Rational Preferences and Rationalizable Choices, Necessary and Possible Rankings in Decision Making under Uncertainty

Alfio Giarlotta, Salvatore Greco, Fabio Maccheroni, Massimo Marinacci
U.Catania \& U.Portsmouth \& U.Bocconi

$$
\text { Annecy - March } 2015
$$

WHY A TALK ON DECISION MAKING UNDER UNCERTAINTY IN A MCDA MEETING?

- Because decision making under uncertainty can be seen as specific type of multiple criteria decisions in which the criteria are the states of nature
- Because preference structures considered in the recent research on decision making under uncertainty are analogous to preference structures recently used in MCDA
- Because recent considerations on axiomatic basis for decision making under uncertainty can be interesting for MCDA
- Because probably there is some space to develop models putting together decision making under uncertainty and MCDA

PLAN OF THE TALK

- one-preference \succsim and two-preference $\left(\succsim^{*}, \succsim^{0}\right)$ models of decision making under uncertainty
- relations with multi-criteria decision aiding
- rational preferences and rationalizable choices: an axiomatization

EXPECTED UTILITY

- one preference relation \succsim
- \succsim complete and transitive
- one single probability p

$$
f \succsim g \Longleftrightarrow \int u(f) d p \geq \int u(g) d p
$$

von Neumann and Morgenstern (1944), Savage (1954), and Anscombe and Aumann (1963)

COMPLETENESS?

> We have conceded that one may doubt whether a person can always decide which of two alternatives ... he prefers. If the general comparability assumption is not made, a mathematical theory ... is still possible ...
> von Neumann and Morgenstern (1944)

INTROSPECTION: No difficult choice between only two alternatives would survive if we already had a unique pre-existing complete preference in our brain (subjective states)

MULTIPLE PRIORS I

- one preference relation \succsim
- \succsim reflexive and transitive (not complete)
- a set C of probabilities p

$$
f \succsim g \Longleftrightarrow \int u(f) d p \geq \int u(g) d p \quad \text { for all } p \in C
$$

Bewley (1986, published 2002, related to Aumann 1962)

MULTIPLE PRIORS II

- one preference relation \succsim
- \succsim complete and transitive
- a set C of probabilities p

$$
f \succsim g \Longleftrightarrow \min _{p \in C} \int u(f) d p \geq \min _{p \in C} \int u(g) d p
$$

Gilboa and Schmeidler (1989)
(A Waldean solution to the Ellsberg paradox)

MULTIPLE PRIORS III

- two preference relations \succsim^{*} and \succsim°

MULTIPLE PRIORS III

- two preference relations \succsim^{*} and \succsim° (WHY?!)

MULTIPLE PRIORS III

- two preference relations \succsim^{*} and \succsim° (WHY?!)
- \succsim^{*} represents the robust part of the preference, the one about which the decision maker has no doubts
sometimes called psychological rational preferences or cognitive preferences

MULTIPLE PRIORS III

- two preference relations \succsim^{*} and \succsim° (WHY?!)
- \succsim^{*} represents the robust part of the preference, the one about which the decision maker has no doubts
sometimes called psychological rational preferences or cognitive preferences
- \succsim° represents the burden of choice, $f \succsim^{\circ} g$ means that f can be chosen when facing the set $\{f, g\}$ of alternatives, it is typically interpreted as revealed preference

MULTIPLE PRIORS III

- two preference relations \succsim^{*} and \succsim° (WHY?!)
- \succsim^{*} represents the robust part of the preference, the one about which the decision maker has no doubts
sometimes called psychological rational preferences or cognitive preferences
- \succsim° represents the burden of choice, $f \succsim^{\circ} g$ means that f can be chosen when facing the set $\{f, g\}$ of alternatives,
it is typically interpreted as revealed preference
- if we think of statistics and of $C=\left\{p_{\theta}\right\}_{\theta \in \Theta}$ as a set of models ...

MULTIPLE PRIORS III

- two preference relations \succsim^{*} and \succsim° (WHY?!)
- \succsim^{*} represents the robust part of the preference, the one about which the decision maker has no doubts
sometimes called psychological rational preferences or cognitive preferences
- \succsim° represents the burden of choice, $f \succsim^{\circ} g$ means that f can be chosen when facing the set $\{f, g\}$ of alternatives,
it is typically interpreted as revealed preference
- if we think of statistics and of $C=\left\{p_{\theta}\right\}_{\theta \in \Theta}$ as a set of models ...
- more on two-preference models and literature review at the end ...

MULTIPLE PRIORS III

- two preference relations \succsim^{*} and \succsim^{0}
- \succsim^{*} reflexive and transitive (not complete)
\succsim° complete and transitive
- a set C of probabilities p

$$
\begin{gathered}
f \succsim^{*} g \Longleftrightarrow \int u(f) d p \geq \int u(g) d p \quad \text { for all } \in C \\
\text { and } \\
f \succsim^{\circ} g \Longleftrightarrow \min _{p \in C} \int u(f) d p \geq \min _{p \in C} \int u(g) d p
\end{gathered}
$$

Gilboa, Maccheroni, Marinacci and Schmeidler (2010)

MULTIPLE PRIORS IV

- one preference relation \succsim
- \succsim complete (\sim not transitive)
- a set C of probabilities p

$$
f \succsim g \Longleftrightarrow \int u(f) d p \geq \int u(g) d p \quad \text { for some } p \in C
$$

Lehrer and Teper (2011)
(p rationalizes the choice of f from $\{f, g\}$ in the obvious game against nature)

MULTIPLE PRIORS V

- two preference relations \succsim^{*} and \succsim°
- \succsim^{*} reflexive and transitive (not complete)
\succsim° reflexive and complete (\sim° not transitive)
- a set C of probabilities p

$$
\begin{gathered}
f \succsim^{*} g \Longleftrightarrow \int u(f) d p \geq \int u(g) d p \quad \text { for all } p \in C \\
\quad \text { and } \\
f \succsim^{\circ} g \Longleftrightarrow \int u(f) d p \geq \int u(g) d p \quad \text { for some } p \in C
\end{gathered}
$$

THIS PAPER

Basic concepts of Multiple Criteria Decision Aiding

- $A=\{a, b, c, \ldots\}$ set of alternatives
- $G=\left\{g_{1}, g_{2}, \ldots, g_{n}\right\}$ set of criteria $g_{i}: A \rightarrow \mathbb{R}$ such that

$$
a \succsim^{i} b \Longleftrightarrow g_{i}(a) \geq g_{i}(b)
$$

- Dominance

$$
a \succsim^{G} b \Longleftrightarrow a \succsim^{i} b \quad \forall i=1,2, \ldots, n
$$

Basic concepts of Multiple Criteria Decision Aiding

- $A=\{a, b, c, \ldots\}$ set of alternatives
- $G=\left\{g_{1}, g_{2}, \ldots, g_{n}\right\}$ set of criteria $g_{i}: A \rightarrow \mathbb{R}$ such that

$$
a \succsim^{i} b \Longleftrightarrow g_{i}(a) \geq g_{i}(b)
$$

- Dominance

$$
a \succsim^{G} b \Longleftrightarrow a \succsim^{i} b \quad \forall i=1,2, \ldots, n
$$

If $a \succsim^{G} b$ the choice of a from $\{a, b\}$ is rational in a very intuitive sense what if neither $a \succsim^{G} b$ nor $b \succsim^{G} a$?

Robust ordinal regression

- \succsim^{0} preference (VERY VERY INCOMPLETE) declared by the DM

Robust ordinal regression

- \succsim^{0} preference (VERY VERY INCOMPLETE) declared by the DM
- $\left\{u_{m}: m \in M\right\}$ of utility functions on A, e.g., addititively separable

$$
u_{m}(a)=\sum_{i=1}^{n} u_{m}^{i}\left(g_{i}(a)\right)
$$

Robust ordinal regression

- \succsim^{0} preference (VERY VERY INCOMPLETE) declared by the DM
- $\left\{u_{m}: m \in M\right\}$ of utility functions on A, e.g., addititively separable

$$
u_{m}(a)=\sum_{i=1}^{n} u_{m}^{i}\left(g_{i}(a)\right)
$$

- $a \succsim_{m} b \Longleftrightarrow u_{m}(a) \geq u_{m}(b)$

Robust ordinal regression

- \succsim^{0} preference (VERY VERY INCOMPLETE) declared by the DM
- $\left\{u_{m}: m \in M\right\}$ of utility functions on A, e.g., addititively separable

$$
u_{m}(a)=\sum_{i=1}^{n} u_{m}^{i}\left(g_{i}(a)\right)
$$

- $a \succsim_{m} b \Longleftrightarrow u_{m}(a) \geq u_{m}(b)$
- $M(G O)=\left\{m \in M:\left(\succsim^{G} \cup \succsim^{O}\right) \subseteq \succsim_{m}\right\}$

Robust ordinal regression

- \succsim^{0} preference (VERY VERY INCOMPLETE) declared by the DM
- $\left\{u_{m}: m \in M\right\}$ of utility functions on A, e.g., addititively separable

$$
u_{m}(a)=\sum_{i=1}^{n} u_{m}^{i}\left(g_{i}(a)\right)
$$

- $a \succsim_{m} b \Longleftrightarrow u_{m}(a) \geq u_{m}(b)$
- $M(G O)=\left\{m \in M:\left(\succsim^{G} \cup \succsim^{O}\right) \subseteq \succsim_{m}\right\}$
- here

$$
\succsim^{*}=\bigcap_{m \in M(G O)} \succsim_{m} \text { and } \succsim^{\circ}=\bigcup_{m \in M(G O)} \succsim_{m}
$$

Robust ordinal regression

- \succsim^{0} preference (VERY VERY INCOMPLETE) declared by the DM
- $\left\{u_{m}: m \in M\right\}$ of utility functions on A, e.g., addititively separable

$$
u_{m}(a)=\sum_{i=1}^{n} u_{m}^{i}\left(g_{i}(a)\right)
$$

- $a \succsim_{m} b \Longleftrightarrow u_{m}(a) \geq u_{m}(b)$
- $M(G O)=\left\{m \in M:\left(\succsim^{G} \cup \succsim^{O}\right) \subseteq \succsim_{m}\right\}$
- here

$$
\succsim^{*}=\bigcap_{m \in M(G O)} \succsim_{m} \text { and } \succsim^{\circ}=\bigcup_{m \in M(G O)} \succsim_{m}
$$

[^0]
MULTIPLE PRIORS V

- two preference relations \succsim^{*} and \succsim°
- \succsim^{*} reflexive and transitive (not complete)
\succsim° reflexive and complete (\sim° not transitive)
- a set C of probabilities p

$$
\begin{gathered}
f \succsim^{*} g \Longleftrightarrow \int u(f) d p \geq \int u(g) d p \quad \text { for all } p \in C \\
\quad \text { and } \\
f \succsim^{\circ} g \Longleftrightarrow \int u(f) d p \geq \int u(g) d p \quad \text { for some } p \in C
\end{gathered}
$$

THIS PAPER

SETUP (ANSCOMBE-AUMANN)

- (S, Σ) a measurable space of states of the world
- X a convex set of consequences
- Δ the set of probabilities on Σ (with the event-wise convergence topology)
- F the set of all acts: simple measurable functions from S to X
- \succsim^{*} and \succsim° two binary relations on F

BASIC AXIOMS

¿ reasoning templates/guidelines OR descriptions of behavior?

Basic Conditions (BC)

Reflexivity: $f \succsim f$.
Monotonicity: $f(s) \succ g(s)$ for all $s \in S$ implies $f \succ g$
Continuity: $\{\lambda \in[0,1]: \lambda e+(1-\lambda) f \succsim \lambda g+(1-\lambda) h\}$ is closed
Non-triviality: there exist constant f and g in F such that $f \succ g$

AXIOMS FOR RATIONALITY

C-Completeness, Transitivity, and Independence
C-Completeness: if f and g are constant, then either $f \succsim^{*} g$ or $g \succsim^{*} f$
Transitivity: $f \succsim^{*} g$ and $g \succsim^{*} h$ imply $f \succsim^{*} h$
Independence: $f \succsim^{*} g$ implies $\lambda f+(1-\lambda) h \succsim^{*} \lambda g+(1-\lambda) h$ for all λ in $(0,1)$

AXIOMS FOR RATIONALIZABILITY

Completeness, C-Transitivity, and C-Independence

Completeness: either $f \succsim^{\circ} g$ or $g \succsim^{\circ} f$
C-Transitivity: if f, g, and h are constant, $f \succsim^{\circ} g$ and $g \succsim^{\circ} h$ imply $f \succsim^{\circ} h$

C-Independence: if h is constant, $f \succsim^{\circ} g$ implies $\overline{\lambda f+(1-\lambda) h} \succsim^{\circ} \lambda g+(1-\lambda) h$ for all λ in $(0,1)$

INTERTWINING

Transitive Consistency: If either $f \succsim^{*} g \succsim^{0} h$ or $f \succsim^{0} g \succsim^{*} h$, then $f \succsim^{\circ} h$

Possibility: If $g \not \swarrow^{*} f$, then $f \succsim^{\circ} g$. $\left(g \succsim^{*} f\right.$ or $\left.f \succsim^{\circ} g\right)$

REPRESENTATION THEOREM

The following are equivalent for $\left(\succsim^{*}, \succsim^{0}\right)$.

- \succsim^{*} satisfies the BC, C-Completeness, Transitivity, and Independence, \succsim° satisfies BC, Completeness, C-Transitivity, and C-Independence, jointly $\left(\succsim^{*}, \succsim^{\circ}\right)$ satisfy Transitive Consistency and Possibility;
- there exist a non-empty closed and convex set C of probabilities on Σ and a non-constant affine $u: X \rightarrow \mathbb{R}$ such that, for any $f, g \in F$,

$$
f \succsim^{*} g \Longleftrightarrow \int u(f) d p \geq \int u(g) d p \quad \text { for all } p \in C
$$

and

$$
f \succsim^{\circ} g \Longleftrightarrow \int u(f) d p \geq \int u(g) d p \quad \text { for some } p \in C .
$$

In this case, C is unique and u is unique up to positive affine transformations.

TWO PREFERENCE MODELS

- in/completeness of beliefs/tastes
- Nehring (2008)
- psychological and revealed preferences
- Mandler (2005)
- Danan (2006)
- status quo bias completion
- Masatlioglu and Ok (2005)
- choice deferral
- Danan and Ziegelmeyer (2006)
- Kopylov (2009)
$+f \succsim^{\circ} g$ if the agent is willing to choose f over g when no other alternatives are feasible
$+f \succsim^{*} g$ if the agent is willing to choose f over g even if she has the option to postpone this choice

FUTURE RESEARCH

- the good news is that both \succsim^{*} and \succsim° can be elicited from behavior (Nishimura, 2014, Cerreia-Vioglio and Ok, 2015)
- in particular in Cappelli, Corrente, Greco, Maccheroni, Marinacci (2015) we are investigating the possibility of computing both \succsim^{*} and \succsim° in multicriteria decision making under uncertainty (a relatively new and promising field of MCDA)

[^0]: Jacquet-Lagrèze and Siskos (1982), Greco, Mousseau, Słowiński (2008), Giarlotta and Greco (2013)

