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Outline

= Interactive Multiobjective Optimization

m Learning user’s preferences from user-machine
Interactions

= Preference learning in EMO
= The NEMO framework

= The NEMO-I1-Ch method

m Some empirical results

m Conclusions



Multiobjective Optimization & EMO
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Interactive optimization

= DM looks at intermediate results from optimization
= DM provides preference information

m Optimizer uses DM’s preferences to focus the search on most
promising solutions

Decision -
Maker Preference information JRRRErence
(user) _engine

INn successive iterations
the user learns &
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What and from what information the model (machine) can learn ?

®= Model learning is a concept which underlines an evolution of
the model in view of facts observed through sensors in an
external world

= A model is implemented as a computer program on
a machine, hence the term machine learning is often used
instead of model learning

= Machine, or model, learning is the ability of
a computer program to improve its performance
by learning from data

= The model relates an output (preference structure) with an
iInput (preference information), either analytically, using a
function, or logically, using decision rules or trees



Learning user’s preferences from user-machine interactions

m Preference learning is about inducing predictive preference
models from empirical data (falls into a broad term of regression)

m Constructive preference learning in MCDA, versus stochastic
preference learning in Machine Learning
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Interactive optimization with Robust Ordinal Regression

= Ordinal regression paradigm emphasizes the discovery of

Intentions as an interpretation of actions rather than as a priori

position (disaggregation approach)

constructive learning

= Results are robust,
because they take
Into account partial
preference information

Robust Ordinal Regression in a loop: preference elicitation with

Decision Preference
maker *mmion
Preference
Robustness model
analysis

Set of compatible
preference model

arameters
Necessary and P

possible results
(ranking, sorting)




Interactive optimization with Robust Ordinal Regression

Input

Pairwise comparisons
of solutions

Best (or worst) solution
out of a set

Ranking of several
solutions

Ordinal or cardinal
Intensity of preference
for pairs of solutions

Sorting of solutions into
quality classes

Output

Value function
Outranking relation
Artificial neural network
Decision rules

Decision trees



How complex should the model be?

= Model too simple
=) Nnot able to represent user’s preferences

_ °."0 o Y
= Example: linear model unable to capture &

preference information

= Model too complex/flexible
=) NOo generalization power, all solutions enter only one front,
takes very long to learn all the parameters

= Example: Dominance relation, general additive model with
monotonic marginal value functions

»-Everything should be made as simple as possible
— but not simpler” [Albert Einstein]
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Preference information and model complexity

Possibly no fully

compatible model
Fully specified model

1. Discard preference
iInformation

2. Find a model with
minimal error

Many compatible value functions

Preference information

1. Pick ,representative” value function
2. Consider all compatible
value functions

Model complexity
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Many compatible value functions

1. Pick a ,,representative” value function

s Most discriminative
(for reference solutions or for the necessary relation)

= Minimize bends
= Maximize total utility
2. Consider all compatible value functions
= EMO can naturally deal with incomparability

= Necessary and possible preference relations



The NEMO framework [Branke, Greco, Stowinski, Zielniewicz 2009,
2010, 2014] [Branke, Corrente, Greco, Stowinski, Zielniewicz 2014]

= NEMO integrates ROR into NSGA-II
® ROR implemented in
m UTACMS [Greco, Mousseau, Stowinski 2009]
m GRIP [Figueira, Greco, Stowinski 2009]
m Preference model:
= Additive value function U(a)= > ulfi(a)]
= Monotonic marginal value functions u;

m Necessary preference relation or representative value function
IS used to rank solutions in the current population

m No scaling of objectives is necessary — NEMO handles
heterogeneous objectives



The NEMO framework [Branke, Greco, Stowinski, Zielniewicz 2014]

m Integrates Robust Ordinal Regression into EMO
= NEMO-0
m Learn a ,representative” value function

m Use ,representative” value function to rank individuals
with the same Pareto rank
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NEMO-0: a single compatible value function is used
to rank solutions in the population

Every q iterations the DM elicits preferences by comparing
pairwise some non-dominated solutions in the current

population

Determine the dominance ranking (partial order of solutions
obtained by iterative removing of a non-dominated front)

Within each non-dominated front, rank individuals according to

a representative value function

Different representative value functions:
= MDVF: Most Discriminative Value Function
s MSCVF: Min Slope Change Value Function

= MSVF: Max Sum of Value Function Scores (total utility)



The NEMO framework [Branke, Greco, Stowinski, Zielniewicz 2014]

m Integrates Robust Ordinal Regression into EMO
= NEMO-0

m Learn a ,representative” value function

m Use ,representative” value function to rank individuals
with the same Pareto rank

= NEMO-I [Branke, Greco, Stowinski, Zielniewicz 2009, 2010]

= Replaces dominance relation by pairwise necessary preference
relation

= O(n?) LPs to solve

16



NEMO-I:
the whole set of compatible value functions is considered

m The dominance relation used in NSGA-II to rank solutions is

replaced by the necessary preference relation of robust ordinal

regression —_—  —
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m A representative value function is used in the crowding distance:

CD(x) =31, iy - ui(z) = uly*)-ulz")

where U is a representative value function, u; are its marginal
value functions, y*, zX are left and right neighbors of x wrt u,
and y*, zX are vectors composed of y*, zX, respectively




NEMO-I:
the whole set of compatible value functions is considered

@ The dominance relation used in NSGA-II to rank solutions is

replaced by the necessary preference relation of robust ordinal

regression

‘_

O(n?) LPs to solve in every iteration

® -0 | o] —
= A representative value function is used in the crowding distance:
CD(x) = 31, | u () - usz) - uly>)-ulz)

where U is a representative value function, u; are its marginal
value functions, y*, zX are left and right neighbors of x wrt u,
and y*, zX are vectors composed of y*, zX, respectively




The NEMO framework [Branke, Greco, Stowinski, Zielniewicz 2014]

m Integrates Robust Ordinal Regression into EMO

= NEMO-0O

m Learn a ,representative” value function

m Use ,representative” value function to rank individuals

with the same Pareto rank

= NEMO-I [Branke, Greco, Stowinski, Zielniewicz 2009, 2010]

= Replaces dominance relation by pairwise necessary preference

relation
= O(n?) LPs to solve
. NEMO-II

= A solution is ,,possibly preferred” if
there is a compatible value function
that would prefer this solution
over all others

= Only O(n) LPs to solve

Never preferred

O ‘/under

NEMO-II-linear
()
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Approaches to learning a single preference function

m Phelps&Koboksalan [2003]
f(x)=ax,%+bx,?, most discriminative
m Deb, Sinha, Korhonen, Wallenius [2010]

Polynomial value function model, most discriminative

m Todd and Sen [1999]

Artificial Neural Network

m Battiti and Passerini [2010]
Support Vector Machine (with cross-validation to determine

most appropriate kernel)

m Branke, Greco, Stowinski and Zielniewicz [2014]

Additive monotonic value function, maximum total utility



Approaches to learning a set of preference functions

m Jaszkiewicz [2007]
Set of compatible linear preference functions, samples one in
each generation

m Greenwood, Hu and D’Ambrosio [1997]
Linear preference model, necessarily dominated solutions are
considered inferior (equivalent to NEMO-I with linear preference
model)

-

m Fowler et al [2010]
Quasi concave value functions

Objective 2

m Branke, Greco, Stowinski
and Zielniewicz [2009,2010]
NEMO-I with piecewise-linear and
additive monotonic preference

model

Objective 1
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Recent work: NEMO-II1-Choquet

m Use Choquet integral as preference model
s Well-accepted model in decision theory
= Allows to model interaction between objectives

=  Adapt complexity of preference model to complexity of preferences
s Start with linear model

s Switch to 2-additive Choquet once no linear compatible value
function can be found

22



Choquet integral (1)

The Choquet integral [Choquet 1954] substitutes the usual
weighted sum by a weight for each subset of the criteria, e.g.:

= n(9)=0,

m u({Mathematics})= u({Physics})= 0.45,

= u({Literature})=0.3,

= u({Mathematics, Physics})=0.5,

= u({Mathematics, Literature})=u({Physics, Literature})=0.9,
= u({Mathematics, Physics, Literature})=1.

This permits to take into account the synergy between criteria



Choquet integral (2)

= It is based on capacity u defined over set N={1,2,...,n} of criteria:

N
u:2 - [O ,1]
> Monotonicity condition:

w(S)<u(), vS,T: ScT(cN)

» Boundary condition:

w(@)=0, u(N)=1



Choquet integral (3)

Given n evaluations (gain-type) f,,..., f, with . >0, Vi=1,..., n,

the Choquet integral of (f;,..., f.) is computed as follows:

ch,(fy,...,f,) = ;(f(i) ~fi_p)) ulFi))
where:
fo) =0,
(-) index permutation: f, ,, <f,, i=1,...,n



Additive vs. non-additive aggregation

m Instead of weights w; for each objective f,eF in a weighted sum:

u(F’) — joint weight of criteria from a subset F'cF

C TR

2F — [0, 1] — non-additive measure (capacity):

n()=0, n(F)=1

for F’cF'cF, u(F”) < u(F)

in general, u(F’uU F’) = w(F”) + u(F)

positive interaction (synergy): uw(F’u F) = w(F”) + u(F)

negative interaction (redundancy): w(F’u F) < u(F”) + u(F’)



Weighted sum vs. discrete Choquet integral

A
1 4

hl.

@ @ " Y@

Weighted sum:

U(a) = in:1 ki f:(a) = Zinzl u({fi ) fi (@)



Weighted sum vs. discrete Choquet integral

A A
1+ 1+
A
I n({fs})
A
B B wnwy
X
I I I i“({fl’fz’fs})
L nfL T f )
o) > 0 VAR
h® @ P @ @ P
Weighted sum: Choquet integral:

U(a) = in:1 ki fi(a) = Zinzl u({fi ) fi (@) U(a) = Zinzl u(F;) (f(i)(a) — i) (a))

where (y Is a permutation of {1,...,n}, such that 0<f;,(a)<f,,(a)<..<f (a),

F={fa- Tk T0y=0; fa@=<h(@<f(a)<f:(a) » (1)=4, (2)=2, (3)=1, (4)=3
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Choquet integral (4)

= By considering the MObius representation of 2-additive capacity J:

=>m({if)+ > m({i,j}). VT =N,

1eT | j CT
> monotonicity:

m({i}) > 0, Vi e N,
m({i}) + ;m({i,j})z 0, VieN, and VT c N\ {i}, T @
> normalization:
m(J) =0, ZNm { ;Ln({i,j%1
> we get: o



A particular case of the Choquet integral: n=2

If n=2, then...
Ch, (f,.f,) = m(i1)) f, + m({2}) f, + m({L,2)) min{f, ,f,} =

{( m({L)+ m(L.2))) f; + m(2)f, iff, <f,
(@) fy + (M(2) + m(L,2))) f, iffy =1

1

2))

N~ | ~—
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The Choquet integral isoquants (‘wings')




Graphical interpretation




Scaling of objectives




Isoquants of the Choquet integral for two criteria — special cases

= Weighted sum (linear additive) — no interaction

l] p—————————— e m e m e — e —m e e ——————,
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Isoquants of the Choquet integral for two criteria — special cases

-~-~--

@
1

H({fl }) - H({fl }) =0.5

(o] SR W—
v

0

U(a) =k fy(a)+kyfp)(@) = @ -l )) foy (@) + (i) fiz)(@) = c,
with u(lf, ) = u(lf,}) and u({f.ff)=1
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Isoquants of the Choquet integral for two criteria — special cases

= Min — maximum negative interaction (redundancy)

1

O
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Isoquants of the Choquet integral for two criteria — special cases

= Max — maximum positive interaction (synergy)

F 3
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Isoquants of the Choquet integral for two criteria — special cases

m 2-additive Choquet — positive interaction (synergy)

A

l] p———————————————e—-

0

>
0 lo. 1

U(a) = n(ify)) fi (@) + nllf ) o (a) + [u(ify. £ 1) - n(if, ) - n(ifz )] minif, (a). £, (a)} = c

positive interaction when p({f;,f,}) > u({f,}) + n({f,})



Isoquants of the Choquet integral for two criteria — special cases

m 2-additive Choquet — positive interaction (synergy)

A
1l ~————r————————m—————————————- :
|
1
i
a |
I
;
i
0 - |
g e a
i E greater
: | capacity=weight
! i of f,
: ) than before
0 : i>
0 o 1

U(a) = p(ify)) f(@) + u(if, ) £ (@) + [uify. £ ) - n(lf f) - n(lf )l minif, (). f,(a)) > ¢

positive interaction when p({f,,f,}) > n({f,}) + (i, })



Isoquants of the Choquet integral for two criteria — special cases

m 2-additive Choquet — negative interaction (redundancy)

A
I I it S ;
1 1
1 1
1 1
D : :
1 1
: :
;
1
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:
]
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0 >
0 C 1

U(a) = u(ify)) fi (@) + nllfs ) 5 (a) + [u(ify. £ 1) - p(if, ) - n(ifz )] minif, (a). £, (a)} = c

negative interaction when u({f;,f,}) < u({f,}) + p(f,})



NEMO-I1-Ch main points

= Start with the linear value function as preference model

m Ask every q iterations DM’s preferences by comparing
two non-dominated solutions

m Order the solutions by checking if there exists at least
one compatible model for which x is preferred to all other
solutions

= Within the same front order the solutions with respect to
the crowding distance

m Switch to the 2-additive Choquet integral preference
model as soon as the linear model is not able to
represent the preferences of the DM anymore



Checking if there exists a model compatible with the DM’s
preferences for which x is preferred to all other solutions

maxe, S.t.
Ch,(w,f, (b),...,w,f, (b)) - Ch, (W, f (a),...,w,f(a))+e <0, ifa>-b
Ch, W, fy (y),....w,f.(y)) - Ch, (wyfy (X),...,w,f (X)) + £ <0, VyeA\ X

m(2) = 0, Zm({i})+__ m({i,j})=1, m({i})>0, VieN

ieN {I,J}QN

m({if)+ > m(li,jj)>0, VieN and VT = N\{i}, T #Q

jeT
» First, we consider the set of weights (w’,,...,w’,) such that
W'y F,00=.. =W, F(X)

 If there is not any compatible capacity then we use
the Nelder-Mead method [Nelder & Mead 1965]



Comparing NEMO-I-L and NEMO-II-L (ZDT1-2D)

250
-NEMO-I-L
) & NEMO-II-L
: Cptimum
g 25
g
=
2
-1}
o
=
& 25

0.25

0 20 40 i a0 104 120 140 160 180 200
Generations

 Complexity: O(n) instead of O(n?)

e Similar convergence



Why NEMO-I1-Ch? (DTLZ1-5D)

Convergence indicator

10

0.1

0.01

-0-NEMO-II-Ch

-&~NEMO-II-L

—+—2-additive Choquet from the beginning
-=—NEMO-II-L then Choquet all variables
---EA-UVF
—Optimum

0 50 100 150 200 250 300 350 400 450 500 550 600
Generations

DM compares two n-d solutions in the same front every 10 iterations
It is better to start with the simplest model (the linear one);

Passing to the 2-additive Choquet integral preference model produces
better results than passing to the complete Choquet integral model;
In NEMO-I1-Ch interactions between pairs of criteria are considered.



Experimental setup

m ZDT1 and ZDT2 test functions on 2D;
m DTLZ1 and DLTZ2 test functions on 3D and 5D;

m User preferences according to Chebyshev with different
weights;

= Comparisons with
o NSGA-II,
o NEMO-II-L,
o NEMO-I11-PL2,
o NEMO-I11-Ch,
o EA-UVF.

m Results averaged over 50 replications.



ZDT2

h=z

fo=g(%) - [1-0 — (z1/9(

—ia Pareto front
z))’]

g(z) =1+ i (Zﬂia) Ty =1- If

n-—1 —r
D=z sle=1....n :
0.75
=" 05
0.25
0

0 02505075 1
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Results on ZDT2

430 I e 10  NSGAZ
i R T Nemoh
i e e
ZDT2 Wi w;
middle extreme
NSGAI 9006 =202 5508 T 47| 2P 12-2D Cheb. 0.6 0.4

NEMO-II-L | 221.24 + 231 25223 + 3.47 | (middle)

NEMO-II-PL2 | 205.17 + 1.40 25436 + 3.79

NEMO-ILG | 19999 = 108 25238 + 248 | £DT2-2D Cheb. 0.15 0.85

NEMO-II-Ch | 189.55 + 1.61 22527 + 4.56 | (extreme)

« NEMO-II-L does not converge to the correct point
« NSGA-II and NEMO-I11-G converge more slowly than NEMO-I1-Ch



ZDT2

Value function of an artificial user:

weighted Chebyshev metric

1.25

1.00 =

0.75

m NEMO-II-Ch after 50 gen

A NEMO-II-Ch after 100 gen
® NEMO-II-Ch after 200 gen
a NSGA-II after 200 gen

0.50 :
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/ : o
" o
/| ! _
0.25 : 3
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0.00 ! =)
0.00 0.20 0.40 0.60 0.80 1.00




ZDT?2 Value function of an artificial user:
weighted Chebyshev metric

1.25
m NEMO-II-Ch after 50 gen
A NEMO-II-Ch after 100 gen
1.00 B8 —og X ® NEMO-II-Ch after 200 gen
“a._ o NSGA-II after 200 gen
o
0.75 " o
I:Iq:m.
0.50 B5
o
. B
a
0.25
""""""""""""""""" S |
e I
| — I
0.00 "
0.00 0.20 0.40 0.60 0.80 1.00
fl




Minimize F = (f;(T), f2(Z), fa(£)). where

DTLZ1-3D s | s

g(£) =100[10 + > (z: — 0.5)
— cos(207(z; — 0.5)))].

Pareto front

Function 3




Results on DTLZ1-3D

35

35 [i

Convergence indicator

+-NSGA2

---EA-UVF

=&~NEMO-II-L
-~NEMO-II-PL2
-=-NEMO-II-G
-0-NEMO-II-Ch

—Optimum

35

Convergence indicator

0.35

+—NSGA2
-4-NEMO-II-L
-~ NEMO-II-PL2
-=-NEMO-II-G
~0-NEMO-II-Ch
---EA-UVF

—Optimum

_ 350 400 450 500 550 600 0 50 100 150 350 400 450 500 550
W1 Wo W3
DTLZ1
middle extreme DTLZ1-3D Cheb. 0.3 0.4 0.3
NSGAI 33478E 0.64  201.66 £ 7.03 :
NEMOJLL | 45772 = 1657 39534+ 1153 | (middle)
NEMO-II-PL2 | 446301274  361.94 + 9.14 _
NEMO-I-G | 562.98 &+ 13.34  439.64 + 10.40 DTLZ1-3D Cheb. 0.210.310.5
NEMO-I-Ch | 301.49 = 11.56  260.68 = 996 | (€Xtreme)
« NEMO-II-Ch is able to get very close to the correct point
« NSGA-II converges significantly slower
« NEMO-II-L and NEMO-I1-PL2 show erratic behaviour




Convergence indicator

Results on DTLZ1-5D

o S Thewoicn | 0% v
e Commm | 3 RN T  optimum
I
0.1 V b 0.1 A :
b o VOPORY B SR i < S OOy
e eesas00as000aonsessssnsosone T 2RReoso00000000000000000000000000000
W1 Wy w3 Wy Ws
DTLZ1-5D Cheb. (extreme 1) | 0.1 0.15 0.2 0.25 0.3
DTLZ1-5D Cheb. (extreme 2) | 0.3 0.25 0.2 0.15 0.1
DTLZI e NEMO-I1-Ch obtains much better results
extreme 1 extreme 2
NSGA-T | 174686 £7029 548.00 £ 30.33 than any of the other methods
NEMO-II-L | 560.19 +30.33 21849 + 40.64 _
NEMO-II-PL2 | 58627 +2249 299.10+21.89 * NSGA-II performs quite poorly
NEMO-II-G | 8569.95 +40.16  7531.91 £ 38.14 _
NEMOLCh | 20253 +962 20483 =839 ° NEMO-II-L and NEMO-I1-PL2 show again

a very erratic behaviour



Conclusions

Preference model needs to be chosen carefully
m Too simple -> unable to capture user’s preferences
m Too flexible -> unable to generalize, slow to learn

m ldea: start simple, increase complexity once unable to capture
user’s preferences

Various models are used in literature, often without deep reflexion

NEMO framework

s NEMO-O: learn a single preference function -> complete order
based on a sensible idea

= NEMO-I: pairwise necessary preference relations
= NEMO-II: compatible value function that prefers a given solution

Choquet integral is a useful preference model, able to capture
Interactions

NEMO-I11-Ch is an adaptive interactive EMO algorithm



Discussion

* This work has been partly funded by the Programma Operativo Nazionale Ricerca

& Competitivita 2007-2013 within the project PONO4a2 E SINERGREEN-RES-NOVAE
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