

Operations and Systems Management

Are inconsistent decision better? An interactive experiment with pairwise comparisons

Portsmouth Business School

Richmond Building Portland Street PO1 3DE

Alessio Ishizaka Kyriacos Antoniades

Which fruit do you prefer?

Which fruit do you prefer?

Is this inconsistency possible?

Comparison matrix

1	<i>a</i> ₁₂		
<i>a</i> ₂₁	1		a _{ij}
		1	
	1/a _{ij}		1

$$\mathrm{CI} = \frac{\lambda_{\max} - n}{n - 1}$$

where λ_{max} is the maximal eigenvalue n is the dimension of the matrix

Consistency Ratio

• CR = CI/RI < 10%

where CR is the consistency ratio RI is the random index

Saaty (1977) calculated the following random indices:

n	3	4	5	6	7	8	9	10
RI	0.58	0.9	1.12	1.24	1.32	1.41	1.45	1.49

<u>Critic</u>: 10% is an arbitrary value

Inconsistent matrices are not better!

- 18 graduate students compare five different compact cars in global terms, and also in terms of their aesthetics
- When intransitivities are automatically removed, the preferences of decision makers are not better represented
- Linares, P. (2009). Are inconsistent decisions better? An experiment with pairwise comparisons. European Journal of Operational Research, 193(2), 492-498.

Why automatic correction does not work?

Gaul, W., & Gastes, D. (2012). A note on consistency improvements of AHP paired comparison data. Advances in Data Analysis and Classification, 6(4), 289-302.

University of Portsmouth

University of Portsmouth

41

How to travel to Gatwick airport?

coach

train

personal car

car sharing

taxi

Rankings produced for each participant

- *Original Ranking* (R₀), where the priorities are calculated by the eigenvector method without any inconsistency correction.
- *Automatic Ranking* (R_A), where inconsistencies are corrected automatically using the goal programming method.
- *Interactive Ranking* (R_I), where the software indicates to the participant the most inconsistent pairwise comparison to the least one and invite her/him to change them.

Operations and Systems Management

Experimental procedure (1)

- 11. The decision problem is explained to the participant.
- 2. The panticipant pairwise compares the five alternatives.
- 3. The **Consistency Ratio**, the **Original Ranking** and the **Automatic Ranking** are calculated.
- 44. If the consistency natio is acceptable, i.e. below 10%, the experiment terminates otherwise the consistency error of of each pairwise comparison, is calculated with (Saaty, 2003):

$$\varepsilon_{ij} = \max\left(a_{ij} * \frac{p_j}{p_i}, a_{ji} * \frac{p_i}{p_j}\right)$$

Experimental procedure (2)

5. Possibility to revise the most inconsistent comparison, i.e. the comparison with the highest ε_{ij} .

If they decline, they are asked if they want to revise the next most inconsistent comparison.

When they revise, the process restarts from point 4 until the inconsistency falls below 10% or the participant has considered all entries.

- 6. The final Interactive Ranking is calculated.
- 7. The participant is asked which of the three rankings (without knowing how they have been calculated) represents their preference:

Results: problem order influence

- Sixty-two participants.
 - The first thirty-one participants solved the problem with the subjective criterion first and then the problem with the objective criterion.
 - The next thirty-one participants solved the problems in the reverse order.
- Both samples produced statistically identical outcomes.
 - Order did not have any influence on the results

Consistency improvement with the interactive method

	Final matrix with improved consistency	Final matrix consistency improved not improved
Problem with subjective criterion	39	0
Problem with objective criterion	34	0

In 100% of the cases, the interactive method improved the consistency.

Alternatives ranking

City	Original Ranking	Interactive Ranking	Automatic Ranking	Normalised true distance
Cardiff	0.186 ± 0.069	0.190 ± 0.069	0.226 ± 0.081	0.162
London	0.260 ± 0.053	0.261 ± 0.053	0.267 ± 0.058	0.267
Edinburgh	0.046 ± 0.040	0.046 ± 0.041	0.068 ± 0.056	0.022
Southampton	0.423 ± 0.104	0.419 ± 0.093	0.338 ± 0.087	0.471
Liverpool	0.085 ± 0.033	0.084 ± 0.032	0.101 ± 0.036	0.078

• All three rankings ordered the distance of the cities to Portsmouth correctly.

Error between estimated and true distances

City	Original priority -true distance	Interactive priority - true distance	Automatic priority - true distance
Cardiff	0.087	0.082	0.140
London	0.057	0.058	0.089
Edinburgh	0.042	0.040	0.048
Southampton	0.024	0.024	0.046
Liverpool	0.023	0.022	0.029

- The automatic ranking is furthest from the true distance.
- The original and interactive priorities are very close, which makes the effort to improve the consistency questionable, if the final result does not improve.

Priorities of transport selection

City	Original priority	Interactive priority	Automatic priority
Train	0.187 ± 0.131	0.190 ± 0.132	0.183 ± 0.123
Coach	0.121 ± 0.104	0.127 ± 0.099	0.131 ± 0.098
Taxi	0.179 ± 0.142	0.173 ± 0.145	0.167 ± 0.133
Car sharing	0.176 ± 0.134	0.181 ± 0.137	0.161 ± 0.105
Own car	0.337 ± 0.219	0.214 ± 0.230	0.357 ± 0.229

- The priorities of the subjective problems were more dispersed, i.e. the standard deviation was higher .
- The "own car" alternative was by far the most preferred transportation mode in the original and interactive ranking. This clear preference for 'own car' was faded in the interactive ranking.

Participants' preferred ranking for the subjective problem

		Participants' preference of rankings													
		Interactive					Automatic					Original			
Obser Frequ			1	.3			14					12			
			Particip	ants' preference	of rankings			Participa	nts' preference	of rankings			Participants' preference of rankings		
Expec	ted			Automatic	Original			Interactive	Automatic	Original			Interactive	Automatic	Original
Frequ	ency	Observed Frequency	13 12 (ā)	14	12		Observed Frequency	13	14	12		Observed Frequency	13	14	12
Note. $\chi^2 = 0.12$	ortion) , degree of	Expected Frequency Toropo (Ton)	ee(dor	n =	2,	(proportion)	<u>sni</u>	fica	nce	tł	requency (proportion)		$1 p^{13}$	· .05

A Chi-square test confirms that the frequencies of participants' preferences were equally distributed

Participants' preferred ranking for the objective problem

		P	art	icip	a	ants' preference of rankings										
	1	Interactive				Automatic					Original					
Observed Frequency		18				4					12					
		Partic	cipants' preferenc	e of rankings		Participants' preference of rankings					Particip	ants' preference	e of rankings			
Expected	Observe	Interactive	e Automatic	Original 12		Observed	Interactive 18	Automatic 4	Original 12		Observed	Interactive 18	Automatic 4	Original 12		
Note. $\chi^2 = \frac{(r_{x} - r_{z})}{8.71, degree}$	Frequer	ncy d 11.3 (.3)	11.3(3) dor	11.3 (3)	2	Frequency Expected	11.3 (.3)	11.3 (3) fica	11.3 (3)		Frequency Expected	11.3 (.3)	11.3 (3) 1 p >	^{11.3 (.3)} • .05		

- A Chi-square test confirmed that the frequency of the participants' preferences were not equally distributed.
- If the automatic ranking is ignored, there is no significant difference between the original and interactive ranking with a Chi-square test.

Closest ranking to the true value

		Rankings closest to the true value														
	In	Interactive				A	uto	mat	ic		Original					
Observed Frequency	6					7					18					
			gs closest to the			Rankings closest to the true value					Rankings closest to the true value					
Expected	Observed Frequency	Interactive 6	Automatic 7	Original 18		Observed Frequency	Interactive 6	Automatic 7	Original 18		Observed Frequency	Interactive 6	Automatic 7	Original 18		
Frequency (proportion)	Expected Frequency (proportion)	10.3 (.3)	10.3 (.3)	10.3 (.3)		Expected Frequency (proportion)	10.3 (.3)	10.3 (.3)	10.3 (.3)		Expected Frequency (proportion)	10.3 (.3)	10.3 (.3)	10.3 (.3)		

Note. χ 2 = 8.71, degree of freedom =2, significance threshold p > .05

- A Chi-square test confirmed that the frequency of the participants' preferences were not equally distributed.
- If the automatic ranking is ignored, there is no significant difference between the original and interactive ranking with a Chi-square test.

O University of Portsmouth

Operations and Systems Management

Conclusions:

Consistency improvement:

- **The interactive and automatic methods** *<u>improved</u> consistencies in pairwise comparisons*
- **Revisions** <u>*are in agreement*</u> with the best fit for the pairwise comparison
- **Representation of ranking :**
 - Interactive approach <u>does not</u> better represent participants' preferences
 - **The original ranking is <u>closest</u> to the true value in the objective problem**
 - **The difference between the priorities of the original and interactive ranking were found to be very small**

Operations and Systems Management

Main Conclusion

The effort to reduce inconsistencies using the interactive approach is questionable.

Dr Alessio Ishizaka Reader in Decision Analysis University of Portsmouth Portmsouth Business School Richmond Building PO1 3DE Portsmouth United Kingdom

Alessio.Ishizaka@port.ac.uk

Operations and Systems Management

Thank you!