Rational Preferences and Rationalizable Choices, Necessary and Possible Rankings in Decision Making under Uncertainty

Alfio Giarlotta, Salvatore Greco, Fabio Maccheroni, Massimo Marinacci

U.Catania & U.Portsmouth & U.Bocconi

Annecy – March 2015

WHY A TALK ON DECISION MAKING UNDER UNCERTAINTY IN A MCDA MEETING?

- Because decision making under uncertainty can be seen as specific type of multiple criteria decisions in which the criteria are the states of nature
- Because preference structures considered in the recent research on decision making under uncertainty are analogous to preference structures recently used in MCDA
- Because recent considerations on axiomatic basis for decision making under uncertainty can be interesting for MCDA
- Because probably there is some space to develop models putting together decision making under uncertainty and MCDA

- one-preference \succsim and two-preference $(\succsim^*,\succsim^\circ)$ models of decision making under uncertainty
- relations with multi-criteria decision aiding
- rational preferences and rationalizable choices: an axiomatization

EXPECTED UTILITY

- ullet one preference relation \succeq
- ullet \succeq complete and transitive
- one single probability p

$$f \succeq g \Longleftrightarrow \int u(f) \, dp \geq \int u(g) \, dp$$

von Neumann and Morgenstern (1944), Savage (1954), and Anscombe and Aumann (1963) We have conceded that one may doubt whether a person can always decide which of two alternatives ... he prefers. If the general comparability assumption is not made, a mathematical theory ... is still possible ... von Neumann and Morgenstern (1944)

INTROSPECTION: No difficult choice between *only* two alternatives would survive if we already had a unique pre-existing complete preference in our brain (subjective states)

- ullet one preference relation \succsim
- \succeq reflexive and transitive (not complete)
- a set C of probabilities p

$$f \succeq g \iff \int u(f) dp \ge \int u(g) dp$$
 for all $p \in C$

Bewley (1986, published 2002, related to Aumann 1962)

- ullet one preference relation \succsim
- ullet \gtrsim complete and transitive
- a set C of probabilities p

$$f \succeq g \iff \min_{p \in C} \int u(f) dp \ge \min_{p \in C} \int u(g) dp$$

Gilboa and Schmeidler (1989) (A Waldean solution to the Ellsberg paradox)

• two preference relations \succsim^* and \succsim°

æ

• two preference relations \succeq^* and \succeq° (WHY?!)

3

- two preference relations \succeq^* and \succeq° (WHY?!)
- \succsim^* represents the robust part of the preference, the one about which the decision maker has no doubts

sometimes called *psychological rational preferences* or *cognitive preferences*

- two preference relations \succeq^* and \succeq° (WHY?!)
- \succsim^* represents the robust part of the preference, the one about which the decision maker has no doubts

sometimes called *psychological rational preferences* or *cognitive preferences*

• \succeq° represents the burden of choice, $f \succeq^{\circ} g$ means that f can be chosen when facing the set $\{f, g\}$ of alternatives,

it is typically interpreted as *revealed preference*

- two preference relations \succeq^* and \succeq° (WHY?!)
- \succsim^* represents the robust part of the preference, the one about which the decision maker has no doubts

sometimes called *psychological rational preferences* or *cognitive preferences*

• \succeq° represents the burden of choice, $f \succeq^{\circ} g$ means that f can be chosen when facing the set $\{f, g\}$ of alternatives,

it is typically interpreted as revealed preference

 \bullet if we think of statistics and of ${\it C}=\{p_{\theta}\}_{\theta\in\Theta}$ as a set of models …

- two preference relations \succeq^* and \succeq° (WHY?!)
- \succsim^* represents the robust part of the preference, the one about which the decision maker has no doubts

sometimes called *psychological rational preferences* or *cognitive preferences*

• \succeq° represents the burden of choice, $f \succeq^{\circ} g$ means that f can be chosen when facing the set $\{f, g\}$ of alternatives,

it is typically interpreted as revealed preference

- if we think of statistics and of $C = \{p_{ heta}\}_{ heta \in \Theta}$ as a set of models ...
- more on two-preference models and literature review at the end ...

- \bullet two preference relations \succsim^* and \succsim°
- \succeq^* reflexive and transitive (not complete)
 - \succsim° complete and transitive
- a set C of probabilities p

$$f \succeq^* g \iff \int u(f) \, dp \ge \int u(g) \, dp \quad \text{for all } \in C$$

and
$$f \succeq^\circ g \iff \min_{p \in C} \int u(f) \, dp \ge \min_{p \in C} \int u(g) \, dp$$

Gilboa, Maccheroni, Marinacci and Schmeidler (2010)

- ullet one preference relation \succsim
- \succeq complete (\sim not transitive)
- a set C of probabilities p

$$f \succeq g \iff \int u(f) dp \ge \int u(g) dp$$
 for some $p \in C$

Lehrer and Teper (2011)

(p rationalizes the choice of f from $\{f, g\}$ in the obvious game against nature)

MULTIPLE PRIORS V

- \bullet two preference relations \succsim^* and \succsim°
- \succeq^* reflexive and transitive (not complete)

 \succeq° reflexive and complete (\sim° not transitive)

• a set C of probabilities p

$$f \succeq^* g \iff \int u(f) \, dp \ge \int u(g) \, dp \quad \text{for all } p \in C$$

and
$$f \succeq^\circ g \iff \int u(f) \, dp \ge \int u(g) \, dp \quad \text{for some } p \in C$$

THIS PAPER

Basic concepts of Multiple Criteria Decision Aiding

•
$$A = \{a, b, c, ...\}$$
 set of alternatives
• $G = \{g_1, g_2, ..., g_n\}$ set of criteria $g_i : A \to \mathbb{R}$ such that
 $a \succeq^i b \iff g_i (a) \ge g_i (b)$

Dominance

$$a \succeq^G b \iff a \succeq^i b \qquad \forall i = 1, 2, ..., n$$

•
$$A = \{a, b, c, ...\}$$
 set of alternatives
• $G = \{g_1, g_2, ..., g_n\}$ set of criteria $g_i : A \to \mathbb{R}$ such that
 $a \succeq^i b \iff g_i (a) \ge g_i (b)$

Dominance

$$a \succeq^G b \iff a \succeq^i b \qquad \forall i = 1, 2, ..., n$$

If $a \succeq^G b$ the choice of a from $\{a, b\}$ is rational in a very intuitive sense what if neither $a \succeq^G b$ nor $b \succeq^G a$?

• \gtrsim^{O} preference (VERY VERY INCOMPLETE) declared by the DM

- \gtrsim^{O} preference (VERY VERY INCOMPLETE) declared by the DM
- $\{u_m: m \in M\}$ of utility functions on A, e.g., addititively separable

$$u_{m}\left(\mathbf{a}
ight)=\sum_{i=1}^{n}u_{m}^{i}\left(g_{i}\left(\mathbf{a}
ight)
ight)$$

- \gtrsim^{O} preference (VERY VERY INCOMPLETE) declared by the DM
- $\{u_m: m \in M\}$ of utility functions on A, e.g., addititively separable

$$u_{m}\left(\mathbf{a}\right) = \sum_{i=1}^{n} u_{m}^{i}\left(g_{i}\left(\mathbf{a}\right)\right)$$

•
$$a \succeq_m b \iff u_m(a) \ge u_m(b)$$

- \gtrsim^{O} preference (VERY VERY INCOMPLETE) declared by the DM
- $\{u_m: m \in M\}$ of utility functions on A, e.g., addititively separable

$$u_{m}\left(\mathbf{a}\right)=\sum_{i=1}^{n}u_{m}^{i}\left(g_{i}\left(\mathbf{a}\right)
ight)$$

•
$$a \succeq_m b \iff u_m(a) \ge u_m(b)$$

• $M(GO) = \{m \in M : (\succeq^G \cup \succeq^O) \subseteq \succeq_m\}$

- \succeq^{O} preference (VERY VERY INCOMPLETE) declared by the DM
- $\{u_m: m \in M\}$ of utility functions on A, e.g., addititively separable

$$u_{m}\left(\mathbf{a}\right) = \sum_{i=1}^{n} u_{m}^{i}\left(g_{i}\left(\mathbf{a}\right)\right)$$

•
$$a \succeq_m b \iff u_m(a) \ge u_m(b)$$

• $M(GO) = \{m \in M : (\succeq^G \cup \succeq^O) \subseteq \succeq_m\}$
• here

$$\Sigma^* = \bigcap_{m \in M(GO)} \Sigma_m \text{ and } \Sigma^\circ = \bigcup_{m \in M(GO)} \Sigma_m$$

- \succeq^{O} preference (VERY VERY INCOMPLETE) declared by the DM
- $\{u_m: m \in M\}$ of utility functions on A, e.g., addititively separable

$$u_{m}\left(\mathbf{a}\right) = \sum_{i=1}^{n} u_{m}^{i}\left(g_{i}\left(\mathbf{a}\right)\right)$$

•
$$a \succeq_m b \iff u_m(a) \ge u_m(b)$$

• $M(GO) = \{m \in M : (\succeq^G \cup \succeq^O) \subseteq \succeq_m\}$
• here
 $\succeq^* = \bigcirc \succeq \succeq \text{ and } \succeq^\circ = \square \square \succeq \boxtimes$

$$\Sigma^* = \bigcap_{m \in M(GO)} \Sigma_m \text{ and } \Sigma^\circ = \bigcup_{m \in M(GO)} \Sigma_m$$

Jacquet-Lagrèze and Siskos (1982), Greco, Mousseau, Słowiński (2008), Giarlotta and Greco (2013)

MULTIPLE PRIORS V

- \bullet two preference relations \succsim^* and \succsim°
- \succeq^* reflexive and transitive (not complete)

 \succeq° reflexive and complete (\sim° not transitive)

• a set C of probabilities p

$$f \succeq^* g \iff \int u(f) \, dp \ge \int u(g) \, dp \quad \text{for all } p \in C$$

and
$$f \succeq^\circ g \iff \int u(f) \, dp \ge \int u(g) \, dp \quad \text{for some } p \in C$$

THIS PAPER

- (S, Σ) a measurable space of states of the world
- X a convex set of *consequences*
- Δ the set of *probabilities* on Σ
 (with the event-wise convergence topology)
- F the set of all acts: simple measurable functions from S to X
- \succsim^* and \succsim° two binary relations on F

¿ reasoning templates/guidelines OR descriptions of behavior ?

Basic Conditions (BC)

 $\begin{array}{l} \underline{\textit{Reflexivity:}} \ f \succsim f . \\ \underline{\textit{Monotonicity:}} \ f(s) \succ g(s) \ \text{for all } s \in S \ \text{implies } f \succ g \\ \underline{\textit{Continuity:}} \ \{\lambda \in [0,1] : \lambda e + (1-\lambda)f \succsim \lambda g + (1-\lambda)h\} \ \text{is closed} \\ \underline{\textit{Non-triviality:}} \ \text{there exist constant } f \ \text{and } g \ \text{in } F \ \text{such that } f \succ g \end{array}$

C-Completeness, Transitivity, and Independence

<u>C-Completeness</u>: if f and g are constant, then either $f \succeq^* g$ or $g \succeq^* f$ <u>Transitivity</u>: $f \succeq^* g$ and $g \succeq^* h$ imply $f \succeq^* h$ <u>Independence</u>: $f \succeq^* g$ implies $\lambda f + (1 - \lambda)h \succeq^* \lambda g + (1 - \lambda)h$ for all λ in (0, 1)

Completeness, C-Transitivity, and C-Independence

<u>Completeness</u>: either $f \succeq^{\circ} g$ or $g \succeq^{\circ} f$

<u>C-Transitivity</u>: if f, g, and h are constant, $f \succeq^{\circ} g$ and $g \succeq^{\circ} h$ imply $f \succeq^{\circ} h$

 $\frac{C\text{-Independence: if } h \text{ is constant, } f \succeq^{\circ} g \text{ implies}}{\lambda f + (1 - \lambda)h \succeq^{\circ} \lambda g + (1 - \lambda)h \text{ for all } \lambda \text{ in } (0, 1)}$

Transitive Consistency: If either $f \succeq^* g \succeq^\circ h$ or $f \succeq^\circ g \succeq^* h$, then $f \succeq^\circ h$

Possibility: If $g \not\gtrsim^* f$, then $f \succeq^\circ g$. $(g \succeq^* f \text{ or } f \succeq^\circ g)$

3

The following are equivalent for $(\succeq^*, \succeq^\circ)$.

- ≿* satisfies the BC, C-Completeness, Transitivity, and Independence, ≿° satisfies BC, Completeness, C-Transitivity, and C-Independence, jointly (≿*, ≿°) satisfy Transitive Consistency and Possibility;
- there exist a non-empty closed and convex set C of probabilities on Σ and a non-constant affine $u: X \to \mathbb{R}$ such that, for any $f, g \in F$,

$$f \gtrsim^{*} g \iff \int u(f) dp \ge \int u(g) dp$$
 for all $p \in C$

and

$$f \gtrsim^{\circ} g \iff \int u(f) \, dp \geq \int u(g) \, dp$$
 for some $p \in C$.

Annecy - March 2015

20 / 22

In this case, C is unique and u is unique up to positive affine transformations.

TWO PREFERENCE MODELS

- in/completeness of beliefs/tastes
 - Nehring (2008)
- psychological and revealed preferences
 - Mandler (2005)
 - Danan (2006)
- status quo bias completion
 - Masatlioglu and Ok (2005)
- choice deferral
 - Danan and Ziegelmeyer (2006)
 - Kopylov (2009)
 - + $f \succeq^{\circ} g$ if the agent is willing to choose f over g when no other alternatives are feasible
 - + $f \succeq^* g$ if the agent is willing to choose f over g even if she has the option to postpone this choice

Annecy - March 2015 21 / 22

- the good news is that both ≿* and ≿° can be elicited from behavior (Nishimura, 2014, Cerreia-Vioglio and Ok, 2015)
- in particular in Cappelli, Corrente, Greco, Maccheroni, Marinacci (2015) we are investigating the possibility of computing both ≿* and ≿° in multicriteria decision making under uncertainty (a relatively new and promising field of MCDA)