Portsmouth

Are inconsistent decision better?
 An interactive experiment with pairwise comparisons

Portsmouth Business School
Richmond Building
Portland Street
PO1 3DE
Alessio Ishizaka
Kyriacos Antoniades

Which fruit do you prefer?

Which fruit do you prefer?

Is this inconsistency possible?

Comparison matrix

1	a_{12}		
a_{21}	1		$a_{i j}$
		1	
	$1 / a_{i j}$		1

$$
\mathrm{CI}=\frac{\lambda_{\max }-n}{n-1}
$$

where $\lambda_{\text {max }}$ is the maximal eigenvalue n is the dimension of the matrix

Consistency Ratio

- $\mathrm{CR}=\mathrm{CI} / \mathrm{RI}<10 \%$
where CR is the consistency ratio RI is the random index

Saaty (1977) calculated the following random indices:

n	3	4	5	6	7	8	9	10
RI	0.58	0.9	1.12	1.24	1.32	1.41	1.45	1.49

Critic: 10% is an arbitrary value

Inconsistent matrices are not better!

- 18 graduate students compare five different compact cars in global terms, and also in terms of their aesthetics
- When intransitivities are automatically removed, the preferences of decision makers are not better represented
- Linares, P. (2009). Are inconsistent decisions better? An experiment with pairwise comparisons. European Journal of Operational Research, 193(2), 492-498.

Why automatic correction does not work?

Gaul, W., \& Gastes, D. (2012). A note on consistency improvements of AHP paired comparison data. Advances in Data Analysis and Classification, 6(4), 289-302.

North Sea

How to travel to Gatwick airport?

coach

train

personal car

car sharing

taxi

Rankings produced for each participant

- Original Ranking (R_{o}), where the priorities are calculated by the eigenvector method without any inconsistency correction.
- Automatic Ranking $\left(\mathrm{R}_{\mathrm{A}}\right)$, where inconsistencies are corrected automatically using the goal programming method.
- Interactive Ranking (R_{t}), where the software indicates to the participant the most inconsistent pairwise comparison to the least one and invite her/him to change them.

Experimental procedure (1)

11. Thitedzedisiom problem is explained to the participant.
12. Theeparticicipanit paiifwise compares the five alternatives.
13. TheeConsistamcy Rattion, the Original Ranking and the Auttomatic Rankingy ane callcullated.
14. Iffthecomsisttemcy natiio iis raceptiable, i.e. below 10%, the expeanimmemitt thenminattes ottherrwevise the consistency error of of eardhprivinuise comparison, is callculated with (Salatys 2003):

$$
\varepsilon_{i j}=\max \left(a_{i j} * \frac{p_{j}}{p_{i}}, a_{j i} * \frac{p_{i}}{p_{j}}\right)
$$

Experimental procedure (2)

55. Puossibititity to revise the most inconsistemt companibson, iie..thee cormpraniisom wriith the highest $\varepsilon_{i j}$.
Iffthery declline, they are asked if they want tor rewisee theeneext mostt iimcomsistent comparison.
WWherm theyy rewise, the process restarts firom poiimt 4 untillttlee imoomsistency falls below 10\% or the particicipantt hrass considered alll entries:
56. The ffinall Interaetive Ranking is calcullated.
57. The participant is asked whien of the three rankingss (withoutt knowing how they have been ealeuhated representes their preference:

Results: problem order influence

- Sixty-two participants.
- The first thirty-one participants solved the problem with the subjective criterion first and then the problem with the objective criterion.
- The next thirty-one participants solved the problems in the reverse order.
- Both samples produced statistically identical outcomes.
- Order did not have any influence on the results

Consistency improvement with the interactive method

	Final matrix with improved consistency	Final matrix consistency improved not improved
Problem with subjective criterion	39	0
Problem with objective criterion	34	0

In 100% of the cases, the interactive method improved the consistency.

Alternatives ranking

Original City	Interactive Ranking	Automatic Ranking	Normalised true distance	
Cardifif	0.186 ± 0.069	0.190 ± 0.069	0.226 ± 0.081	0.162
London	0.260 ± 0.053	0.261 ± 0.053	0.267 ± 0.058	0.267
Edinburgh	0.046 ± 0.040	0.046 ± 0.041	0.068 ± 0.056	0.022
Southampton	0.423 ± 0.104	0.419 ± 0.093	0.338 ± 0.087	0.471
Liverpool	0.085 ± 0.033	0.084 ± 0.032	0.101 ± 0.036	0.078

- All three rankings ordered the distance of the cities to Portsmouth correctly.

Error between estimated and true distances

City	\|Original priority -true distance	\|Interactive priority true distance	\|Automatic priority - true distance
Cardiff	0.087	0.082	0.140
London	0.057	0.058	0.089
Edinburgh	0.042	0.040	0.048
Southampton	0.024	0.024	0.046
Liverpool	0.023	0.022	0.029

- The automatic ranking is furthest from the true distance.
- The original and interactive priorities are very close, which makes the effort to improve the consistency questionable, if the final result does not improve.

Priorities of transport selection

City	Original priority	Interactive priority	Automatic priority
Train	0.187 ± 0.131	0.190 ± 0.132	0.183 ± 0.123
Coach	0.121 ± 0.104	0.127 ± 0.099	0.131 ± 0.098
Taxi	0.179 ± 0.142	0.173 ± 0.145	0.167 ± 0.133
Car sharing	0.176 ± 0.134	0.181 ± 0.137	0.161 ± 0.105
Own car	0.337 ± 0.219	0.214 ± 0.230	0.357 ± 0.229

- The priorities of the subjective problems were more dispersed, i.e. the standard deviation was higher .
- The "own car" alternative was by far the most preferred transportation mode in the original and interactive ranking. This clear preference for 'own car' was faded in the interactive ranking.

Participants' preferred ranking for the subjective problem

Note. $\mathrm{x} 2=0.95$, degree of freedom $=2$, significance threshold $\mathrm{p}>.05$
A Chi-square test confirms that the frequencies of participants' preferences were equally distributed

Participants' preferred ranking for the objective problem

| | Participants' preference of rankings | | |
| :--- | :---: | :---: | :---: | :---: | :---: |
| | Interactive | Automatic | Original |

Note. $\chi 2=8.7$, degree of freedom $=2$, significance threshold $\mathrm{p}>.05$

- A Chi-square test confirmed that the frequency of the participants' preferences were not equally distributed.
- If the automatic ranking is ignored, there is no significant difference between the original and interactive ranking with a Chi-square test.

Closest ranking to the true value

	Rankings closest to the true value					
	Interactive	Automatic	Original			
Observed Frequency	6	7	18			
Expected				Theadie		
	- 1	Feren 0 ,	prameit	6	7	18
Frequency (proportion)				105](3)	${ }_{103}^{103}$ (3)	1031 (3)

Note. $\chi 2=8.71$, degree of freedom $=2$, significance threshold $p>.05$

- A Chi-square test confirmed that the frequency of the participants' preferences were not equally distributed.
- If the automatic ranking is ignored, there is no significant difference between the original and interactive ranking with a Chi-square test.

Conclusions:

- Consistency improvement:
- The interactive and automatic methods improved consistencies in pairwise comparisons
] Revisions are in agreement with the best fit for the pairwise comparison
- Representation of ranking :
- Interactive approach does not better represent participants' preferences
] The original ranking is closest to the true value in the objective problem
- The difference between the priorities of the original and interactive ranking were found to be very small

Main Conclusion

The effort to reduceinconsistencies using theinteractive approach isquestionable.
Dr Alessio Ishizaka
Reader in Decision Analysis
University of Portsmouth
Portmsouth Business School
Richmond Building
PO1 3DE Portsmouth
United Kingdom
Alessio.Ishizaka@port.ac.uk

Thank you!

