Median preserving aggregation functions

Miguel Couceiro

LORIA

(CNRS, INRIA Nancy G.-E., Université de Lorraine)
Joint work with Jean-Luc Marichal and Bruno Teheux

Outline

I. Brief overview on aggregation theory :
I.1. Aggregation functions : motivation
I.2. An impossibility result : Arrow's theorem
II. Aggregation over median algebras :
II.1. Median algebras : motivation and examples
II.2. Conservative median algebras
II.3. Median preserving aggregation : An Arrow-like theorem

I. 1 Aggregation functions

Traditionally : an aggregation function is a mapping $F: X^{n} \rightarrow X$ s.t.

- X is a linear order with bottom 0 and top 1
- F preserves 0 and 1 and the order of X

Typical examples: Weighted means, Choquet and Sugeno integrals ...

Main Idea: Aggregation procedure
Application: Preforanco modelling (MCDA)

Main Problems

- Classify and axiomatise aggregation procedures
- Explicitly describe procedures with desired properties
- Computational aspects

I. 1 Aggregation functions

Traditionally : an aggregation function is a mapping $F: X^{n} \rightarrow X$ s.t.

- X is a linear order with bottom 0 and top 1
- F preserves 0 and 1 and the order of X

Typical examples: Weighted means, Choquet and Sugeno integrals ...

Main Idea : Aggregation procedure $x_{1}, \ldots, x_{n} \in X \quad \longrightarrow \quad F\left(x_{1}, \ldots, x_{n}\right) \in Y$
Application: Preference modelling (MCDA) ...

Main Problems :

- Classify and axiomatise aggregation procedures
- Explicitly describe procedures with desired properties
- Computational aspects

I. 1 Aggregation functions

Traditionally : an aggregation function is a mapping $F: X^{n} \rightarrow X$ s.t.

- X is a linear order with bottom 0 and top 1
- F preserves 0 and 1 and the order of X

Typical examples: Weighted means, Choquet and Sugeno integrals ...

Main Idea : Aggregation procedure $x_{1}, \ldots, x_{n} \in X \quad \longrightarrow \quad F\left(x_{1}, \ldots, x_{n}\right) \in Y$
Application : Preference modelling (MCDA) ...

Main Problems :

- Classify and axiomatise aggregation procedures
- Explicitly describe procedures with desired properties
- Computational aspects

I.2. An impossibility result : Arrow's theorem

Setting : Aggregation of rankings (social well-fare function)

- n voters, a set A of outcomes and the set of linear orderings $L(A)$
- $F: L(A)^{n} \rightarrow L(A)$ procedure that merges rankings R_{1}, \ldots, R_{n} into a single one

$$
R_{1}, \ldots, R_{n} \quad \Longrightarrow \quad R_{T}=F\left(R_{1}, \ldots, R_{n}\right)
$$

- Some reasonable properties in this setting

1. Unanimity or Pareto efficiency : if an b for all $i \in[n]$, then $a R_{T} b$
2. Independence of irrelevant alternatives : if a and b have the same order in R_{i} and S_{i} for all $i \in[n]$, then a and b have the same order in R_{T} and S_{T}
3. Non-dictatorship : There is no $i \in[n]$ s.t. for all $R_{1}, \ldots . R_{n} \in L(A)$

$$
F\left(R_{1}, \ldots, R_{n}\right)=R_{i}
$$

I.2. An impossibility result : Arrow's theorem

Setting : Aggregation of rankings (social well-fare function)

- n voters, a set A of outcomes and the set of linear orderings $L(A)$
- $F: L(A)^{n} \rightarrow L(A)$ procedure that merges rankings R_{1}, \ldots, R_{n} into a single one

$$
R_{1}, \ldots, R_{n} \quad \Longrightarrow \quad R_{T}=F\left(R_{1}, \ldots, R_{n}\right)
$$

- Some reasonable properties in this setting :

1. Unanimity or Pareto efficiency : if $a R_{i} b$ for all $i \in[n]$, then $a R_{T} b$
2. Independence of irrelevant alternatives: if a and b have the same order in R_{i} and S_{i} for all $i \in[n]$, then a and b have the same order in R_{T} and S_{T}
3. Non-dictatorship : There is no $i \in[n]$ s.t. for all $R_{1}, \ldots, R_{n} \in L(A)$

$$
F\left(R_{1}, \ldots, R_{n}\right)=R_{i}
$$

I.2. An impossibility result : Arrow's theorem

Setting : Aggregation of rankings (social well-fare function)

- n voters, a set A of outcomes and the set of linear orderings $L(A)$
- $F: L(A)^{n} \rightarrow L(A)$ procedure that merges rankings R_{1}, \ldots, R_{n} into a single one

$$
R_{1}, \ldots, R_{n} \quad \Longrightarrow \quad R_{T}=F\left(R_{1}, \ldots, R_{n}\right)
$$

- Some reasonable properties in this setting :

1. Unanimity or Pareto efficiency : if $a R_{i} b$ for all $i \in[n]$, then $a R_{T} b$
2. Independence of irrelevant alternatives: if a and b have the same order in R_{i} and S_{i} for all $i \in[n]$, then a and b have the same order in R_{T} and S_{T}
3. Non-dictatorship : There is no $i \in[n]$ s.t. for all $R_{1}, \ldots, R_{n} \in L(A)$

$$
F\left(R_{1}, \ldots, R_{n}\right)=R_{i}
$$

Arrow's Theorem : There is no well-fare function satisfing these conditions!

II.1. Median algebras : motivation

Median operations appear in several structures pertaining to decision making :

- Linear orders : "in betweeness"
- Distributive lattices : $\mathbf{m}(x, y, z)=(x \wedge y) \vee(y \wedge z) \vee(z \wedge x)$

Theorem : A function $f: X^{n} \rightarrow X$ is a lattice polynomial function (Sugeno integral) iff

$$
f(x)=m\left(f\left(x_{k}^{0}\right), x_{k}, f\left(x_{k}^{1}\right)\right) \quad \text { for every } x \in X^{n}, k \in[n]
$$

II.1. Median algebras : motivation

Median operations appear in several structures pertaining to decision making :

- Linear orders : "in betweeness"
- Distributive lattices : $\mathbf{m}(x, y, z)=(x \wedge y) \vee(y \wedge z) \vee(z \wedge x)$

Theorem : A function $f: X^{n} \rightarrow X$ is a lattice polynomial function (Sugeno integral) iff

$$
f(\mathbf{x})=\mathbf{m}\left(f\left(\mathbf{x}_{k}^{0}\right), x_{k}, f\left(\mathbf{x}_{k}^{1}\right)\right) \quad \text { for every } \mathbf{x} \in X^{n}, k \in[n]
$$

II.1. Median algebras : definition and examples

Median algebra: Structure $\mathbf{A}=(A, \mathbf{m})$ where $\mathbf{m}: A^{3} \rightarrow A$ (median) verifies

$$
\begin{gathered}
\mathbf{m}(x, x, y)=x \\
\mathbf{m}(x, y, z)=\mathbf{m}(y, x, z)=\mathbf{m}(y, z, x) \\
\mathbf{m}(\mathbf{m}(x, y, z), t, u)=\mathbf{m}(x, \mathbf{m}(y, t, u), \mathbf{m}(z, t, u))
\end{gathered}
$$

Other known median algebras :

- Median semilattices : For $a \in A$, set $x \leq_{a} y \Longleftrightarrow \mathbf{m}(a, x, y)=x$
- Median graphs: For all x, y, z, there is a unique w in the shortest paths

NB1 : Every median semilätice (with finite intervals) has a median Hasse diag.
NB2 : Every median graph is the Hasse diagram of a median semilattice

References : Barthélemy-Leclerc-Monjardet'86, Bandelt'83, Isbell'80, Avann'61

II.1. Median algebras : definition and examples

Median algebra: Structure $\mathbf{A}=(A, \mathbf{m})$ where $\mathbf{m}: A^{3} \rightarrow A$ (median) verifies

$$
\begin{gathered}
\mathbf{m}(x, x, y)=x \\
\mathbf{m}(x, y, z)=\mathbf{m}(y, x, z)=\mathbf{m}(y, z, x) \\
\mathbf{m}(\mathbf{m}(x, y, z), t, u)=\mathbf{m}(x, \mathbf{m}(y, t, u), \mathbf{m}(z, t, u))
\end{gathered}
$$

Other known median algebras :

- Median semilattices : For $a \in A$, set $x \leq_{a} y \Longleftrightarrow \mathbf{m}(a, x, y)=x$
- Median graphs : For all x, y, z, there is a unique w in the shortest paths

NB1 : Every median semilattice (with finite intervals) has a median Hasse diag.
NB2 : Every median graph is the Hasse diagram of a median semilattice

References: Barthélemy-Leclerc-Monjardet'86, Bandelt'83, Isbell'80, Avann'61, ...
Generalisations : Bandelt-Meletiou'92, Barthélemy-Janowitz'91, Bandelt'90, ...

II.2. Conservative median algebras

Conservative median algebra: If $\mathbf{m}(x, y, z) \in\{x, y, z\}, \quad x, y, z \in A$

Social choice motivation : the median candidate is one of the candidates

Problem: How do they look like?

II.2. Conservative median algebras

Conservative median algebra: If $\mathbf{m}(x, y, z) \in\{x, y, z\}, \quad x, y, z \in A$

Social choice motivation : the median candidate is one of the candidates

Problem: How do they look like?

II.2. Conservative median algebras

Conservative median algebra: If $\mathbf{m}(x, y, z) \in\{x, y, z\}, \quad x, y, z \in A$

Social choice motivation : the median candidate is one of the candidates

Problem: How do they look like?

Representation of conservative median algebras

Theorem : Let \mathbf{A} be a median algebra with $|A| \geq 5$. T.F.A.E.
(i) \mathbf{A} is conservative.
(ii) There is an $a \in A$ and lower bounded chains \mathbf{C}_{0} and \mathbf{C}_{1} such that $\left\langle A, \leq_{a}\right\rangle$ is isomorphic to $\mathbf{C}_{0} \perp \mathbf{C}_{1}$.
(iii) For every $a \in A$, there are lower bounded chains \mathbf{C}_{0} and \mathbf{C}_{1} such that $\left\langle\boldsymbol{A}, \leq_{a}\right\rangle$ is isomorphic to $\mathbf{C}_{0} \perp \mathbf{C}_{1}$.
(iv) For every $a \in A$ the ordered set $\left\langle A, \leq_{a}\right\rangle$ does not contain a copy of the poset

Open problem : Representation of arbitrary median algebras

II.3. Median preserving aggregation

Idea : Score of a median profile is the median of the scores of the profiles

Problem : Aggregation functions $f: X^{n} \rightarrow Y$ that preserve medians:

$$
f(\mathbf{m}(\mathbf{x}, \mathbf{y}, \mathbf{z}))=\mathbf{m}(f(\mathbf{x}), f(\mathbf{y}), f(\mathbf{z}))
$$

Remark : median preserving maps are not necessarily order-preserving (reversing) !

II.3. Median preserving aggregation

Idea: Score of a median profile is the median of the scores of the profiles

Problem : Aggregation functions $f: X^{n} \rightarrow Y$ that preserve medians:

$$
f(\mathbf{m}(\mathbf{x}, \mathbf{y}, \mathbf{z}))=\mathbf{m}(f(\mathbf{x}), f(\mathbf{y}), f(\mathbf{z})),
$$

Remark : median preserving maps are not necessarily order-preserving (reversing) !

An order-preserving map that is not median preserving

A median preserving map that is not order-preserving (or reversing)

Characterization of median preserving maps

NB : Every conservative median algebra \mathbf{A} can be thought of as a chain $\mathbf{C}(\mathbf{A})$

Theorem : Let \mathbf{A}, \mathbf{B} be conservative median algebras with ≥ 5 elements. T.F.A.E.
(i) $f: \mathbf{A} \rightarrow \mathbf{R}$ is a median preserving man
(ii) the induced map $f^{\prime}: \mathbf{C}(\mathbf{A}) \rightarrow \mathbf{C}(B)$ is order-preserving or order-reversing

Problem : How to lift it to $f: \mathbf{A}^{n} \rightarrow \mathbf{B}$

Characterization of median preserving maps

NB : Every conservative median algebra \mathbf{A} can be thought of as a chain $\mathbf{C}(\mathbf{A})$

Theorem : Let \mathbf{A}, \mathbf{B} be conservative median algebras with ≥ 5 elements. T.F.A.E. :
(i) $f: \mathbf{A} \rightarrow \mathbf{B}$ is a median preserving map
(ii) the induced map $f^{\prime}: \mathbf{C}(\mathbf{A}) \rightarrow \mathbf{C}(\mathbf{B})$ is order-preserving or order-reversing

Problem: How to lift it to $f: \mathbf{A}^{n} \rightarrow \mathbf{B}$

Characterization of median preserving maps

NB : Every conservative median algebra \mathbf{A} can be thought of as a chain $\mathbf{C}(\mathbf{A})$

Theorem : Let \mathbf{A}, \mathbf{B} be conservative median algebras with ≥ 5 elements. T.F.A.E. :
(i) $f: \mathbf{A} \rightarrow \mathbf{B}$ is a median preserving map
(ii) the induced map $f^{\prime}: \mathbf{C}(\mathbf{A}) \rightarrow \mathbf{C}(\mathbf{B})$ is order-preserving or order-reversing

Problem : How to lift it to $f: \mathbf{A}^{n} \rightarrow \mathbf{B}$

Back to aggregation functions...

Theorem : Let $\mathbf{A}=\mathbf{C}_{1} \times \cdots \times \mathbf{C}_{n}$ and $\mathbf{B}=\mathbf{D}_{1} \times \cdots \times \mathbf{D}_{k}$ be products of chains. T.F.A.E. :
(i) $f: \mathbf{A} \rightarrow \mathbf{B}$ is median preserving
(ii) there exist $\sigma:[k] \rightarrow[n]$ and order-preserving or order-reversing maps

$$
f_{i}: \mathbf{C}_{\sigma(i)} \rightarrow \mathbf{D}_{i} \quad \text { for } i \in[k] \text { s.t. } f(\mathbf{x})=\left(f_{1}\left(x_{\sigma(1)}\right), \ldots, f_{k}\left(x_{\sigma(k)}\right)\right)
$$

Corollary : Let $\mathbf{C}_{1}, \cdots, \mathbf{C}_{n}$ and \mathbf{D} (in part., $k=1$) be chains. T.F.A.E.
(i) $f: \mathbf{C}_{1}$ $\mathbf{C}_{n} \rightarrow \mathbf{D}$ is median preserving
(ii) there is $j \in[n]$ and order-preserving or reversing map $g: \mathbf{C}_{j} \rightarrow \mathbf{D}$ s.t. $f=g \circ \pi_{j}$

Back to aggregation functions...

Theorem : Let $\mathbf{A}=\mathbf{C}_{1} \times \cdots \times \mathbf{C}_{n}$ and $\mathbf{B}=\mathbf{D}_{1} \times \cdots \times \mathbf{D}_{k}$ be products of chains. T.F.A.E. :
(i) $f: \mathbf{A} \rightarrow \mathbf{B}$ is median preserving
(ii) there exist $\sigma:[k] \rightarrow[n]$ and order-preserving or order-reversing maps

$$
f_{i}: \mathbf{C}_{\sigma(i)} \rightarrow \mathbf{D}_{i} \quad \text { for } i \in[k] \text { s.t. } f(\mathbf{x})=\left(f_{1}\left(x_{\sigma(1)}\right), \ldots, f_{k}\left(x_{\sigma(k)}\right)\right)
$$

Corollary : Let $\mathbf{C}_{1}, \cdots, \mathbf{C}_{n}$ and \mathbf{D} (in part., $k=1$) be chains. T.F.A.E. :
(i) $f: \mathbf{C}_{1} \times \cdots \times \mathbf{C}_{n} \rightarrow \mathbf{D}$ is median preserving
(ii) there is $j \in[n]$ and order-preserving or reversing map $g: \mathbf{C}_{j} \rightarrow \mathbf{D}$ s.t. $f=g \circ \pi_{j}$

Consequence : Arrow-like theorem over median algebras

Back to aggregation functions...

Theorem : Let $\mathbf{A}=\mathbf{C}_{1} \times \cdots \times \mathbf{C}_{n}$ and $\mathbf{B}=\mathbf{D}_{1} \times \cdots \times \mathbf{D}_{k}$ be products of chains. T.F.A.E. :
(i) $f: \mathbf{A} \rightarrow \mathbf{B}$ is median preserving
(ii) there exist $\sigma:[k] \rightarrow[n]$ and order-preserving or order-reversing maps

$$
f_{i}: \mathbf{C}_{\sigma(i)} \rightarrow \mathbf{D}_{i} \quad \text { for } i \in[k] \text { s.t. } f(\mathbf{x})=\left(f_{1}\left(x_{\sigma(1)}\right), \ldots, f_{k}\left(x_{\sigma(k)}\right)\right)
$$

Corollary : Let $\mathbf{C}_{1}, \cdots, \mathbf{C}_{n}$ and \mathbf{D} (in part., $k=1$) be chains. T.F.A.E. :
(i) $f: \mathbf{C}_{1} \times \cdots \times \mathbf{C}_{n} \rightarrow \mathbf{D}$ is median preserving
(ii) there is $j \in[n]$ and order-preserving or reversing map $g: \mathbf{C}_{j} \rightarrow \mathbf{D}$ s.t. $f=g \circ \pi_{j}$

Consequence : Arrow-like theorem over median algebras
Aggregation procedures that preserve medians are dictatorial!

Merci de votre attention!

Thank you for your attention!

Obrigado pela vossa atenção!

Grazie mille per la vostra attenzione!

