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Abstract: Three typical  examples with great relevance to 

practice are demonstrating that as well mathematics as 

physics must be used to solve problems and especially to 

gain closed solutions as necessary for application in 

practice. Therefore both methods have to be teached in 

measurement education also to-day. 

 

Keywords: educational methods, approaches, typical 

examples  

 
1. INTRODUCTION 

While in the era of the slide-rule physical considerations 

were necessary to gain the order of magnitude of the 

solution today the computer yields the complete solution. 

Nevertheless also to-day the physical approach is necessary 

to gain an approximate result, which is needed for three 

reasons: Firstly to check the solution and by the way to 

avoid errors in programming, secondly often the exact 

solution in practice because of the variations of the 

parameters is not necessary and thirdly a closed solution in 

the form of a not too expendable formula facilitates the 

application in practice.          

The paper deals with these methods and shows with three 

typical examples the importance of these approaches to 

solve problems of measurement science. 

 
2. ERRORS IN FREQUENCY MEASUREMENT  

In electronic measurement and communication systems with 

time-dependent parameters  so-called rheolinear systems 

appear. Due to a theorem of Floquet in the solutions of the 

Hill- and Mathieu-differential equation a characteristic 

exponent μ occurs and thus shows the both desirable or 

undesirable  behaviour of the system as synchronization or 

instabilities. To gain μ energy and phase investigations are 

used and practical applications are given: 

The first example may be frequency measurement using a 

reference frequency. In literature only two frequency 

domains are distinguished: Inside the synchronisation 

domain  no difference frequency exists, while outside the  

 

 

 

 

 

difference frequency is assumed to be Ω1 –Ω2. In reality 

because of the inevitable coupling of the two generators an  

error between the ideal difference frequency and the real 

difference frequency appears. 

Rheolinear systems may be described by means of the 

general differential equation  

 

         y``
 
(t) + a1(t) y`(t) + a2(t) y(t)  = x(t)                      (1) 

 

where a1(t) physically means the variation of the damping 

and a2(t) the variation of the Eigenvalue and thus the 

resonance frequency.   

In this problem we are especially interested in the 

Eigenvalues. Therefore the solution of the homogenous Hill 

equation is sufficient  

 

 z(t)`` + (t) z(t) = 0                      (2)                                                                                    

 

Due to a theorem of Floquet  [1] the following solutions are 

existing  

 

 z(t) = e
t 

f(t) + e
-t 

g(t)                                          (3)                                            

 

The mathematical treatment is very difficult even for the 

special case of a periodic (t), the so-called Mathieu 

differential equation, 

 

   z(t)`` + 0
2
(1+ sin t) z(t) = 0                        (4)                                                                     

 

and therefore the solutions thus gained are not suitable for 

use in practice [2]. 

The solutions are stable or instable depending on the real 

part of the characteristic exponent  of equation (3). In 

detail the Diagram of Ince and Strutt as shown in Figure 1 

demonstrates these stable and instable regions [2]. 

To get results of the behaviour of the system and especially 

of the characteristic exponent  we will use not the 

mathematical approach but investigations based on physical 

considerations and approximations as in principle described 

in [3]. 
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Fig. 1.  Diagram of Ince and Strutt 

 

To get results of the behaviour of the system and especially 

of the characteristic exponent  we will use not the 

mathematical approach but investigations based on physical 

considerations and approximations as in principle described 

in [3]. 

We start with equation (4), the so-called Mathieu-equation 

describing for instance an oscillator with time-varying 

capacitance with  = C/2C0 as shown in Figure 2. 

 

 

 
 

Fig. 2. Oscillator with time varying parameters 

 

 

As Figure 3 demonstrates it depends of the phase φ if there 

will be generated an additional effective capacitance or a 

negative damping leading to the characteristic exponent . 

Especially for φ = π/2 the capacitance always will be 

reduced while the charge is great and vice versa. Thus 

energy will be “pumped” into the circuit leading to a 

negative damping .. In the higher instable ranges the 

harmonics are generating the same effect. 

Using this method the characteristic exponent may be 

gained [5;6] leading to the relation 

 

      
22

0 ΔΩ4/ΔΩμ                                                   (5) 

                                                         

with the locking range ΔΩ0 and the deviation to the 

resonance frequency ΔΩ..                                                                                                                                         

 
 

Fig. 3.  Charge Q and time-varying capacitance C 

 

Figure 4 shows the course of   . Inside the synchronisation 

range o  the exponent   is real, that means a negative 

damping and not a frequency difference (synchronization). 

Outside this range    is imaginary, that means a frequency 

deviation (error) in comparison with the ideal difference 

frequency    = 1 -  0.                              

In the case of frequency measurement using a reference 

frequency as shown in Figure 5 because of the inevitable 

coupling of the two generators the problem is as investigated 

before.   

 

 

 

 

 

 

 

 

 

 

 

 

 
        Fig..  4.   Course of the characteristic exponent  

 

 

To gain the error between the ideal difference frequency   

and the real difference frequency we use equation  (5) . So 

the real difference frequency follows 

           __________  

  2
-o

2
/4=[1–0,5(o

2
/42

)]                      (6) 

 

 That means: If  for instance the difference frequency is 

by the factor 100 greater than the synchronization range 0  

the relative error still runs to 0,125  10
 – 4 

! In practice the 

permissible error in high precision frequency or time 

measurement may be less than 10
 – 10

 to 10
 –12

 [7]. From this 

fact it follows that the synchronization range has to be 

smaller than 0,310
–4 

to 0,310
-5 

of the difference frequency. 

Finally it may be hinted that capacitive or inductive sensors 

using the principle of frequency modulation prove the same 

behaviour. The string-extensometer also belongs to this 

group [6, 8]. 
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Fig.  5.   Frequency measurement 

 

 

3. ERRORS IN DYNAMIC MEASUREMENTS 

To show the typical approach and to demonstrate the 

importance of estimation methods in education here as 

another example the answer of a system to a pulse function 

may be treated [8,9]. To estimate dynamic errors in first 

approximation instead of the real step answer – an e-

function - a ramp function with the transient time TT and as 

an input a pulse-shaped function with the width T is used 

as shown in Fig.6. 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 6.  Answer to a pulse function (estimation) 

 

 

Now three typical cases may be distinguished: 

  a) TT  = T  Here the pulse is distorted but the pulse height 

is still correct (dashed curve).  

  b) TT T   This leads to an error of the pulse height (short 

dashes). 

  c) TT  T  The pulse shape can be represented (chain 

curve). 

The investigations show that a heavily prolonged trailing 

edge means a dynamic error - as especially practicians with 

a lot of experience know. On the other hand it is possible to 

estimate the error using the relation of the flank sides of the 

output signal: The real height of the input signal H is - using 

the symbols of figure 6 - thus correcting the measured 

wrong height H* 

 

 H  H* TT / T                                                           (7) (7) 

 

To explain the results in the field of measurement it is 

remarkable that minor and medium errors in amplitude 

height frequently have more detrimental effects in practice 

than very large measuring errors. For small errors the device 

or element that has been dimensioned according to this 

measurement will function for a certain time due to the 

safety margins and possibly withstand the initial tests. After 

have been produced in series and operated for a certain time, 

however all elements fail according to the fatigue curve for 

the number of stress reversals possible up to the failure. On 

the other hand major measuring errors become evident 

during testing. 

There are direct parallelisms to the quality of our students: 

If they are intelligent and diligent – no problem. If they are 

intelligent but lazy, also no problem, because they will do 

less but they don´t make mistakes. Even if they are stupid 

and lazy its not a problem, because everybody will expect 

they make errors. Dangerous are those which are stupid and 

diligent, because they produce not so extreme and not 

expected errors.        

 
4. ESTIMATION OF THE SOLUTION OF 

DIFFERENTIAL EQUATIONS AND OF  THE 

TRANSIENT TIME 

 

In linear systems the behaviour is described by a linear 

differential equation of the form 

 

            an y
(n)

+ an-1 y
(n-1)

 + 
….

 + a2 y 
..
 + a1 y 

.
 + a0 y  = b1 x +   

            b2 x 
.
+ 

…
+ bm-1 x

(m-1)
 + bm  x

(m)
                               (8) 

 

Normalization leads to the form 

 

           Tn
n
 y

n
+ 

….
 T2

2
y

..
+T1 y 

.
 +  y  =( b1/a0)  x +  

          ( b2/a0)  x 
.
+ 

….
 +( bm/a0) x

(m)
                                  (9 ) 

 

Comparison of both equations taking into consideration 

dimensions shows that  

 

          Tr 
r 
 = ar /a0                                                                           (10) (10) 

 

are time-constants, while  

 

          Δy/Δx = b1/a0                                                         (11) 

 

means the static sensitivity of the system. 

In the exact solution the eigenvalues are the zeros of the n-

dimensional characteristic function     

          

         Tn
n
 y

n
+ 

….
 T2

2
y

..
+T1 y 

.
 +  y  = 0                               (12) 

A first appproximation uses instead of these eigenvalues the 

time-constants Tr 
r
 of Equ. (10). Due to the fact, that  

 

            e
-3

 = 1/20                                                             (13)         

 

that means 5%, the transient-time may be estimated to be 

three-times the value of the greatest time-constant Tr 
r
. This  

estimation will be the better, the greater the differences 

between the time-constants are.  

 
5. CONCLUSION 

  

The paper deals with important educational methods as 

mathematical and physical approach. Three typical 

examples are treated to show that also to-day both methods 

are important to gain an approximate result necessary to  

avoid errors in check solutions of  computer analysis and to 
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avoid errors in programming. Often only the physical 

approach leads to a closed solution as advantageous for 

application in practice.        
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