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Multiobjective Optimization & EMO 



Interactive Multiobjective Optimization & EMO 

 



Interactive optimization 

 DM looks at intermediate results from optimization 

 DM provides preference information 

 Optimizer uses DM’s preferences to focus the search on most 
promising solutions 

Decision 
Maker 
(user) 

Inference 
engine 

Optimizer 

         Preference information 

P
reference m

odel 

Set of solutions 

In successive iterations 
the user learns & 
the model learns 
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What and from what information the model (machine) can learn ? 

 Model learning is a concept which underlines an evolution of 
the model in view of facts observed through sensors in an 
external world 

 A model is implemented as a computer program on  
a machine, hence the term machine learning is often used 
instead of model learning  

 Machine, or model, learning is the ability of  
a computer program to improve its performance  
by learning from data 

 The model relates an output (preference structure) with an 
input (preference information), either analytically, using a 
function, or logically, using decision rules or trees  



Learning user’s preferences from user-machine interactions 

 Preference learning is about inducing predictive preference 
models from empirical data (falls into a broad term of regression) 

 Constructive preference learning in MCDA, versus stochastic 
preference learning in Machine Learning 
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Interactive optimization with Robust Ordinal Regression 

 Ordinal regression paradigm emphasizes the discovery of 
intentions as an interpretation of actions rather than as a priori 
position (disaggregation approach) 

 Robust Ordinal Regression in a loop: preference elicitation with 
constructive learning 

 Results are robust,  
because they take  
into account partial  
preference information 



 Pairwise comparisons  
of solutions 

 Best (or worst) solution 
out of a set 

 Ranking of several 
solutions 

 Ordinal or cardinal 
intensity of preference  
for pairs of solutions  

 Sorting of solutions into 
quality classes 

 … 

 Value function 

 Outranking relation 

 Artificial neural network 

 Decision rules 

 Decision trees 

 … 
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Input Output 

Interactive optimization with Robust Ordinal Regression 



How complex should the model be? 

 Model too simple       
     not able to represent user’s preferences 

 Example: linear model unable to capture  
preference information 

 Model too complex/flexible 
     no generalization power, all solutions enter only one front, 
     takes very long to learn all the parameters 

 Example: Dominance relation, general additive model with 
monotonic marginal value functions 

   „Everything should be made as simple as possible  
     – but not simpler”  [Albert Einstein] 
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Preference information and model complexity 

11 

Model complexity 
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Fully specified model 

Many compatible value functions 

Possibly no fully  
compatible model 

1. Discard preference 
information 

2. Find a model with  
minimal error 

1. Pick „representative” value function 
2. Consider all compatible  

value functions 



Many compatible value functions 

1. Pick a „representative” value function 

 Most discriminative  
(for reference solutions or for the necessary relation) 

 Minimize bends 

 Maximize total utility 

2. Consider all compatible value functions 

 EMO can naturally deal with incomparability 

 Necessary and possible preference relations 



The NEMO framework   [Branke, Greco, Słowiński, Zielniewicz 2009, 
2010, 2014]    [Branke, Corrente, Greco, Słowiński, Zielniewicz 2014] 

 NEMO integrates ROR into NSGA-II  

 ROR implemented in  

 UTAGMS [Greco, Mousseau, Słowiński 2009]  

 GRIP [Figueira, Greco, Słowiński 2009] 

 Preference model: 

 Additive value function 

 Monotonic marginal value functions ui  

 Necessary preference relation or representative value function  
is used to rank solutions in the current population 

 No scaling of objectives is necessary – NEMO handles 
heterogeneous objectives 
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The NEMO framework [Branke, Greco, Słowiński, Zielniewicz 2014]  

 Integrates Robust Ordinal Regression into EMO 

 NEMO-0 

 Learn a „representative” value function 

 Use „representative” value function to rank individuals  
with the same Pareto rank 
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 Every q iterations the DM elicits preferences by comparing 
pairwise some non-dominated solutions in the current 
population  

 Determine the dominance ranking (partial order of solutions 
obtained by iterative removing of a non-dominated front) 

 Within each non-dominated front, rank individuals according to  
a representative value function 

 Different representative value functions: 

 MDVF: Most Discriminative Value Function 

 MSCVF: Min Slope Change Value Function 

 MSVF: Max Sum of Value Function Scores (total utility)   

NEMO-0: a single compatible value function is used  
to rank solutions in the population 

 



The NEMO framework [Branke, Greco, Słowiński, Zielniewicz 2014]  

 Integrates Robust Ordinal Regression into EMO 

 NEMO-0 

 Learn a „representative” value function 

 Use „representative” value function to rank individuals  
with the same Pareto rank 

 NEMO-I [Branke, Greco, Słowiński, Zielniewicz 2009, 2010] 

 Replaces dominance relation by pairwise necessary preference 
relation 

 O(n2) LPs to solve 
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 The dominance relation used in NSGA-II to rank solutions is 
replaced by the necessary preference relation of robust ordinal 
regression 

 

 

 

 A representative value function is used in the crowding distance: 

      

where U is a representative value function, ui are its marginal    
    value functions, yi

x, zi
x are left and right neighbors of x wrt ui,  

    and yx, zx are vectors composed of yi
x, zi

x, respectively  

 
 

NEMO-I:  
the whole set of compatible value functions is considered 
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 The dominance relation used in NSGA-II to rank solutions is 
replaced by the necessary preference relation of robust ordinal 
regression 

 

 

 

 A representative value function is used in the crowding distance: 

      

where U is a representative value function, ui are its marginal    
    value functions, yi

x, zi
x are left and right neighbors of x wrt ui,  

    and yx, zx are vectors composed of yi
x, zi

x, respectively  

 
 

NEMO-I:  
the whole set of compatible value functions is considered 
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NSGA-II NEMO-I  
    O(n2) LPs to solve in every iteration     
 

 



The NEMO framework [Branke, Greco, Słowiński, Zielniewicz 2014]  

 Integrates Robust Ordinal Regression into EMO 

 NEMO-0 

 Learn a „representative” value function 

 Use „representative” value function to rank individuals  
with the same Pareto rank 

 NEMO-I [Branke, Greco, Słowiński, Zielniewicz 2009, 2010] 

 Replaces dominance relation by pairwise necessary preference 
relation 

 O(n2) LPs to solve 

 NEMO-II  

 A solution is „possibly preferred” if  
there is a compatible value function  
that would prefer this solution  
over all others 

 Only O(n) LPs to solve 
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Never preferred 
under  
NEMO-II-linear 



Approaches to learning a single preference function 

 Phelps&Köksalan [2003] 

f(x)=ax1
2+bx2

2, most discriminative 

 Deb, Sinha, Korhonen, Wallenius [2010]  

Polynomial value function model, most discriminative 

 Todd and Sen [1999] 

Artificial Neural Network 

 Battiti and Passerini [2010] 

Support Vector Machine (with cross-validation to determine 

most appropriate kernel) 

 Branke, Greco, Słowiński and Zielniewicz [2014] 

Additive monotonic value function, maximum total utility 

 



Approaches to learning a set of preference functions 

 Jaszkiewicz [2007] 
Set of compatible linear preference functions, samples one in 
each generation 

 Greenwood, Hu and D’Ambrosio [1997] 
Linear preference model, necessarily dominated solutions are 
considered inferior (equivalent to NEMO-I with linear preference 
model) 

 Fowler et al [2010] 
Quasi concave value functions 

 Branke, Greco, Słowiński  
and Zielniewicz [2009,2010] 
NEMO-I with piecewise-linear and 
additive monotonic preference  
model 
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Recent work: NEMO-II-Choquet 

 Use Choquet integral as preference model 

 Well-accepted model in decision theory 

 Allows to model interaction between objectives 

 Adapt complexity of preference model to complexity of preferences 

 Start with linear model 

 Switch to 2-additive Choquet once no linear compatible value 
function can be found 
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Choquet integral (1) 

The Choquet integral [Choquet 1954] substitutes the usual 
weighted sum by a weight for each subset of the criteria, e.g.: 

 µ(∅)=0, 

 µ({Mathematics})= µ({Physics})= 0.45, 

 µ({Literature})=0.3, 

 µ({Mathematics, Physics})=0.5, 

 µ({Mathematics, Literature})=µ({Physics, Literature})=0.9, 

 µ({Mathematics, Physics, Literature})=1. 

This permits to take into account the synergy between criteria 

 



Choquet integral (2) 

 It is based on capacity µ defined over set N={1,2,…,n} of criteria: 

 

 

 Monotonicity condition: 

 

 

 Boundary condition: 
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Choquet integral (3) 

where: 
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Additive vs. non-additive aggregation 
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 Instead of weights wi for each objective fi∈F in a weighted sum:  

µ(F’) – joint weight of criteria from a subset F’⊆F 

 µ : 2F → [0, 1] – non-additive measure (capacity): 

 µ(∅)=0, µ(F)=1 

 for F”⊂F’⊆F,  µ(F”) ≤ µ(F’) 

 in general,  µ(F”∪ F’) ≠ µ(F”) + µ(F’) 

 positive interaction (synergy):  µ(F”∪ F’) > µ(F”) + µ(F’) 

 negative interaction (redundancy):  µ(F”∪ F’) < µ(F”) + µ(F’) 

 

 

 

 



Weighted sum vs. discrete Choquet integral 
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Weighted sum:    
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Weighted sum vs. discrete Choquet integral 
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Weighted sum:             Choquet integral: 

 

where (⋅) is a permutation of {1,…,n}, such that 0≤f(1)(a)≤f(2)(a)≤…≤f(n)(a), 

Fi={f(i),…,f(n)}, f(0)=0;  f4(a)≤f2(a)≤f1(a)≤f3(a) → (1)=4, (2)=2, (3)=1, (4)=3  
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 By considering the Möbius representation of 2-additive capacity μ: 

 

 

 monotonicity: 

 

 

 normalization: 

 

 we get: 

Choquet integral (4) 
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A particular case of the Choquet integral: n=2 

If n=2, then…  
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The Choquet integral isoquants ('wings') 
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Graphical interpretation 

12 ff =

1f

2f

DM



Scaling of objectives 
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Isoquants of the Choquet integral for two criteria – special cases 
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 Weighted sum (linear additive) – no interaction 
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 Ordered Weighted Average (OWA) – positive interaction if 

                                                 – negative interaction if   
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 Min – maximum negative interaction (redundancy) 
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Isoquants of the Choquet integral for two criteria – special cases 
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 Max – maximum positive interaction (synergy) 
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Isoquants of the Choquet integral for two criteria – special cases 
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 2-additive Choquet – positive interaction (synergy)  
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Isoquants of the Choquet integral for two criteria – special cases 
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 2-additive Choquet – positive interaction (synergy) 
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Isoquants of the Choquet integral for two criteria – special cases 
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 2-additive Choquet – negative interaction (redundancy) 
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Isoquants of the Choquet integral for two criteria – special cases 



NEMO-II-Ch main points 

 Start with the linear value function as preference model 

 Ask every q iterations DM’s preferences by comparing 
two non-dominated solutions 

 Order the solutions by checking if there exists at least 
one compatible model for which x is preferred to all other 
solutions 

 Within the same front order the solutions with respect to 
the crowding distance 

 Switch to the 2-additive Choquet integral preference 
model as soon as the linear model is not able to 
represent the preferences of the DM anymore 

 

 



Checking if there exists a model compatible with the DM’s 
preferences for which x is preferred to all other solutions 

• First, we consider the set of weights (w’1,…,w’n) such that  
w’1 f1(x)=…=w’n fn(x) 

• If there is not any compatible capacity then we use  
the Nelder-Mead method [Nelder & Mead 1965]  
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Comparing NEMO-I-L and NEMO-II-L  (ZDT1-2D) 

• Complexity: O(n) instead of O(n2) 

• Similar convergence 



Why NEMO-II-Ch?   (DTLZ1-5D) 

• DM compares two n-d solutions in the same front every 10 iterations 
• It is better to start with the simplest model (the linear one); 
• Passing to the 2-additive Choquet integral preference model produces 

better results than passing to the complete Choquet integral model; 
• In NEMO-II-Ch interactions between pairs of criteria are considered. 



Experimental setup 

 ZDT1 and ZDT2 test functions on 2D; 

 DTLZ1 and DLTZ2 test functions on 3D and 5D; 

 User preferences according to Chebyshev with different 
weights;  

 Comparisons with  

o NSGA-II, 

o NEMO-II-L, 

o NEMO-II-PL2, 

o NEMO-II-Ch, 

o EA-UVF. 

 Results averaged over 50 replications. 

 



ZDT2 

Pareto front 



Results on ZDT2 

𝒘𝟏 𝒘𝟐 
ZDT2-2D Cheb. 
(middle) 

0.6 0.4 

ZDT2-2D Cheb. 
(extreme) 

0.15 0.85 

• NEMO-II-L does not converge to the correct point 

• NSGA-II and NEMO-II-G converge more slowly than NEMO-II-Ch 



ZDT2 Value function of an artificial user: 
weighted Chebyshev metric 



ZDT2 Value function of an artificial user: 
weighted Chebyshev metric 



DTLZ1-3D 

Pareto front 



Results on DTLZ1-3D 

𝒘𝟏 𝒘𝟐 𝒘𝟑 
DTLZ1-3D Cheb. 
(middle) 

0.3 0.4 0.3 

DTLZ1-3D Cheb. 
(extreme) 

0.2 0.3 0.5 

• NEMO-II-Ch is able to get very close to the correct point 

• NSGA-II converges significantly slower 

• NEMO-II-L and NEMO-II-PL2 show erratic behaviour 



Results on DTLZ1-5D 

𝒘𝟏 𝒘𝟐 𝒘𝟑 𝒘𝟒 𝒘𝟓 
DTLZ1-5D Cheb. (extreme 1) 0.1 0.15 0.2 0.25 0.3 

DTLZ1-5D Cheb. (extreme 2) 0.3 0.25 0.2 0.15 0.1 

• NEMO-II-Ch obtains much better results 

than any of the other methods 

• NSGA-II performs quite poorly 

• NEMO-II-L and NEMO-II-PL2 show again 

a very erratic behaviour 



Conclusions 

 Preference model needs to be chosen carefully 

 Too simple -> unable to capture user’s preferences 

 Too flexible -> unable to generalize, slow to learn 

 Idea: start simple, increase complexity once unable to capture  
user’s preferences 

 Various models are used in literature, often without deep reflexion 

 NEMO framework 

 NEMO-0: learn a single preference function -> complete order 
based on a sensible idea 

 NEMO-I: pairwise necessary preference relations 

 NEMO-II: compatible value function that prefers a given solution 

 Choquet integral is a useful preference model, able to capture 
interactions 

 NEMO-II-Ch is an adaptive interactive EMO algorithm 

 

 



Discussion 
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