

Interactive Evolutionary Multiobjective Optimization with Choquet Integral Preference Model Derived by Robust Ordinal Regression

> Juergen Branke, Salvatore Corrente, Salvatore Greco, Piotr Zielniewicz, Roman Słowiński

81st Meeting of the EURO WG on MCDA, Annecy, 26-28 March 2015

Outline

- Interactive Multiobjective Optimization
- Learning user's preferences from user-machine interactions
- Preference learning in EMO
- The NEMO framework
- The NEMO-II-Ch method
- Some empirical results
- Conclusions

Multiobjective Optimization & EMO

Interactive Multiobjective Optimization & EMO

Interactive optimization

- DM looks at intermediate results from optimization
- DM provides preference information
- Optimizer uses DM's preferences to focus the search on most promising solutions

What and from what information the model (machine) can learn?

- Model learning is a concept which underlines an evolution of the model in view of facts observed through sensors in an external world
- A model is implemented as a computer program on a machine, hence the term machine learning is often used instead of model learning
- Machine, or model, learning is the ability of a computer program to improve its performance by learning from data
- The model relates an output (preference structure) with an input (preference information), either analytically, using a function, or logically, using decision rules or trees

Learning user's preferences from user-machine interactions

- Preference learning is about inducing predictive preference models from empirical data (falls into a broad term of regression)
- Constructive preference learning in MCDA, versus stochastic preference learning in Machine Learning

Interactive optimization with Robust Ordinal Regression

- Ordinal regression paradigm emphasizes the discovery of intentions as an interpretation of actions rather than as a priori position (disaggregation approach)
- Robust Ordinal Regression in a loop: preference elicitation with constructive learning
- Results are robust, because they take into account partial preference information

Interactive optimization with Robust Ordinal Regression

Input

. . .

- Pairwise comparisons of solutions
- Best (or worst) solution out of a set
- Ranking of several solutions
- Ordinal or cardinal intensity of preference for pairs of solutions
- Sorting of solutions into quality classes

Output

- Value function
- Outranking relation
- Artificial neural network
- Decision rules
- Decision trees

. . .

How complex should the model be?

- Model too simple
 - ➡ not able to represent user's preferences
- Example: linear model unable to capture preference information
- Model too complex/flexible
 - no generalization power, all solutions enter only one front, takes very long to learn all the parameters
- Example: Dominance relation, general additive model with monotonic marginal value functions
 - "Everything should be made as simple as possible
 - but not simpler" [Albert Einstein]

Preference information and model complexity

Many compatible value functions

- 1. Pick a **"representative"** value function
 - Most discriminative (for reference solutions or for the necessary relation)
 - Minimize bends
 - Maximize total utility
- 2. Consider **all** compatible value functions
 - EMO can naturally deal with incomparability
 - Necessary and possible preference relations

The NEMO framework [Branke, Greco, Słowiński, Zielniewicz 2009, 2010, 2014] [Branke, Corrente, Greco, Słowiński, Zielniewicz 2014]

- NEMO integrates ROR into NSGA-II
- ROR implemented in
 - UTA^{GMS} [Greco, Mousseau, Słowiński 2009]
 - GRIP [Figueira, Greco, Słowiński 2009]
- Preference model:
 - Additive value function $U(a) = \sum_{i=1}^{n} u_i [f_i(a)]$
 - Monotonic marginal value functions u_i
- Necessary preference relation or representative value function is used to rank solutions in the current population
- No scaling of objectives is necessary NEMO handles heterogeneous objectives

The NEMO framework [Branke, Greco, Słowiński, Zielniewicz 2014]

- Integrates Robust Ordinal Regression into EMO
- NEMO-0
 - Learn a "representative" value function
 - Use "representative" value function to rank individuals with the same Pareto rank

NEMO-0: a single compatible value function is used to rank solutions in the population

- Every q iterations the DM elicits preferences by comparing pairwise some non-dominated solutions in the current population
- Determine the dominance ranking (partial order of solutions obtained by iterative removing of a non-dominated front)
- Within each non-dominated front, rank individuals according to a representative value function
- Different representative value functions:
 - MDVF: Most Discriminative Value Function
 - MSCVF: Min Slope Change Value Function
 - MSVF: Max Sum of Value Function Scores (total utility)

The NEMO framework [Branke, Greco, Słowiński, Zielniewicz 2014]

- Integrates Robust Ordinal Regression into EMO
- NEMO-0
 - Learn a "representative" value function
 - Use "representative" value function to rank individuals with the same Pareto rank
- NEMO-I [Branke, Greco, Słowiński, Zielniewicz 2009, 2010]
 - Replaces dominance relation by pairwise necessary preference relation
 - O(n²) LPs to solve

NEMO-I:

the whole set of compatible value functions is considered

The dominance relation used in NSGA-II to rank solutions is replaced by the necessary preference relation of robust ordinal regression

A representative value function is used in the crowding distance:

$$CD(x) = \sum_{i=1}^{n} |u_i(y_i^x) - u_i(z_i^x)| - |U(y^x) - U(z^x)|$$

where *U* is a representative value function, u_i are its marginal value functions, y_i^x , z_i^x are left and right neighbors of *x* wrt u_i , and y^x , z^x are vectors composed of y_i^x , z_i^x , respectively

NEMO-I:

the whole set of compatible value functions is considered

The dominance relation used in NSGA-II to rank solutions is replaced by the necessary preference relation of robust ordinal regression

 $O(n^2)$ LPs to solve in every iteration

• A representative value function is used in the crowding distance:

$$CD(x) = \sum_{i=1}^{n} |u_i(y_i^x) - u_i(z_i^x)| - |U(y^x) - U(z^x)|$$

where *U* is a representative value function, u_i are its marginal value functions, y_i^x , z_i^x are left and right neighbors of *x* wrt u_i , and y^x , z^x are vectors composed of y_i^x , z_i^x , respectively

The NEMO framework [Branke, Greco, Słowiński, Zielniewicz 2014]

- Integrates Robust Ordinal Regression into EMO
- NEMO-0
 - Learn a "representative" value function
 - Use "representative" value function to rank individuals with the same Pareto rank
- NEMO-I [Branke, Greco, Słowiński, Zielniewicz 2009, 2010]
 - Replaces dominance relation by pairwise necessary preference relation
 - O(n²) LPs to solve
- NEMO-II
 - A solution is "possibly preferred" if there is a compatible value function that would prefer this solution over all others
 - Only O(n) LPs to solve

Approaches to learning a single preference function

Phelps&Köksalan [2003]

 $f(x) = ax_1^2 + bx_2^2$, most discriminative

Deb, Sinha, Korhonen, Wallenius [2010]

Polynomial value function model, most discriminative

Todd and Sen [1999]

Artificial Neural Network

Battiti and Passerini [2010]

Support Vector Machine (with cross-validation to determine most appropriate kernel)

Branke, Greco, Słowiński and Zielniewicz [2014]
 Additive monotonic value function, maximum total utility

Jaszkiewicz [2007]

Set of compatible linear preference functions, samples one in each generation

Greenwood, Hu and D'Ambrosio [1997]

Linear preference model, necessarily dominated solutions are considered inferior (equivalent to NEMO-I with linear preference model)

- Fowler et al [2010]
 Quasi concave value functions
- Branke, Greco, Słowiński and Zielniewicz [2009,2010]
 NEMO-I with piecewise-linear and additive monotonic preference model

Recent work: NEMO-II-Choquet

- Use Choquet integral as preference model
 - Well-accepted model in decision theory
 - Allows to model interaction between objectives
- Adapt complexity of preference model to complexity of preferences
 - Start with linear model
 - Switch to 2-additive Choquet once no linear compatible value function can be found

The Choquet integral [Choquet 1954] substitutes the usual weighted sum by a weight for each subset of the criteria, e.g.:

- μ(∅)=0,
- $\mu(\{\text{Mathematics}\}) = \mu(\{\text{Physics}\}) = 0.45$,
- μ ({Literature})=0.3,
- μ({Mathematics, Physics})=0.5,
- $\mu(\{\text{Mathematics}, \text{Literature}\}) = \mu(\{\text{Physics}, \text{Literature}\}) = 0.9,$
- $\mu(\{\text{Mathematics}, \text{Physics}, \text{Literature}\}) = 1.$

This permits to take into account the synergy between criteria

Choquet integral (2)

• It is based on capacity μ defined over set $N = \{1, 2, ..., n\}$ of criteria:

$$\mu: 2^{N} \rightarrow [0,1]$$

> Monotonicity condition:

$$\mu(S) \leq \mu(T), \forall S, T: S \subseteq T(\subseteq N)$$

Boundary condition:

$$\mu(\emptyset) = 0, \quad \mu(N) = 1$$

Given *n* evaluations (gain-type) f_1, \ldots, f_n with $f_i \ge 0$, $\forall i = 1, \ldots, n$, the Choquet integral of (f_1, \ldots, f_n) is computed as follows:

$$Ch_{\mu}(f_1, \ldots, f_n) = \sum_{i=1}^n (f_{(i)} - f_{(i-1)}) \mu(F_{(i)})$$

where:

 $f_{(0)}=0\,,$

 (\cdot) index permutation: $f_{(i-1)} \leq f_{(i)}, i = 1, ..., n$

 $F_{(i)} = \{ f_{(i)}, \dots, f_{(n)} \}$

Additive vs. non-additive aggregation

- Instead of weights w_i for each objective $f_i \in F$ in a weighted sum: $\mu(F')$ – joint weight of criteria from a subset $F' \subseteq F$
- $\mu: 2^F \rightarrow [0, 1]$ non-additive measure (capacity):
 - $\mu(\emptyset) = 0, \ \mu(F) = 1$
 - for $F'' \subset F' \subseteq F$, $\mu(F'') \leq \mu(F')$
 - in general, $\mu(F'' \cup F') \neq \mu(F'') + \mu(F')$
 - positive interaction (synergy): $\mu(F' \cup F') > \mu(F'') + \mu(F')$
 - negative interaction (redundancy): $\mu(F' \cup F') < \mu(F') + \mu(F')$

Weighted sum vs. discrete Choquet integral

Weighted sum:

 $U(a) = \sum_{i=1}^{n} k_i f_i(a) = \sum_{i=1}^{n} \mu(\{f_i\}) f_i(a)$

Weighted sum vs. discrete Choquet integral

Weighted sum:

Choquet integral:

 $U(a) = \sum_{i=1}^{n} k_i f_i(a) = \sum_{i=1}^{n} \mu(\{f_i\}) f_i(a) \qquad \qquad U(a) = \sum_{i=1}^{n} \mu(F_i) \left(f_{(i)}(a) - f_{(i-1)}(a)\right)$

where (.) is a permutation of $\{1, ..., n\}$, such that $0 \le f_{(1)}(a) \le f_{(2)}(a) \le ... \le f_{(n)}(a)$, $F_i = \{f_{(i)}, ..., f_{(n)}\}, f_{(0)} = 0; f_4(a) \le f_2(a) \le f_1(a) \le f_3(a) \rightarrow (1) = 4, (2) = 2, (3) = 1, (4) = 3$

Choquet integral (4)

By considering the Möbius representation of 2-additive capacity µ:

$$\mu(T) = \sum_{i \in T} m(\{i\}) + \sum_{\{i,j\} \subseteq T} m(\{i,j\}), \quad \forall T \subseteq N,$$

> monotonicity:

$$\begin{cases} m(\{i\}) \ge 0, \forall i \in N, \\ m(\{i\}) + \sum_{j \in T} m(\{i, j\}) \ge 0, \forall i \in N, \text{ and } \forall T \subseteq N \setminus \{i\}, T \neq \emptyset \end{cases}$$

> normalization:

$$m(\emptyset) = 0, \qquad \sum_{i \in N} m(\{i\}) + \sum_{\{i, j\} \subseteq N} m(\{i, j\}) = 1$$

> we get:

$$Ch_{\mu}(f_{1}, ..., f_{n}) = \sum_{i \in N} m(\{i\}) f_{i} + \sum_{\{i, j\} \subseteq N} m(\{i, j\}) \min\{f_{i}, f_{j}\}$$

A particular case of the Choquet integral: n=2

If *n*=2, then...

$$Ch_{\mu}(f_1, f_2) = m(\{1\}) f_1 + m(\{2\}) f_2 + m(\{1, 2\}) \min\{f_1, f_2\} =$$

$$= \begin{cases} (m(\{1\}) + m(\{1,2\})) f_1 + m(\{2\}) f_2 & \text{if } f_1 \le f_2 \\ m(\{1\}) f_1 + (m(\{2\}) + m(\{1,2\})) f_2 & \text{if } f_1 \ge f_2 \end{cases}$$

The Choquet integral isoquants ('wings')

Graphical interpretation

Scaling of objectives

Weighted sum (linear additive) – no interaction

 $U(a) = \mu(\{f_1\}) f_1(a) + \mu(\{f_2\}) f_2(a) \ge C, \quad \mu(\{f_1\}) + \mu(\{f_2\}) = 1$

• Ordered Weighted Average (OWA) – positive interaction if $\mu(\{f_1\}) = \mu(\{f_1\}) < 0.5$

- negative interaction if $\mu(\lbrace f_1 \rbrace) = \mu(\lbrace f_1 \rbrace) > 0.5$

 $U(a) = k_1 f_{(1)}(a) + k_2 f_{(2)}(a) = (1 - \mu(\{f_1\})) f_{(1)}(a) + \mu(\{f_2\}) f_{(2)}(a) \ge c,$ with $\mu(\{f_1\}) = \mu(\{f_2\})$ and $\mu(\{f_1, f_2\}) = 1$

Min – maximum negative interaction (redundancy)

 $U(a) = \min\{f_1(a), f_2(a)\} \ge c, \quad \mu(\{f_1\}) = 0, \quad \mu(\{f_2\}) = 0, \quad \mu(\{f_1, f_2\}) = 1$

Max – maximum positive interaction (synergy)

 $U(a) = max\{f_1(a), f_2(a)\} \ge c, \quad \mu(\{f_1\}) = 1, \quad \mu(\{f_2\}) = 1, \quad \mu(\{f_1, f_2\}) = 1$

2-additive Choquet – positive interaction (synergy)

 $U(a) = \mu(\{f_1\}) f_1(a) + \mu(\{f_2\}) f_2(a) + [\mu(\{f_1, f_2\}) - \mu(\{f_1\}) - \mu(\{f_2\})] \min\{f_1(a), f_2(a)\} \ge c$ positive interaction when $\mu(\{f_1, f_2\}) > \mu(\{f_1\}) + \mu(\{f_2\})$

 $U(a) = \mu(\{f_1\}) f_1(a) + \mu(\{f_2\}) f_2(a) + [\mu(\{f_1, f_2\}) - \mu(\{f_1\}) - \mu(\{f_2\})] \min\{f_1(a), f_2(a)\} \ge c$ positive interaction when $\mu(\{f_1, f_2\}) > \mu(\{f_1\}) + \mu(\{f_2\})$

2-additive Choquet – negative interaction (redundancy)

 $U(a) = \mu(\{f_1\}) f_1(a) + \mu(\{f_2\}) f_2(a) + [\mu(\{f_1, f_2\}) - \mu(\{f_1\}) - \mu(\{f_2\})] \min\{f_1(a), f_2(a)\} \ge c$ negative interaction when $\mu(\{f_1, f_2\}) < \mu(\{f_1\}) + \mu(\{f_2\})$

NEMO-II-Ch main points

- Start with the linear value function as preference model
- Ask every *q* iterations DM's preferences by comparing two non-dominated solutions
- Order the solutions by checking if there exists at least one compatible model for which x is preferred to all other solutions
- Within the same front order the solutions with respect to the crowding distance
- Switch to the 2-additive Choquet integral preference model as soon as the linear model is not able to represent the preferences of the DM anymore

Checking if there exists a model compatible with the DM's preferences for which x is preferred to all other solutions

$$\begin{aligned} \max \varepsilon \,, & \text{s.t.} \\ Ch_{\mu}(w_{1}f_{1}(b), \dots, w_{n}f_{n}(b)) - Ch_{\mu}(w_{1}f_{1}(a), \dots, w_{n}f_{n}(a)) + \varepsilon \leq 0, & \text{if } a \succ b \\ Ch_{\mu}(w_{1}f_{1}(y), \dots, w_{n}f_{n}(y)) - Ch_{\mu}(w_{1}f_{1}(x), \dots, w_{n}f_{n}(x)) + \varepsilon \leq 0, & \forall y \in A \setminus \{x\} \\ \sum_{i=1}^{n} w_{i} = 1 \\ m(\emptyset) = 0, & \sum_{i \in N} m(\{i\}) + \sum_{\{i, j\} \subseteq N} m(\{i, j\}) = 1, & m(\{i\}) \geq 0, & \forall i \in N \\ m(\{i\}) + \sum_{j \in T} m(\{i, j\}) \geq 0, & \forall i \in N \text{ and } \forall T \subseteq N \setminus \{i\}, & T \neq \emptyset \end{aligned}$$

- First, we consider the set of weights $(w'_1, ..., w'_n)$ such that $w'_1 f_1(x) = ... = w'_n f_n(x)$
- If there is not any compatible capacity then we use the Nelder-Mead method [Nelder & Mead 1965]

Comparing NEMO-I-L and NEMO-II-L (ZDT1-2D)

- Complexity: O(n) instead of O(n²)
- Similar convergence

Why NEMO-II-Ch? (DTLZ1-5D)

- DM compares two n-d solutions in the same front every 10 iterations
- It is better to start with the simplest model (the linear one);
- Passing to the 2-additive Choquet integral preference model produces better results than passing to the complete Choquet integral model;
- In NEMO-II-Ch interactions between pairs of criteria are considered.

Experimental setup

- ZDT1 and ZDT2 test functions on 2D;
- DTLZ1 and DLTZ2 test functions on 3D and 5D;
- User preferences according to Chebyshev with different weights;
- Comparisons with
 - NSGA-II,
 - NEMO-II-L,
 - NEMO-II-PL2,
 - NEMO-II-Ch,
 - EA-UVF.
- Results averaged over 50 replications.

ZDT2

$$f_{1} = x_{1}$$

$$f_{2} = g(\vec{x}) \cdot \left[1.0 - (x_{1}/g(\vec{x}))^{2}\right]$$

$$g(\vec{x}) = 1 + \frac{9}{n-1} \left(\sum_{i=2}^{n} x_{i}\right)$$

$$0 \le x_{i} \le 1, i = 1, \dots, n$$

Pareto front

Results on ZDT2

	ZDT2			<i>w</i> ₁	<i>w</i> ₂
NSGA-II	middle 199.96 ± 2.02 221.24 ± 2.21	extreme 255.08 ± 4.67 252.23 ± 3.47	ZDT2-2D Cheb. (middle)	0.6	0.4
NEMO-II-PL2 NEMO-II-G	221.24 ± 2.51 205.17 ± 1.40 199.99 ± 1.08	252.25 ± 5.47 254.36 ± 3.79 252.38 ± 2.48	ZDT2-2D Cheb.	0.15	0.85
NEMO-II-Ch	$\textbf{189.55} \pm 1.61$	$\textbf{225.27} \pm \textbf{4.56}$	(extreme)		

- NEMO-II-L does not converge to the correct point
- NSGA-II and NEMO-II-G converge more slowly than NEMO-II-Ch

ZDT2

Value function of an artificial user: weighted Chebyshev metric

ZDT2

Value function of an artificial user: weighted Chebyshev metric

Results on DTLZ1-3D

	D	71		<i>w</i> ₁	<i>w</i> ₂	<i>w</i> ₃
NSGA-II	middle 334.78± 9.64	extreme 291.66 \pm 7.93	DTLZ1-3D Cheb.	0.3	0.4	0.3
NEMO-II-L	457.72 ± 16.57	395.34 ± 11.53	(middle)			
NEMO-II-PL2	446.30±12.74	361.94 ± 9.14	DTLZ1-3D Cheb.	0.2	0.3	0.5
NEMO-II-G NEMO-II-Ch	301.49 ± 11.56	439.64 ± 10.40 260.68 \pm 9.96	(extreme)			

- NEMO-II-Ch is able to get very close to the correct point
- NSGA-II converges significantly slower
- NEMO-II-L and NEMO-II-PL2 show erratic behaviour

Results on DTLZ1-5D

	<i>w</i> ₁	<i>w</i> ₂	<i>w</i> ₃	<i>w</i> ₄	w ₅
DTLZ1-5D Cheb. (extreme 1)	0.1	0.15	0.2	0.25	0.3
DTLZ1-5D Cheb. (extreme 2)	0.3	0.25	0.2	0.15	0.1

	DTLZ1		
	extreme 1	extreme 2	
NSGA-II	1746.86 ± 70.29	548.00 ± 50.35	-
NEMO-II-L	560.19 ± 30.33	218.49 ± 40.64	
NEMO-II-PL2	586.27 ± 22.49	299.10 ± 21.89	•
NEMO-II-G	8569.95 ± 40.16	7531.91 ± 38.14	
NEMO-II-Ch	202.53 ± 9.62	204.83 ± 8.39	•

NEMO-II-Ch obtains much better results

than any of the other methods

- NSGA-II performs quite poorly
- NEMO-II-L and NEMO-II-PL2 show again

a very erratic behaviour

Conclusions

- Preference model needs to be chosen carefully
 - Too simple -> unable to capture user's preferences
 - Too flexible -> unable to generalize, slow to learn
 - Idea: start simple, increase complexity once unable to capture user's preferences
- Various models are used in literature, often without deep reflexion
- NEMO framework
 - NEMO-0: learn a single preference function -> complete order based on a sensible idea
 - NEMO-I: pairwise necessary preference relations
 - NEMO-II: compatible value function that prefers a given solution
- Choquet integral is a useful preference model, able to capture interactions
- NEMO-II-Ch is an adaptive interactive EMO algorithm

Discussion

* This work has been partly funded by the Programma Operativo Nazionale Ricerca & Competitività 2007-2013 within the project PON04a2 E SINERGREEN-RES-NOVAE