

81st meeting of the European working group on Multicriteria Decision Aiding

Annecy, March 26-28, 2015

Learning the Parameters of a Ranking Model Using Multiple Reference Points: A Case Study Dealing with Large Datasets

Ferretti Valentina, Liu Jinyan, Mousseau Vincent

Outline

- Objective of the research
- Ranking Model Using Multiple Reference Points Methodological background
- Case study Siting an urban waste landfill in the Province of Turin (Italy)

Model development

Presentation of the alternatives Elicitation of preference information Application of the metaheuristic

- Discussion of the results
- Conclusions

Objective of the research

✓ Large data-sets

Nowadays, decision making problems in many contexts involve large datasets, which require adapting and improving the algorithms and techniques to construct acceptable recommendations

✓ Preference learning

Preference elicitation thus becomes a challenging task. A very promising line of research in this context consists in inferring indirectly values and preferences from pairwise comparisons or decision examples supplied by the DM

Which method can be used?

The objectives of the research are twofold:

(i) exploring the contribution of Ranking Models Using Multiple Reference
 Points for dealing with large data-sets; and
 (ii) validating the innovative algorithmic features of the tool on an empirical case study

Case study

Model development Discussion of the results

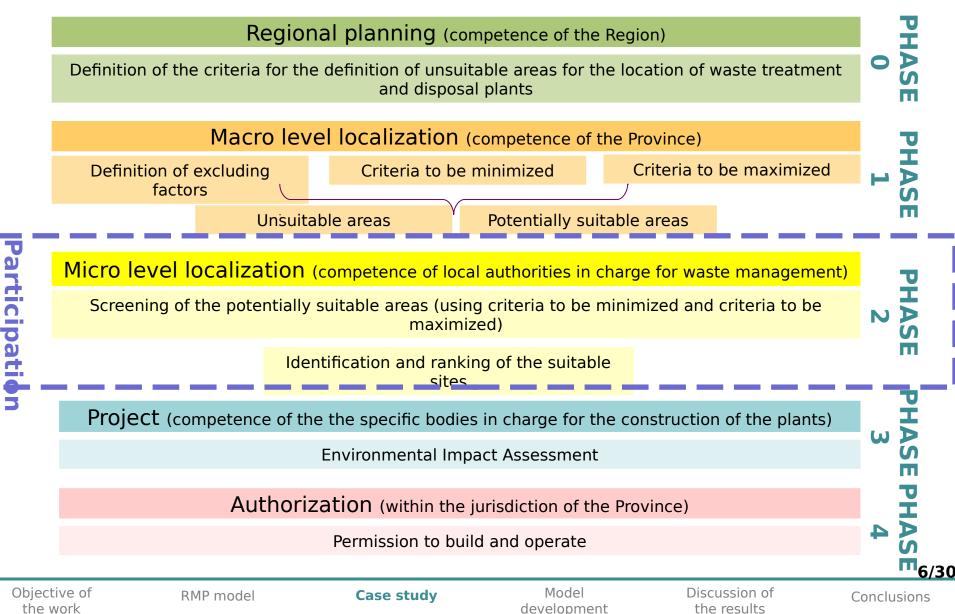
Ranking Model Using Multiple Reference Points

Case study

This case study concerns the choice of the most suitable location for a Municipal Solid Waste landfill, which has to be constructed in the Province of Torino (Italy).

The analysis is based on a scientific study that was developed by the Provincial Administration in 2007, where **39 potentially suitable sites** have been identified.

5/30


Objective of the work

RMP model

Case study

Model development Discussion of the results

Case study Landfill location procedure

Case study criteria definition

Permanent population

The number of people living within a range of 1500 m from each site

Transitory population

The number of people that use the schools, the hospitals and the companies located within a range of 1500 m from each site

Farms

The number of organic farms in surrounding area

ORGANIC PRODUCE

Operating costs

Costs for the management and the operation of the plant in each of the considered sites

Ground water vulnerability

The criterion assesses the vulnerability of the groundwater aquifer, considering also the depth of the water table that lies under each site

Land Use capacity

The criterion indicates the potential productive capacity of the soil.

Interference with traffic

This criterion measures the level of use of road infrastructures in the area surrounding the plant

Objective of the work

RMP model

Case study

Model development Discussion of the results

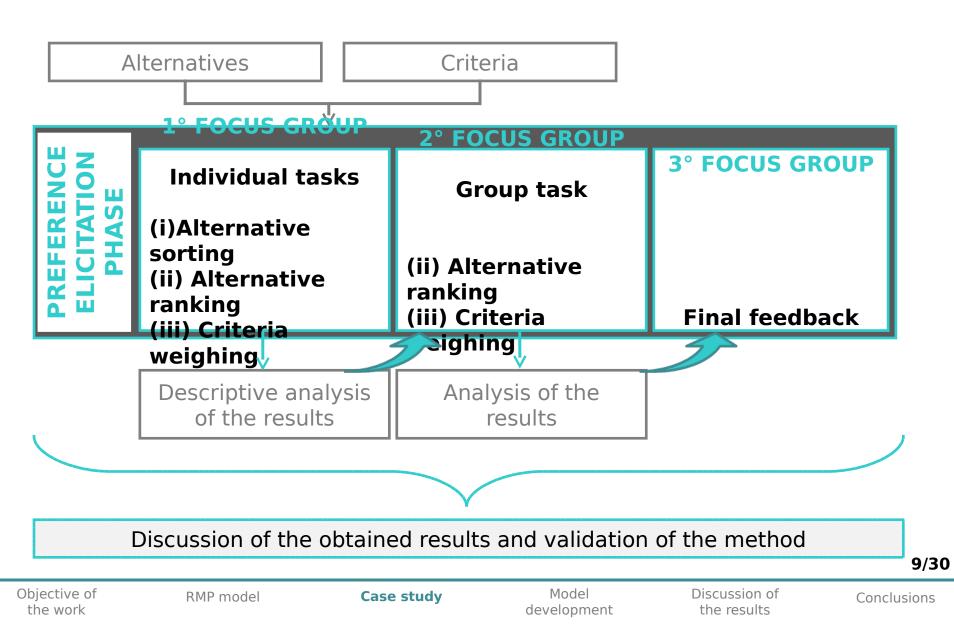
n of ts Conclusions

Case study – Performance matrix

	Permanent population [number]	Transitory population [number]	GOD vulnerability index [class]	Land use capacity [class]	Farms [number]	Interference with traffic [m]	Operating costs [€]
SITE							
Air A	1461	1484	3	2	0	11050	3.768.283
Air B	3170	1757	3	2	1	10450	3.561.756
Bri_A	1356	974	4	2	2	6750	2.186.531
Bur_A	867	341	3	1	2	8000	2.864.316
Bur_B	623	225	3	1	1	6500	2.050.974
Caf_A	1356	693	3	3	4	15150	5.179.629
Cav_A	384	69	4	3	0	16650	5.695.972
Crc_A	345	15	3	1	0	9200	3.131.470
Cum A	1859	684	2	4	2	7850	2.782.982
Cum B	313	148	3	2	0	11450	3.905.984
Frs_A	140	507	3	4	0	8400	2.856.088
Frs_B	192	563	3	3	0	8000	2.810.093
Mac A	1062 337	438 182	4	3	2 0	8200	2.918.539
Non_A	981		3	2		20550 7450	7.038.463
Osa_A Pin_A	643	569 90	4 4	2 2	5	4150	2.566.091 480.037
Pin B	1472	90 777	4	2	2	6600	2.105.197
Pis A	1398	1242	3	2	2	8750	2.976.568
Ssp A	3969	1397	4	2	2	5694	1.613.938
Vig A	248	20	4	2	2	15000	5.127.995
VI <u>I</u> A	433	25	4	2	0 0	19200	6.573.754
VOLA	1139	445	3	2	2	18650	6.384.429
Air 2	2759	2072	3	2	2	10450	3.681.756
Air 3	1974	1561	3	2	ō	10950	3.389.642
Air 4	1699	1527	3	2	Ŏ	10950	3.389.642
Non 1	242	369	3	3	Ŏ	21570	7.389.576
Fros 1	792	1128	3	2	1	5250	1.373.188
Fros 2	918	1530	3	2	0	5250	1.373.188
Pin 1	494	279	3	1	2	4700	1.074.963
Pin 2	525	125	3	1	2	4350	885.183
Pin 3	485	119	3	1	2	5050	1.264.742
Pin 4	1043	455	2	2	3	4950	1.454.522
Pin_5	445	96	2	2	3	4950	1.454.522
Rol_1	1021	1486	3	2	0	5400	1.454.522
Sca_1	491	53	3	2	3	9850	3.355.219
Sca_2	454	42	3	2	3	9850	3.355.219
Sca_3	535	89	3	2	3	9850	3.355.219
Sca_4	310	15	3	1	0	9200	3.131.470
Vol_2	550	464	3	2	0	17350	5.936.932

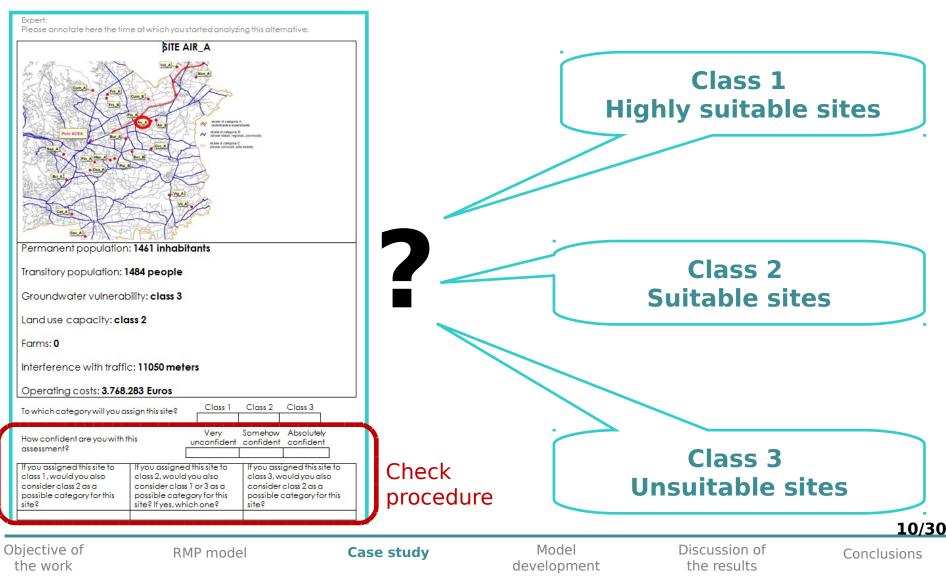
S SITES **POTENTIALLY SUITABLE** 30

8/30

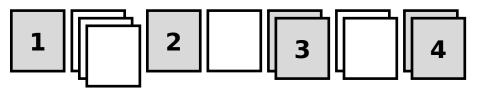

Objective of the work

Case study

Model development Discussion of the results


Conclusions

The process


The focus groups - SORTING

Alternative card

The focus groups - WEIGHING

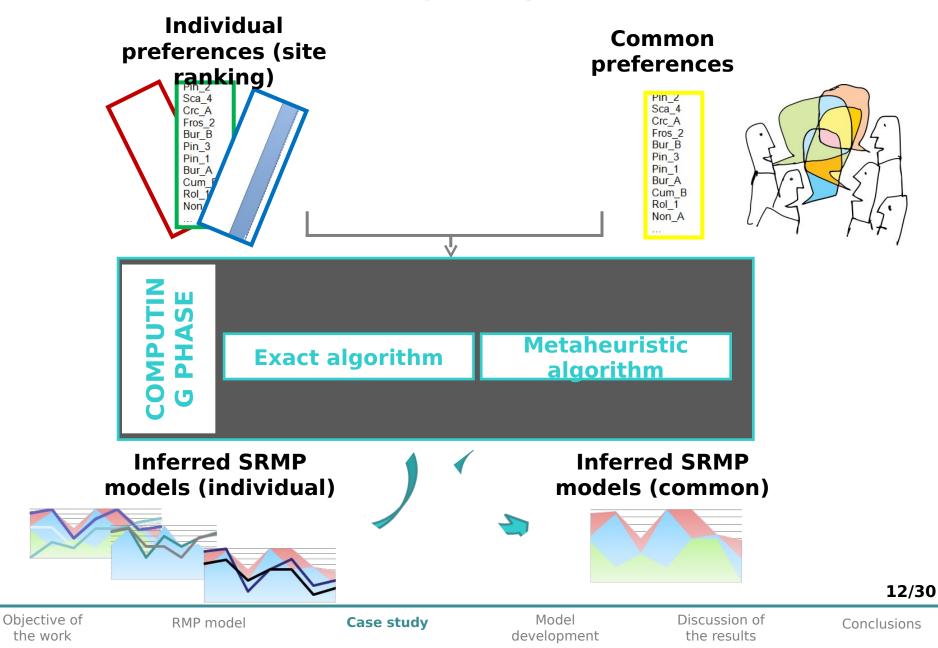
We used the SFR method (Figueira et Roy, 2002) for eliciting the weights of the criteria

1.Give a set of cards to the user: the (i) criteria cards (ii) blank cards

2.Ask the user to rank the criteria cards from the least important to the most important;

3.Ask the user to think about the importance of two successive criteria and **to introduce blank cards** between them

4.Ask the user to tell **how many times the most important** criterion is more important than the least important one


Objective of the work

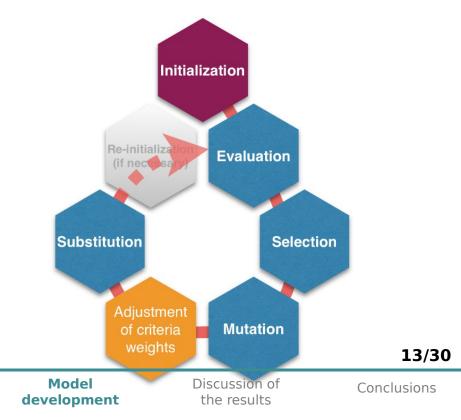
RMP model

Case study

Model development Discussion of the results

The focus groups' results

Quick view of the algorithms


MIP algorithm

- Based on linear optimization method
- Mixed Integer Programming
 - ✓ Variables
 - ✓ Linear constraints
 - ✓ Objective function
 - Maximize the number of restored pairwise comparisons

Case study

Metaheuristic algorithm

Based on Evolutionary Algorithm

Question No.1

Q: How does the inferred S-RMP model look like?

Reference points
 The number of reference points?
 The values of reference points?
 Their lexicographic order?

Criteria weights

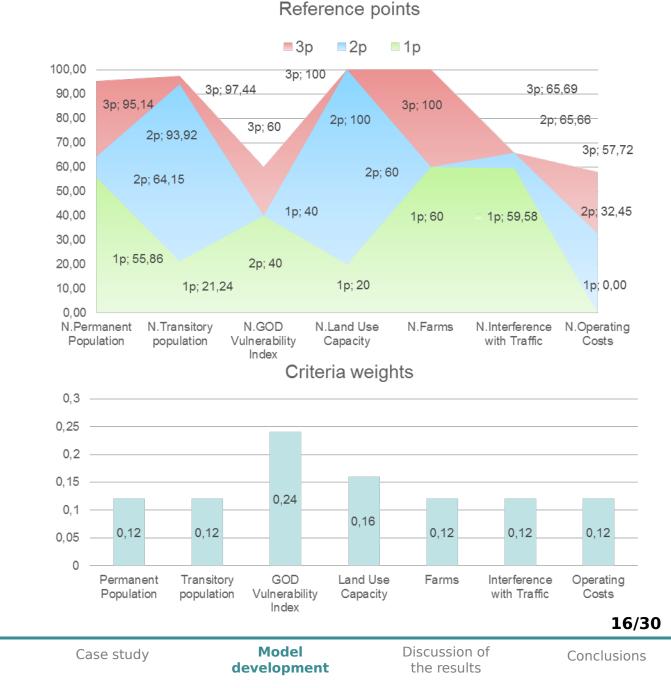
e.g. for common ranking

Model development Discussion of the results

The Inferred S-RMP Model

□ Reference points

	C1	c2	с3	с4	с5	с6	с7
1p	1752	1632	3	4	2	8719	856105 9
2р	1423	126	3	0	2	7407	578269 0
Зр	193	53	2	0	0	7400	361934 7
p1			3.20				
	C1	c2	с3	c4	с5	с6	c7
W	0,12	0,12	0,24	0,16	0,12	0,12	0,12


The Inferred S-RMP Model

- The inferred lexicographic order is p2 -> p3 -> p1
- The values are linearly transformed to 100-point scale on each criteria.
- The preference direction after transformation is positive on each criteria.
- □ The weights are normalized to 1.

RMP model

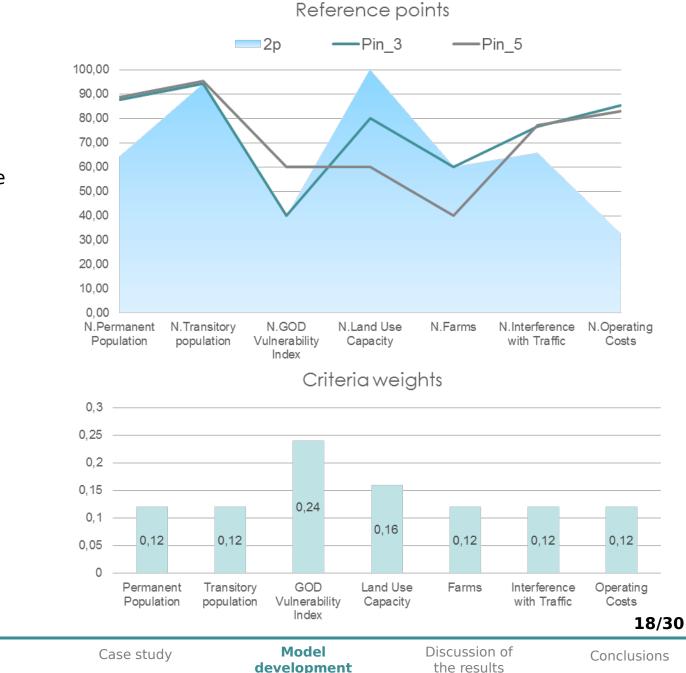
Objective of

the work

Question No.2

Q: How does S-RMP method work with the reference points in our case?

By the **1**st Reference Point

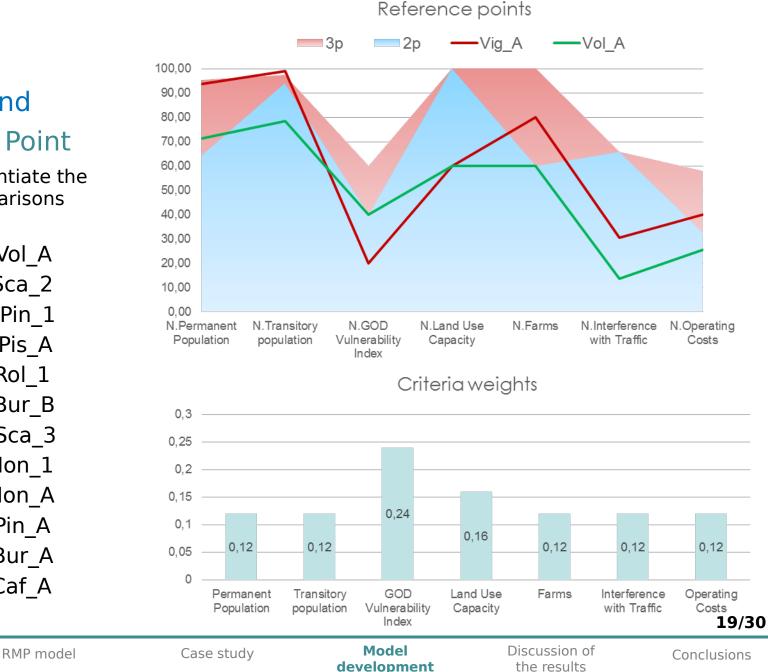

We can differentiate the pairwise comparisons below:

Pin 3 > Pin 5 Pin 4 > Cum ACum B > Air ASsp A > Osa APis A > Air 4Fros 1 > Frs BSca 3 > Vol 2Bur B > Frs AVol A > Vil APin 2 > Fros 2Bri A > Pin B Cav A > Mac A

RMP model

Objective of

the work

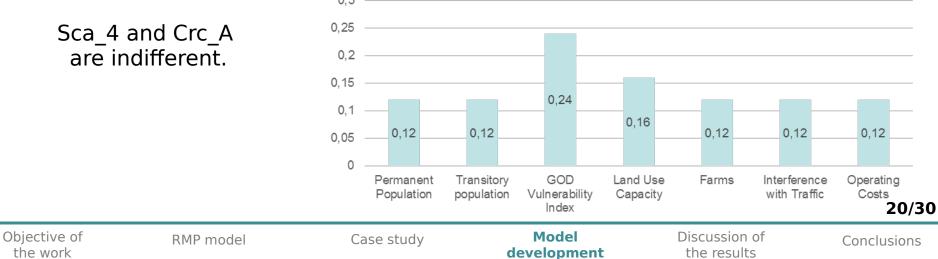

By the **2**nd Reference Point

We can differentiate the pairwise comparisons below:

Vig A > Vol AFrs B > Sca 2 Fros 2 > Pin 1Sca 2 > Pis APin 5 > Rol 1Crc A > Bur BSca 1 > Sca 3Air 3 > Non 1Air 4 > Non AFrs A > Pin APin A > Bur AAir B > Caf A

Objective of

the work



By the **3**rd Reference Point

We can differentiate the pairwise comparisons below:

Pin_B > Ssp_A Rol_1 > Sca_4 Non_1 > Cav_A Bur_A > Cum_B

Question No.3

Q: How many reference points do we need to restored as many pairwise comparisons as possible?

How we measure "as many pairwise comparisons as possible"?

✓ The ranking accuracy (including indifferences) – R.A. (%)
 ✓ The strict ranking accuracy (only preferences) Strict R.A. (%)

✓ The number of equivalence classes Num. Pairwise Comparisons ≥ Num. Eq. Classes

21/30

Model development Discussion of the results

Conclusions

With 1 Reference Point

	Num. Ref. Pts	1
	R.A.	78.95 %
MIP algorithm	Strict R.A.	71.05%
	Num. Eq. Classes	19
NA 1 1 1 1 1	Max. R.A. 500	78.95%
Metaheuristic algorithm	Max. Strict R.A. 500	60.53%
aigontinn	Num. Eq. Classes	20

• Max. XXX 500 : The maximum value of the 500 repeated trials

Remark: Impossible to reach 100% with 1 reference point!

Objective of the work	RMP model	Case study	Model development	Discussion of the results	Conclusions

With 2 Reference Point

	Num. Ref. Pts	1	2
	R.A.	78.95 %	84.21%
MIP algorithm	Strict R.A.	71.05%	78.95%
	Num. Eq. Classes	19	29
	Max. R.A. 500	78.95%	81.58%
Metaheuristic algorithm	Max. Strict R.A. 500	60.53%	68.42%
aigontinn	Num. Eq. Classes	20	21

Remark: Impossible to reach 100% with 2 reference point, neither!!

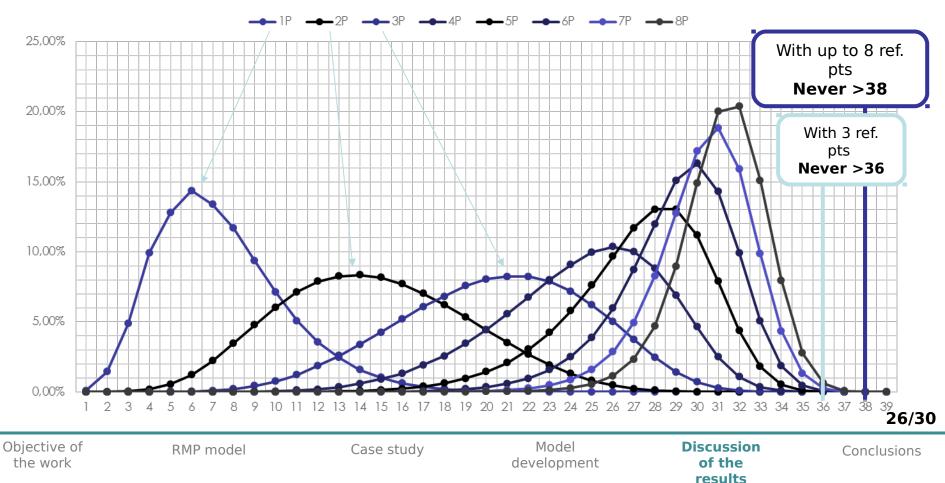
 Objective of the work
 RMP model
 Case study
 Model development
 Discussion of the results
 Conclusions

With **3** Reference Point

	Num. Ref. Pts	1	2	3
MIP algorithm	R.A.	78.95%	84.21%	86.84%
	Strict R.A.	71.05%	78.95 %	86.84%
	Num. Eq. Classes	19	29	31
	Max. R.A. 500	78.95%	81.58%	81.58%
Metaheuristic algorithm	Max. Strict R.A. 500	60.53%	68.42%	73.68%
aigontinn	Num. Eq. Classes	20	21	23

Remark: Never reach 100% with 3 reference point!!!

					24/30
Objective of the work	RMP model	Case study	Model development	Discussion of the results	Conclusions


With More Reference Points

- Q: Why the strict rank. acc. never reaches 100%?
- Q: How many equivalence classes could be reproduced by an S-RMP model?
- Method Monte Carlo:
 - 7 criteria with the same evaluating scales in the case.
 - Randomized and normalized weights (Butler et al., 1997)
 - From 1 to 8 reference points randomly generated
 - 1 000 000 repeated trials for each num. of ref. pts selected

Distribution of the num. of equivalence classes

by the 1 000 000 randomized S-RMP models for each num. of ref. pts

 Apply the randomly generated S-RMP models to the 39 sites in the case

Validation of the metaheuristic

- MIP algorithms
 - The exact algorithm without considering inconsistency (Zheng et al., 2012)
 - The adapted exact algorithm taking account of the inconsistency (Liu et al., 2013)
- Main Performance Index
 - Ranking Accuracy and Strict Ranking Accuracy
 - Number of equivalence classes
 - Computation time

Case study

Model development Discussion of the results

Solution Quality Existence of multiple solutions

	Num. Ref. Pts	1	2	3
MIP algorithm	R.A.	78.95 %	84.21%	86.84%
	Strict R.A.	71.05%	78.95 %	86.84%
	Num. Eq. Classes	19	29	31
	Num. Solutions	1	1	1
Metaheuristic	Max. R.A. 500	78.95%	81.58%	81.58%
	Max. Strict R.A. 500	60.53%	68.42%	73.68%
algorithm	Num. Eq. Classes	20	21	23
	Num. Solutions	1/500	4/500	1/500

Thanks to the multitude of solutions The decision makers could choose the one which is closer to their thinking from the solution pool.

Case study

Model development Discussion of the results 28/30

Conclusions

Computation time High efficiency of the metaheuristic algorithm

		Num. Ref. Pts	1	2	3
		Num. cores	12	12	12
		Main frequency	2.66 GHz	2.66 GHz	2.66 GHz
Μ	1IP algorithm	CPU type	In	tel Xeon X56	50
		Cluster type	A	tix ICE 8400	LX
		Elapsed time	2.09 h	> 22.16 h	> 75.15 h
		Num. cores	4	4	4
		Memory	8 MB	8 MB	8 MB
		Main frequency	2.3 GHz	2.3 GHz	2.3 GHz
M	1etaheuristic	CPU type		Intel Core i7	
	algorithm	Elapsed time per trial	11.67 s	17.97 s	23.30 s
		Elapsed time 500 trials	1.62 h	2.50 h	3.24 h
tive of work	RMP model	Case study	Model developmen	Discus t of th resu	ne

Conclusions

Advantages

- This is the first time we applied S-RMP model on a real application
- From this application we know how we can improve the whole decision aiding process involving S-RMP models
- Through this application we gained a novel understanding of the capacity of S-RMP model
- The participants in the focus group grasped very well the potential of the tool

Future work

- Improvement of the metaheuristic algorithm
- Test the model on other real word case studies
- Test the model with robustness analysis
- Further study the S-RMP models' capacity

Objective of	
the work	

Case study

Model development Discussion of the results