function called
model (state predictor) and an inverse model (controllerfonfidencewhich returns a high value if the robot’s actual
The forward model predicts the next state from a currerstate matches the predicted state. Section Il describes the
state and a motor command (an efference copy), while thoposed framework of sensory prediction. Section Il de-
inverse model generates a motor command from the currestdribes the experimental results using the humanoid robotic
state and the predicted state. The desired motor commaplatform James. Two applications are described involving
is not available, but the feedback error learning procedumdifferent types of sensing and motor data in order to show the
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Fig. 1. Framework. Fig. 2. Sensory prediction system.

generality of our approach. Section 1V discusses the expedomponents of the prediction error vector suggest changes in
mental results and generalization of the proposed approa¢he body of the robot or in the environment. The prediction
Finally, Section IV gives conclusion with some future tasks.error vector:e[t] € R™ for the sensory state[t] is defined
as:
Il. METHOD
A. Framework of sensory prediction

A humanoid robot integrates a lot of sensors and motorg/heres*[t — dt] indicates the prediction of[t] executed at
which allow the robot to interact with an external environtime ¢ — 6¢. The components o[t] are denotea;[t] (i =
ment. Fig.1 shows a robot and its environment. The robotit, - - -, n) such as;[t] € (—oc, +00). Here, let us introduce
platform obtains sensing information from the environmena transformation ok;[¢] into finite variables:c;[t] € [0, 1]
via its sensors and acts on the environment using motoruch as
Only this information is available to autonomous robots to 9 9
define the self, the environment, and the relation between cilt] = exp(—e;lt] / 207), )
them. The main idea of the proposed sensory motor learnifghere the variance? determines sensitivity. Accumulation
is to exploit this causal relation which consists in a conditionef ¢, depending on the sensory stateprovides a confidence
a cause, and its effect represented by the sensory input afglp of thei-th sensory modalities. Lef;[s;] denote the
motor output. If the robot learns this causal relation from itgonfidence map: a high value @f; at s; means that the
experience, then the robot can also acquire an internal moggkdiction ats; is reliable. The update rule of the confidence

elt] := s*[t — dt] — s[t], (3)

of the self and the environment. map at timet + &t is defined as:
Fig.2 illustrates the structure of the proposed learning
system and its interaction with the robot and the environment.  Cilsi,t + 6] := (1 — ) Ci[si, 1] + acst]. )

Let s[t] € R;S deno?t1e tge iensory state vectgr for ﬂ“@f The constant parameter € [0, 1] is an update weight, and
sensors, andi[t] € R ' be the mot_or comman ve(_:tor or C; is initialized at zero.s; is quantized and used for the
the n,, motors at timet. The learning system predicts theupdate ofC;. The gap betweer;[s;] and the current value
next sensory feedback:[t], which is assumed to receive at

. 5t th dth of ¢; gives saliency for the current sensory statec;lfis
time ¢ + ot the current se_ns.ory.stahsﬁfi] and the next motor ,ch Jower thanC;, it means that the current sensory state
command:u[t]. The prediction is defined as:

is abnormal comparing to its experience.
s*[t] := ®(s[t], u[t]). 1)

C. Implementation by neural networks

The real sensory feedback(t + dt] is given at timet + The mapping functiom(-) for the sensory prediction was

6t and it is used for learning of an approximation of themplemented with Multi Layer Perceptron (MLP) as shown
function®(-, -). u[t] is given by a stochastic motor commandin Fig.3 [8][13]. MLP is a universal function approximator,
generator such as: which parameters can be optimized by learning. We adopted

. the MLP with three layers and the conventional gradient

ulf] = Wll. 2) descent method as a learnin
g strategy [13].

We adopted a stochastic functidh in order to generate a  Let n" andn® denote the numbers of the units in the first
random movement for the collection of the learning sampleand second layer, respectively. Here, the prediction function
and the evaluation of learning. However, the motor command(-) is defined as follows,
generator is generally not limited to stochastic functions. ,

B. Confidence for prediction Op(@) = > wh - ¢(O_ wiia; + wi;) + w (6)
The prediction error means a gap between the robot 3=t !

perceptions and the robot’s predictios™ [8]. Therefore, where ®,(-) represents thé&-th component of the funtion

if the sensory prediction is accurate enough, sudden largg-), and z denotes a combined vector sfand u: 7 =

1=
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Fig. 3.

Multi Layer Perceptron (MLP).

(s, uT). w" denotes the weight coefficients connecting the
first to second layer, and® connecting the second to third
layer. w(;; andwg, are bias coefficients. As shown in Fig.3,
the activation functions(-) of the units in the second layer
is a differentiable non-linear function, while the activation
functions of the units in the first and the third layers are
identity functions. We adopted the hyperbolic tangenb@$

in the second layer as follows.

¢(v) = tanh(>), @)

wherer is a constant value to control non-linearity ands
a weighted sum of the inputs into the units.

The parameters of the functian; andw?, are modified
for each inputz[t] to minimize the errore[t]|?> defined by prediction learning) uses the image data of the left eye as
Eq.(3) using gradient descent: input. In both cases output data are motor control sent to
the actuators of the left arm, and the head respectively: the
velocity command is sent to the joints during the first half of
the intervaldt, while it is set to zero during the second half
wherer is a constant learning rate. qf this interval. Therefore, James moves and stop_s; at each

time steps. The inputs and outputs of each experiment are
I1l. EXPERIMENT summarized in Tab.l.

We show two experiments of sensory prediction learning: I order to observe disturbance to prediction, which is our
Exp.1somatosensory predictioand Exp.2visual prediction. Main source of interest in these experiments, we divided the
Using two different experimental settings, we will show thagvaluation stage (stage 3) into two halves, and implemented
the confidence function defined in Eq.(5) allows reliablé@ndom disturbance during the second one (Fig.6). The
online detection of any changes occurring in the robot bod§etail of disturbance in each experiment is specified in the

or environment when proceeding with prediction. ollowing sect.ions.
The experimental parameters are presented in Tab.ll,

A. Experimental setting where T1 and T3 [ts] (time steps) denote iteration of stage 1

Both experiments of the sensory prediction learning werand 3, respectively. The generated trajectories in both stages
performed using the humanoid robot James [12]. James isnaere different. T2 [ts] denotes the learning iteration in
fixed upper-body robotic platform dedicated to vision-basestage 2. To match domains of input/output values and initial
manipulation studies. It is composed of a seven dof arm witheight coefficients, all inputs and outputs values for the
a dexterous nine dof hand and a seven dof head as shomgural networks were normalized, and the initial weight
in Fig.4. It is equipped with binocular vision, force/torque,coefficients were randomly selected from the finite domain
tactile, inertial sensors and encoders. Low-level input anals defined in Tab.Il. The number of the units in the middle
output of sensors and motors are processed in local conttayer of neural networks is generally connected to the power
cards, and high-level information can be handled in local

Fig. 4. The humanoid robot James [12].
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Fig. 5. Procedure of prediction learning.
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networks independently and asynchronously [14].
The procedure of prediction learning is organized in three
stages as illustrated in Fig.5: éxploration the robot moves

TABLE |

INPUT AND OUTPUT VARIABLES FOREXP.1 AND EXP.2.

) . . Exp. N input tput
its body randomly (motor babbling) in order to collect | xp-No_ | Py oulpu
I H I . z H th b t I th ” t d EXp 1 S[t] = (ql [t]qu [t]) u[t] = (ul[t]7u2 [t])
earning samples, dearning the robot learns the collecte Somatosensory  gi: shoulder pitch u1: shoulder pitch
learning samples off line; 3evaluation the robot randomly Prediction g2: elbow pitch us: elbow pitch
moves its arm again to evaluate the learning. Exp. 2 sft] = (z1ft], z2[t]) | wft] = (ui[t] u2lt])
Exp.1 (Somatosensory prediction learning) uses the en- Visual @1: horizontal position ur: neck yaw
xp.1 ( yp Ing) u Prediction x2: vertical position ug: eye pitch

coder data of the left arm as input, whereas Exp.2 (the visual

271




LeamingSyg¢em

Robotic Platform

Environment

S @D
(oot ]-+—>
— 4%
Noise 2 '0‘ °09
(SbiorH—>

Fig. 7.

Sequence of James arm movements during the exploration stage.
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TABLE II g
EXPERIMENTAL PARAMETERS
[ Parameter | Exp. 1 ] Exp. 2 |
T1 200 [ts] 400 [ts]
T2 100K [ts] 5M [ts]
T3 200 [ts] 400 [ts]
ot 1.0 [g] 4.0 [s] |
n? 2 2
nh 10 30 * 0 Z‘D 4‘0 (;0 8‘0 1‘00 1‘20 1‘40 160 180 200
n 0.01 0.01 o Time Sepe
T 1.0 1.0 Aneohie Enor o somt 2 el
Initial w", w°® | [-0.01, +0.01] | [-0.01, +0.01]
Sy, {-1,0,+1} {-1,0,+1} o4r
G 15.0 10.0
« 0.05 0.05 wal

Absolute Error

i

of function approximation. We assigned more units at the

|

: . o . . I
Exp.2 to deal with nonlinear position change in the view. orf Iy P”]\l\ ‘W#‘ Aﬂ*‘*ﬁmfk M
A value of u;[t] (i = 1,2) was randomly selected from a T \ “\ I w\i‘;““\““w\ﬁ” \\ ‘JH”‘\
finite set:S,, = {—1,0,+1} for simplicity, and input to the o LA e W sl s U] Hl Lol

0 20 40 60 80 100 120 140 160
Time Steps

networks, whereas the proportionally amplified value by the
gain G was sent to the motors. Fig. 8. Sequences of real and predicted joint positions (top), and

B Experiment 1 corresponding absolute prediction error (bottom).

The somatosensory prediction (prediction of encoder in-

formation) was performed using James left arm. Fig.7 shows ) o
a sequence of arm movements during the exploration sta?f_.lo'nt 1 is larger and more robust than those of joint 2.
§

Both the sensory input vector and command output vect g.8.(bottom) sh'ows the corresponding predi_ctign error. In
correspond to shoulder and elbow pitch (Tab.l). the disturbed period, we can see that the prediction does not
During the disturbance period in the evaluation stage, weork well. This means that the robot can detect the abnormal
randomly modified the motor command|t] sent to the State.
motors. This modification differentiates the motor command Fig.9 shows the convergence of the confidence map for
for the motors to that for the predictd¥(-,-). The modifi- Joint 1. The top figure shows the growing up of confidence
cation is illustrated as “Noise 1” in Fig.6. This modificationMaps by movement. The middle and bottom figure shows
simulates a random disturbanaeside the robot body. In the convergence of the confidence map, and its degeneration
human’ such situation is patho|ogy in nerves to transmit tH@/ the disturbance, respectively. The Conﬁdence Value Of the
motor command from the brain to the muscles. left end and right end domain was lower than that of the
Fig.8 (top) shows temporal sequences of sensory predigenter, because the center position is often experienced in
tion: ¢;[t], ¢3[t] and real sensory feedbaakt], ¢2[t] during the random-walk trajectory. The confidence map represented
the evaluation stage. The joint position values are normalizée confident domain of sensory state, which suggests abnor-
in [-1, +1] based on the maximal range of the joint anglegnality of the sensory state.
The period from 0 to 99 [ts] is with no disturbance, while the i
period from 100 to 199 [ts] is disturbed. Prediction accuracg' Experiment 2
of the shoulder pitch¢f) was better than that of the elbow The visual prediction was performed using James head in
(g2) in the first half period. The accuracy is considered téthe same manner as the previous experiment (Fig.10). The
depend on some conditions such as learning parameters aamsory input vector is the horizontal and vertical coordinate
fidelity of sensors and motors. Actually, the motor and geasf an attention object on an image obtained from the left eye
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using the left arm movement (Fig.10, blue arrows on the
left arm). The modification is illustrated as “Noise 2” in
Fig.6. This modification simulates the random disturbance
outsidethe robot body, such as external effects occurring in
the environment.

When the robot is sampling data in the exploration stage,
the position of the attention object in the task space is

oo fixed. Therefore, the prediction system learns the position

' T fhesad change of the attention object in the visual field caused only
TmeSE i 5 by the robot neck and eye movements. Therefore, if the

TS e position of the attention object is changed by random left

Time Step 198

Time Step 199 —=— arm movements in the evaluation state, the prediction does
1 not work and this failure suggests that the environmental
condition is modified.

Fig.11 (top) shows temporal sequences of sensory pre-
diction: =3[t — dt], 5[t — 6t] and real sensory feedback:
x1[t], z2[t] during the evaluation stage. Each[t — 6] is the
prediction value ofz;[t] at timet — §t. The object position
o T —— values are normalized in [-1, +1] based on image dimension.

e The period from 0 to 199 [ts] is with no disturbance, while

Fig. 9. Convergence of the confidence map of sensory prediction in peridfie period from 200 to 399 [ts] is disturbed.

[0:9] (top). [90:99] (middle), and [190:199] (bottom). Fig.11 (bottom) shows the corresponding prediction error.
In the disturbed period, we can see that the prediction does
not work well on average, in opposition to the prediction

camera. The command output vector corresponds to the yéwthe first half period. During both periods the impulse-

joint of the neck and the pitch joint of the left eye. Thesdike error appears, but this is not so essential in this ex-
joints movements generate the horizontal and vertical vieperiment. When the attention object goes out of the visual
shift (Tab.l). field during random movements, the neck and eye position

Let us assume the attention object as a small green balle re-initialized to set the attention object in the center
mounted on the left arm of James. Here, the position aff the image. This irregular re-initialization, however, is
the ball and arm are fixed. The object is detected based ont informed to the prediction system, which caused this
the color feature. The color format of the obtained imagémpulse-like error during both periods.
is transformed from the RGB format to the YUV format to Fig.12 shows the convergence of the confidence map for
extract the hue of color robustly. The green regions on theorizontal positionz;[t]. The top figure shows the growing
image are filtered in this domain. The conclusive coordinatagp of confidence maps by movement. The middle and bottom
of the attention object is the center of the extracted regionfigure shows the convergence of the confidence map, and its
The thresholds for filtering were experimentally determinedjegeneration by the disturbance, respectively. The average
which are enough robust to detect the attention object agairsinfidence value of the end of the normal period (middle
external visual noise such as lighting change and passifigure) is higher than the end of the disturbance period
people in the experimental field. (bottom figure).

During the disturbance period in the evaluation stage, we The effect of the disturbance is well detected in the
randomly modified the position of the attention object bydifference of these confidence maps. The less difference
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in the left end and right end domains is originated from
insufficiency of iteration for convergence. If the evaluation
period is enlarged or the update parameten the Eq.(5) is

increased, the difference is considered more apparent in the o
whole domain.

Confidence

IV. DISCUSSION Positon [1.0.+1.0)

As shown in experimental results, the confidence mapg. 12. Convergence of the confidence map of sensory prediction in period
gives a precise evaluation of the acquired sensorimotét9l (top). [190:199] (middle), and [390:399] (bottom).
knowledge of the robot. These experiences allow to safely
detect changes, whether inside (self), or outside (environ-
ment) the robotic system. It is not possible, within the limitdnformation, in order to improve self diagnosis.
of this paper, to precise where the disturbance comes from.
This self and environment disturbance differentiation can
only be made in aontextual coincidencef one sense is Based on a sensorimotor prediction algorithm previously
isolated, the system needs a reference. For example, visiraplemented [8], we defined a function called confidence,
prediction with several attention objects differentiates theirectly connected to the evaluation process of the sensory
case of loosing confidence on one attention object (by envprediction. The aim of this function is to detect inequalities
ronment disturbance) from that on all the attention objecti® the self and environment knowledge when changes occur
(by self disturbance). in the real self or environment. The notion of robotic
When humans interact with the environment, they conself-confidencevas developed as the first step toward self
firm sensory situation by the use of many sensory sourceggnosis and self adaptation. The approach was validated
(vision, audition, force/torque sensor, inertia sensor, tactilgositively in this paper, in simple cases of four dimensional
sensor, somatosensor, etc). All these sensors are independeptit and two dimensional output vectors, using two sensory
but complementary. Then, unless there is a failure in thmodalities: somatosensory prediction and visual prediction.
central nervous system, it is easy for us to make a clear Our global aim is to implement a learning process as a
distinction between an anomaly in the self and a change matural adaptation and self-improvement for the robot. We
the environment. Our future work will use heterogeneoumust then deal with the high DOF mechanism to show that
sensing modalities, like mixing vision, audition and tactileour prediction algorithm remains accurate when dealing with

V. CONCLUSION
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numerous complementary sensor data, redundant kinematics,
and dynamics. We are improving the learning strategy based
on this confidence map to enhance the learning speed and
to integrate multi-modal sensory prediction toward self-
consciousness and self-diagnosis for autonomous robots.
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