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Abstract: The presented algorithm for uncertainty

evaluation has three steps: determining the membership

function from series of measurements, evaluation of

membership function of average value using fuzzy

arithmetic based on a t-norm, and addition of systematic

errors (based on expert analysis). The parameters of the t-

norm are determined by a minimization procedure for a

proposed error function.
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1.   INTRODUCTION

Results of measurements are often represented as

intervals described as ( ) ( )[ ],, 00 xUxxUx +−  where 0x  is a

measured value (value of mesurand) and ( )xU stands for

uncertainty. The interval is estimated using two kinds of

data:

1. the series of readings { } Nn

nnx
=
=0  (raw results of

measurement),

2. properties of the measuring instrument and

systematic component of uncertainty.

The main problem of error analysis is to find an

algorithm for estimating this interval. From algebraic point

of view the algorithm is defined by arithmetic, which

describes a composition (propagation) of uncertainty

components.

The Guide to the Expression of Uncertainty in

Measurement [1] recommends two methods of estimation of

uncertainty: statistical analysis of measurement series

{ } Nn

nnx
=
=0  (based on arithmetic on random variables), and

other methods for estimation of the non-random component

of error basing on expert knowledge.

In this paper we propose an algorithm based on fuzzy

approach to measurement errors described in many papers

[13-17]. The present paper is a continuation of our previous

paper [2]. Main thesis of our proposition is to replace the

arithmetic on random variables by the fuzzy arithmetic

based on t-norms [2]. In general we consider the following

model of uncertainty:

1. Results of measurements are represented as fuzzy

intervals which contain a complete knowledge on

measurement results.

2. Propagation of uncertainty is described by means of

fuzzy interval arithmetic based on t-norms [4].

3. Fuzzy representation A of the measurement results is

equal to the sum:

sT

T

Av AAA ⊕=
where A

T
Av is a fuzzy number representing the

average value and the random component of

uncertainty and As is a non-fuzzy interval [-∆,+∆],
4. x0 such that A

T
Av(x) = 1 is interpreted as a value of

mesurand and for a given α∈[0,1] the α-cut of A is
interpreted as uncertainty.

In this paper we propose an algorithm of estimating a

fuzzy set corresponding to the measured data series. The

proposed algorithm has the following steps:

1) Estimation of a membership function Ar(x) from the

empirical measurement raw data { } Nn

nnx
=
=0  basing on a

transformation from the probability distribution function to

the possibility membership function (according to [3]).

 2) Determining the membership function A
T
Av(x)

representing the average value of the measured series by

means of the arithmetic based on a t-norm [4]. The average

value of fuzzy interval is arithmetic mean with addition

based on a t-norm.

3) Estimation of the systematic component of

uncertainty by expert method which leads to obtaining an

interval As(x).

4) Addition of both components using arithmetic based

on a t-norm in order to obtain a fuzzy interval A(x)

representing the inexact result of the measurement.

5) Computation of the uncertainty as a radius of the α-
cut of the fuzzy interval A(x).

The algorithm described above requires a previous

choice of a t-norm as well as a value of the α-level. The t-
norm should be chosen in such a way that empirical data

averaging is consistent with averaging based on the t-norm.

We propose a procedure for choosing the best-fitted t-norm

among t-norms belonging to the given family. The

procedure is based on a minimization of the error function

( )T

AvAv AA ,expε . The error function is a measure of the

divergence between the experimental member function exp

AvA

of the average data and A
T
Av calculated with use of the tested
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t-norm. We present the calculation for Yager and Hamacher

t-norms.

The problem of choice of the α-level is equivalent to the
choice of the confidence level for the estimation of

confidence interval. This decision depends on aim of

measurement.

The paper is organized as follows. In Chapter 2 we

present the model of measurement and uncertainty, in

chapter 3 we summarize the representation of measurement

in fuzzy intervals with t-norm based arithmetic, and shortly

discuss the algebraic representation for composition of

uncertainties. In chapter 4 we present some results on

probability-possibility transformations and in chapter 5 the

results of computations of average values of fuzzy numbers

using fuzzy arithmetic. In chapter 6 we propose the method

of fitting parameters of t-norms to experimental data. And in

Chapter 7 we present the numerical calculations of

uncertainty and we discus the results.

2.  MODEL OF MEASUREMENT

The measurement is an empirical assignment of numbers

(or other mathematical symbols) to properties of objects.

From mathematical point of view measurement is described

as a homomorphic mapping f (measurement mapping) of an

empirical relational structure Ω into the mathematical

relational structure Y (see i.e. [5]):

Y
f

→Ω (1)

The relational structure Y describes results of

measurements (values of physical quantities with their

structures and uncertainty) and represents the properties of

measured objects. In case of the model of an exact

measurement Y stands for real numbers (real numbers with

ordinary order and addition). The results of the inexact

measurement are often represented by intervals.

Nevertheless it must be underlined that due to a random (or

fuzzy) nature of physical phenomena interval representation

is only a weak representation of real objects.

The mapping f describes the cognition process (with

respect to specific properties), therefore f must be a

homomorphism of structures Ω (empirical) in Y

(mathematical). In other words f must be a representation

(Y-representation) of empirical structure Ω in mathematical

structure Y.

In case of measurement of physical quantities (physical

attributes) we have to deal with the extensive measurements.

We can assume that the empirical structure Ω is endowed

with two empirical operations:

1) empirical comparison relation p  (empirical order),

2) operation o  of concatenation (composition) of

empirical objects.

The empirical operation o  describes both the empirical

additions (concatenation) as well as repetition of experiment

and addition (aggregation) of measurement results.

The empirical relation p  is not in general linear order,

but in this paper we do not consider the properties of order

relation. Though we would like to emphasis that the

comparability depends on the uncertainty.

For purpose of this paper we assume that that the

mapping f is the representation of empirical operation o in

mathematical addition ⊕ of elements from Y:

( ) ( ) ( )2121 ωωωω fff ⊕=o (2)

In case of the exact measurement we assume that results

of measurements Y are the real numbers ℜ with standard

addition + and order <. Such a model is described in the

literature very widely (see i.e. [5]). In case of the inexact

measurement (measurement with errors) we represent the

results of measurement as intervals with standard interval

addition ⊕ defined as:

[ ] [ ] [ ]22112121 ,,, bababbaaba ++=⊕=⊕ (3)

In metrology the interval [ ]21,aaa =  is often denoted as

aaa ∆±= 0 ,

where ( )210
2

1
aaa +=  and ( )12

2

1
aaa −=∆ .

One can consider the measurement mapping as a pair of

mappings ( )21, ff : ( ) [ ]21,aaf =ω  is equivalent to

( ) 11 af =ω and ( ) 22 af =ω . We can define a different pair of

functions ( )UM ,  such that ( ) 0aM =ω  and ( ) aU ∆=ω
The value ( )ωMa =0  we interpret as a value of

mesurand, and ( )ωUa =∆  as uncertainty of a0.

In fact when considering the reality we think typically

about its probabilistic or fuzzy model F. Such a model we

describe as a representation Φ of real objects Ω in a

structure F.

F→Ω
Φ

where Φ is a random or fuzzy representation of Ω.

The measurement mapping f is a composition of two

mappings: Φ representing a model of the reality, and γ
which assigns intervals to random variables or fuzzy

structures:

IF →→Ω
Φ γ (5)

The existence of a probabilistic representation Φ of

physical phenomena is some kind of dogma and we do not

try to prove it. On the same principles we assume that fuzzy

representation of physical phenomena is adequate to the

description of uncertainty and chaotic phenomena.

In case of probabilistic model, the mapping γ assigns a
confidence interval for a given confidence level. The

uncertainty U(ω) is given as a radius of the confidence
interval:

( ) ( )( )( )ωγω Φ= RadU

where radius of interval [a,b] is given by:

[ ]( )
2

,
ab

baRad
−

=

In case of the fuzzy model the mapping γ is defined as an
α-cut:

( ) [ ]αγ AA =
where A is a fuzzy interval.

Error propagation is given by arithmetic in the model F:
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( ) ( )( )( )
( ) ( )( )( )11

2121

ωωγ

ωωγωω

Φ⊕Φ=

=Φ=

FRad

RadU oo
(6)

where ⊕F is addition in F.

In case of probabilistic models ⊕F is addition of random

variables and in fuzzy models ⊕F is addition of fuzzy

intervals in the arithmetic based on t-norms.

In case of interval representation (when F is an interval

structure and γ is an isomorphism) the error propagation has

a form:

( ) ( ) ( )( )2121 ωωωω Φ+Φ= RadU o

where ⊕ is addition of intervals (see equation (3)) and

( )1ωΦ , ( )2ωΦ  are intervals.

And due to the fact that

[ ] [ ]( ) [ ]( ) [ ]( )22112211 ,,,, baRadbaRadbabaRad +=⊕
As a result we get a well-known principle of systematic

uncertainty propagation:

( ) ( ) ( )2121 ωωωω UUU +=o . (7)

Such an equation is valid only for systematic component

of uncertainty. In general addition of random variables or

fuzzy sets leads to the reduction of uncertainty. The

equation (7) is in fact a definition of a systematic component

of uncertainty.

The uncertainty determines a threshold of discrimination

of two measured values, hence the uncertainty effects in the

existence of incomparability (see.[7]). In case of a principle

given by (7) one cannot reduce a measurement error by

repeating measurements:

( ) ( )ωω nUnU =.  where n.ω is n-fold copy of ω (sum of

n repetitions of measurement).

This equation one can rewrite as a condition of

homotheticity of order: 2111 .. ωωωω nn pp ⇔ .

In case of nonsystematic component of error (the random

type) we have: ( ) ( )ωω nUnU ≤.  and a condition of

homothecticity must be replaced by a weaker condition:

2111 .. ωωωω nn pp ⇒  (see (11)).

3   FUZZY INTERVALS

Now we recall some definitions about fuzzy sets, t-

norms and fuzzy arithmetic (see e.g. [4]). The fuzzy sets on

ℜ (real numbers) can be understood as a generalization of

intervals. We denote fuzzy sets by capital letters A,B,...

By [A]
α
 we denote the α-cut of a fuzzy set A:

[ ] ( ){ }αα ≥ℜ∈= xAxA | , the kernel of a fuzzy set A is 1-

cut: ker(A)=[A]
1
, and support (0-cut) is defined separately as

supp(A)= [A]
0
 = [ ] ( ){ }( )0|

0 >ℜ∈= xAxclA  

Among the fuzzy sets we distinguish the class of fuzzy

intervals FI: A∈FI if [A]1≠Ø and [A]α is a closed bounded
interval for all α∈[0,1]. In this paper we assume that results

of measurements are represented by fuzzy intervals.

In the class of fuzzy intervals we distinguish two classes

of fuzzy intervals: FIS and FIR.

FIS are the fuzzy intervals whose membership functions

are the characteristic functions of the closed bounded

intervals i.e.: A∈ FIS if supp[A]=ker[A]. We assume that in

our model of uncertainty FIS represent systematic error and

we call them fuzzy systematic interval.

FIR are the fuzzy numbers with kernel consisting of only

point: ker[A] = {a0}. In our model we assume that fuzzy

numbers represent the measurement results with random

errors only, and we call them fuzzy nonsystematic

intervals.

Arithmetic of fuzzy intervals is defined as the extension

of interval arithmetic, applying the Zadeh extension

principle with a t-norm T [4]:

( )( ) ( ) ( )( )yBxATzBA
zyx

T ,sup
=+

=⊕ ,   for z,x,y∈ℜ (8)

Using the Fuller theorem [10] one can write:

[ ] [ ] [ ]( )
( )
U

αηξ

ηξα

≥

⊕=⊕
,T

T BABA (9)

where ⊕ denotes the addition (3) of intervals [a1,a2]∈I.
This equation is very convenient for numerical

calculations of the sum of the experimental membership

functions.

The structure TFIS ⊕,  is isomorphic to the interval

structure ⊕,I ; therefore the interval addition (3) describes

the propagation of systematic errors as in (7).

In the interval structure ⊕,I  we can define the interval

order and in paper [6] the problem of interval representation

of empirical structure Ω is solved in case of homothetic

order (the condition of homotheticity is in our case gives the

properties (7)). In general we can construct only weak

interval representation (10).

Each fuzzy interval can be decomposed uniquely into

two parts: systematic and nonsystematic type [11]:

sTr AAA ⊕=  where FIRAr ∈  and FISAs ∈ ,

assuming that As is isomorphic with a non-fuzzy interval of

the type [-∆, +∆], for some ∆ ≥ 0. This decomposition

expresses fact that uncertainty consists of two components:

random and systematic.

Fig 1 Graphical presentation of fuzzy interval decomposition

The random component has (from definition) the

property that the uncertainties decrease while averaging data

series of measurement:
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0
1

1
lim =






∑

=∞→

N

n
n

N

U
N

ω  (11)

where: Ω∈nω , the sum:

Nn ωωω oo ...1=∑

is a composition of empirical objects.

This equation is represented in fuzzy model by (see [2]

and [8]):

sn

N

nN

AA
N

=⊕
=∞→ 1

1
lim  where As∈FIS. (12)

The sum NTTn

N

n

AAA ⊕⊕=⊕
=

...1
1

 is a t-norm based

arithmetic sum.

The equation (12) has a natural interpretation that the

random component of uncertainty converges to zero if a

number of averaging grows to infinity.

In the structure of fuzzy intervals we can introduce the

metrics for evaluation of a divergence measure. In literature

one can find many concepts of divergence measure [9], but

we chose the max norm:

( )
[ ]

[ ] [ ]( )αα

α
ρρ BABA I ,, max

1,0∈
= (13)

where Iρ  is the measure of distance between intervals

given by

[ ] [ ]( ) ( )22112121 ,,,, max bababbaa −−=ρ .

We use formula (12) for computation of the difference

between empirical and theoretical fuzzy intervals in order to

obtain the best-fitted t-norm.

4.   ESTIMATION OF MEMBERSHIP FUNCTION

Probability has a simple frequency interpretation and

therefore the algorithm for estimating a probability

distribution function for empirical data is based on a

construction of histogram. In order to obtain a membership

function we use two methods:

1. Expert methods based on physical properties of

instruments for determination of systematic error.

2. Analysis of data series using similar to probabilistic

methods. These methods based on probability-possibility

transformation [3].

Among the several methods we choose the method

basing on an assumption that the confidence interval is

equivalent to the α-cut of a fuzzy interval A corresponding
to the random variable:

[ ] 














 −






= −−

2
1,

2

11 ααα
FFA (14)

where F is a cumulative distribution function:

( ) ( )∫
∞−

=
x

dxxfxF '' ,

where f is probability density function.

The equation (14) can be implemented with ease for

obtaining the estimation of the membership function

corresponding to the empirical measurement series { }N
nnx 1= .

On figure 2 we show the experimental histogram

(measurements of noised voltage signal) and the

membership function obtained.

One of the basic features of the algorithm (14) is that it

converts a flat pick into a sharp pick (for uniform

distribution we obtain the triangular membership function),

but a tail is preserved (and smoothed).

Fig. 2. The histogram and obtained membership function (solid line)

for empirical data (signal with multi-modal noise) in arbitrary units

5.   STATISTICS WITH T-NORM.

Frequently used statistics are arithmetic means (average

value) from experimental series. The average value is a

good estimator of the expected value of random variable and

typically this statistics is used as a mesurand.

Fig. 3.a. The membership function for averaging empirical data from

Fig1. (theoretical line –from  all measured data) for 2, 5 and 20

numbers of averaging points.
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Fig 3.b. The Averaged membership function as a function of number of

averaging N, for measured noice and for Yager t-norm with p=3.

The figure3.a shows narrowing of the membership

functions obtained in the procedure of subsequent

averaging. The membership function is computed using (14)

for series of data presented on Fig.2. (all computation are

made for 100 α-levels).
Similarly, figure 3.b presents averaged membership

functions for various numbers of averaging for empirical

data for Yager t-norm with p = 3 (denoted as Y(3)).

For fuzzy intervals we use the average value of

membership function in arithmetic based on t-norm:

A
N

A
N

n
T

T

NAv
1

,

1

=
⊕=  (15)

where A is membership function obtain from experimental

data by transformation(14). The summation ⊕T is a t-norm
based sum.

Fig. 4.  Comparison of theoretical (solid line) and numerical

membership function for 20 averages for 10 and 100 ααααcurs

In order to estimate a t-norm which leads to the

narrowing as in the figure 3 we need to calculate sums of a

few membership functions basing on a chosen t-norm. Due

to the discrete values of the membership functions obtained

as a result of the numerical procedure it is necessary to

examine the difference between numerical and analytical

summation. Numerical summation is carried out by means

of the equation (9) for a discrete set of α values.
Figure 4 presents a comparison between numerical and

analytical profiles of membership functions for averaging of

twenty symmetric triangular fuzzy numbers with support

equals to [0, 1] basing on a product t-norm depending on the

number of α-cuts. Similar results obtained for the Y(2) t-

norm show that for 100 α-cuts a maximal difference

between the profiles is less than 5 ⋅ 10-3.
Using Fuller’s theorem it is easy to estimate the error

of fuzzy sets addition by means of the discretization

procedure. In case of symmetric triangular fuzzy numbers

with support equals to [0, 1] a number ε/2>N  of α-cuts
assures that the error in the sense of (13) is less than ε. In
case of the fuzzy number coming from normal distribution

for Yager t-norm with p = 2 and 20 averaging, a number of

α-cuts which guarantees that the error of 0.05-cut is biased
with the error less than 0.01 is about 100.

In the figure 3a we can observe a peak shift if a number

of averaging grows. The shift in 3a is an effect of

asymmetry of the data distribution and due to fact that the

arithmetic mean converges to the expected value, which in

this case is lower then median.

The same shift can be observed in fig.6 where the

membership function of averaged data has the pick at the

point 105 in contrary to the pick position computed with t-

norm (the pick is at median).

6. EXPERIMENTAL EXAMINATION OF T-NORM

In order to obtain a t-norm belonging to the given one-

parameter family, which fits the best in the sense of equation

(9) we carried out the procedure described in chapter one.

The following figures present results of calculations

carried out for Yager and Hamacher t-norms families.

Fig.5. A difference (13) between membership functions of averaged

empirical data (fig. 2) and Hamacher t-norm as a function of parameter

p.

Figure 5 shows values of difference between numerical

and theoretical averaging in the sense of equation (13) as a

function of p parameter indexing Hamacher t-norms. Figure

6 presents examples of the empirical membership function

113



for averaging of 20 elements and calculated functions for a

various values of p. Each series of data contains 1000

numbers.

Fig.6. The membership functions or averaged and calculated data with

Hamaher t-norm, for measured noised signal (for averaging of  20

components).

Fig.7. The difference between membership functions of averaged

empirical data and Yager t-norm as a function of parameter p.

Fig..8. The averaged (for N=20) and calculated membership functions

for measured noised signal.

Similarly, the following figures present results for

random generated normally distributed series of numbers.

Fig.9. The difference (13) between membership functions of averaged

random generated normal distribution and Yager t-norm as a function

of parameter p.

Fig..10. The averaged and calculated with Yager t-norm  membership

functions for random generated normally distributed signal for 20

averages.

The differences presented in the figures 5, 7 and 9

depend on a number of averaging, hence we can observe

some minima. As far as applications are concerned the

minima for 20-30-fold averaging are more interesting and

we think that the stabilization of minima position is not a

numerical effect in spite of the fact that errors of the minima

positions might be comparable with depth of the minima.

This problem requires farther studies.

6.   CONCLUSION

The work presents explicitly application of fuzzy

numbers arithmetic based on t-norms in data analysis and

shows concrete numerical results. It allows drawing

conclusions referring to possibilities, limitations, and

expectations of such an approach. The uncertainty evaluated

as a radius of the α-cut decreases as a number of averaging
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grows in a similar way as in case of empirical averaging. On

figure 11 we show the results of computation of uncertainty

for empirical data as the effect of empirical averaging and

averaging with use of Yager t-norm for p = 3 and Hamacher

for p = 0.1 Moreover we present statistical confidence

interval calculated according to GUM [1] as:

sKxU 95.0)( =
where s is the standard deviation estimated from

measured data and K0.95 is the coefficient of extension.

Finally “theoretic confidence interval” presents a radius of

confidence interval of the distribution of mean.

In figure 11 we may observe differences between

uncertainty estimated by means of averaging with Yager and

Hamacher t-norms. On the other hand statistical methods

give results very similar to the results obtained for the

Hamacher t-norm. We suspect that it is always possible to

choose a t-norm which gives results very similar to the

results obtained by statistical methods.

Fig.11 Uncertainty vs number of averaging for empirical data calculated
from empirical averaging,

and with Yager and Hamacher t-norms.

The algorithm used for obtaining a fuzzy membership

function from empirical distribution [3] converts a

confidence interval into the α-cut interval. The algorithm
smoothes the noise and sharpens flat regions of the

distribution as well as convert concave probabilistic

distribution functions into convex membership functions.

Despite its drawbacks, the algorithm seems very appropriate

for low α values.
On the other hand, the algorithm of numerical averaging

basing on Fuller’s theorem it seem to be quite efficient and

leads to small errors when number of α-cuts is large enough
in comparison to the number of averaging. The further study

on properties of numerical procedure is necessary.

The average value seems not to be optimal statistics for

asymmetric distributions and studying different statistics

might be beneficial. The problem is when distribution is

asymmetric arithmetic because the mean from experimental

data converges to excepted value, which (for asymmetric

distributions) is not equal to median.

Moreover the examined Yager and Hamacher t-norms do

not lead to the good agreement with experimental averaging

neither for noised signal nor for random generated numbers.

It may be necessary to examine more families of t-norms.
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