Evaluation of educational open-source software using multicriteria decision analysis methods

Georgia Paschalidou¹, Nikolaos Vesyropoulos¹, Vassilis Kostoglou², Emmanouil Stiakakis¹ and Christos K. Georgiadis¹

¹ University of Macedonia, Department of Applied Informatics, Greece
 ² Alexander TEI of Thessaloniki, Department of Information Technology, Greece

Presentation Overview

- What is Open Source Software
- What is Software Quality
- Open Source Maturity Model (OSMM)
- Weighted Sum Model (WSM) in OSMM
- Application of MCDA methods based on OSMM
 - AHP
 - PROMETHEE
 - ELECTRE III
 - REGIME
- Rankings Comparison
- Conclusion Future Work

What is Open Source Software (OSS)

The term OSS refers to software whose source code is available for examination, use and modification

- Usually designed by a group of volunteer programmers
- Publicly accessed
- Improvement and evolution of the software often conducted by software communities
- Wide variety of existing open source software products

> Evaluation of open source software products:

Matter of paramount importance for organizations in order to decide which one best fits the organization's requirements

What is Software Quality

> Quality of Open Source Software (OSS) products

- Affected by many variables
- Varying strongly in different products

> Limitless list of indicators providing estimation of an OSS project's quality

• e.g. number of users, longevity of the project, documentation available on-line, etc.

Need for aggregation of indicators' values

Several approaches dealing with the OSS quality assessment

- Open Business Readiness Rating (OpenBRR)
- Qualification and Selection of Open Source software (QSOS)
- Open Source Maturity Model (OSMM) from Navica

Open Source Maturity Model (OSMM)

> A software quality model which evaluates the overall maturity of a product

- Six dimensions (criteria) for maturity evaluation
 - ✓ Software product
 - ✓ Technical support
 - ✓ Documentation
 - ✓ Training
 - ✓ Product integrations
 - ✓ Professional services
- For each criterion
 - Some weight indicating its relative importance
 - A maturity score, in a scale of 1 to 10, after examining specific factors

Open Source Maturity Model (OSMM)

> Factors examined for each dimension (criterion)

- Software product
 - product functionality
 - Iongevity
 - quality of the product
 - quality of the technical team
- Technical support
 - community support
 - paid support
 - advanced self-support
- Documentation
 - web postings
 - developer-created documentation
 - commercially-published documentation

Open Source Maturity Model (OSMM)

Factors examined for each dimension (criterion)

- Training
 - existence of web-based mini-tutorials
 - developer-created or commercial tutorials
 - classroom delivered by development team
 - classroom delivered by commercial entity
- Integration
 - existent integration with third party software
 - necessary integrations via self-development
 - necessary integrations by commercial vendors
- Professional services
 - product team services
 - services available from external firms

Weighted Sum Model (WSM) in OSMM

Overall maturity score of a software product = Weighted sum of the criteria maturity scores

according to their predefined weighting factors

> Weighted Sum Model (WSM), an MCDA method, is actually applied

• The total importance of alternative A_i , denoted as $A_i^{WSM-score}$, is defined as:

$$A_i^{WSM-score} = \sum_{j=1}^n w_j a_{ij}$$
, for $i = 1, 2, ..., n$

where: m = number of alternatives n = number of criteria w_j = relative weight of importance of the criterion C_j a_{ij} = performance value of alternative A_i in terms of criterion C_j

Weighted Sum Model (WSM) in OSMM

Illustrative Example

5 Educational Open-Source Software (EOSS) Projects

Criterion		Weighting				
	EOSS1	EOSS2	EOSS3	EOSS4	EOSS5	Factor
Product Software	7	8	6	8	7	4
Support	6	6	7	6	6	2
Documentation	7	7	7	5	6	1
Training	6	6	6	5	5	1
Product Integrations	7	7	6	6	7	1
Professional Services	5	6	5	6	6	1

Weighted Sum Model (WSM) in OSMM

Floment		Weighting				
ciement	EOSS1	EOSS2	EOSS3	EOSS4	EOSS5	Factor
Product Software	7	8	6	8	7	4
Support	6	6	7	6	6	2
Documentation	7	7	7	5	6	1
Training	6	6	6	5	5	1
Product Integrations	7	7	6	6	7	1
Professional Services	5	6	5	6	6	1
Total Maturity Score for EOSS1 (out of 100)	65	70	62	66	64	

Education Open Source	Total Maturity	OSMM
Software	Score	Ranking
EOSS1	65	3
EOSS2	70	1
EOSS3	62	5
EOSS4	66	2
EOSS5	64	4

Application of MCDA methods based on OSMM

Motivation

Employment of Weighted Sum Model (WSM) in OSMM

➢ Purpose

Comparison of the results obtained by other MCDA methods based on the criteria used in OSMM

MCDA Methods used

- AHP (<u>Analytic Hierarchy Process</u>)
- PROMETHEE (Preference Ranking Organization METHod for Enrichment of Evaluations)
- ELECTRE (<u>EL</u>imination<u>Et</u> <u>Choix</u><u>T</u>raduisant la <u>RE</u>alité)
- REGIME (Regime Analysis)

Analytic Hierarchy Process (AHP)

- Methodology consisting of four discrete steps:
 - Creating the hierarchy of the problem's district components
 - Applying the criteria priorities through pairwise comparisons
 - Calculating the rate of the alternatives for each criteria
 - Calculating the relative score for each alternative.
- > In more detail:
 - Assuming the final pairwise matrix is named S_{mn} we calculate the sum of each row

$$Sum_m = \sum_{n=1}^k S_{mn}$$

where *k* is the number of columns

Analytic Hierarchy Process (AHP)

An eigenvector is being computed with the formula

$$EV_m = \frac{SUM_m}{\sum_{1}^{k} SUM_m}$$

Same procedure followed for the eigenvector of each criterion table

> The matrix consisting of the rank of the alternatives, is computed based on the formula

$$AR[i] = \sum_{n=1}^{k} CEV_n[i] * EV[n]$$

where *AR* refers to the final rankings matrix

 CEV_n refers to the eigenvector formulated for each criterion

Analytic Hierarchy Process (AHP)

File Edit		
A ▲ O Distributive mode ● Ideal mode		
Summary Details		
Sort by Name Sort by Priority Unsort	<u>File Edit Assessment Synthesize Sensitivity-Graphs Vie</u>	ew <u>G</u> o <u>T</u> ools <u>H</u> elp
	📔 🗋 😂 😂 🛕 🌴 🕼 🕸 🖗 🖓 🗛 🖍 🔺 😫	
Synthesis with respect to:	👻 3:1 ABC 💳 🖵 🏹 🌾 🔳 🗍	
Goal: EUSS SELECTION Overall Inconsistency = 00	1.0 Goal 🔩 🔩 🔀	Alternatives: Ideal mode
	Goal: EOSS SELECTION	F0001 100
EOSS1 .188	Software (L: .400)	EUSS1 .188
E0SS2 .235	Support (L: .200)	EU332 .255
E0555 1170	Documentation (L: .100)	EUSS3 .1/6
EOSS5 .174	Training (L: .100)	EOSS4 .207
	Integrations (L: .100)	EOSS5 .1/4
	■ Professional Services (L: .100)	
		< •
		Information Document

Education Open	Total Maturity	AHP
Source Software	Score	Ranking
EOSS1	0.188	3
EOSS2	0.255	1
EOSS3	0.176	5
EOSS4	0.207	2
EOSS5	0.174	4

PROMETHEE

> Initialized by calculating the evaluation table

- Constitutes of the alternatives and their evaluation
- The relative importance of each criteria

➢ For each pair of alternatives (a, b):

- One is preferable if it has equal or higher values for each and every criterion
- Cannot be compared if each alternative outranks the other in different criteria
- > Method requests an indifference threshold and smallest deviation.
 - For solving incomparability issues
- \succ The preferences P_j between a pair of alternatives for a specific criterion are computed
- \succ The sum of all preferences P_i are multiplied by corresponding weights
 - produce the overall degree of preference

PROMETHEE

Each alternative is compared with the rest

the positive and negative outranking flows are calculated as follows:

$$\varphi^+(a) = \frac{1}{n-1} \sum_{x \in A} \pi(a, x)$$
$$\varphi^-(a) = \frac{1}{n-1} \sum_{x \in A} \pi(x, a)$$

> A complete ranking is calculated based on the difference of ranking flows

• Higher $\varphi(a)$ value corresponds to a better alternative

$$\begin{cases} aP^{I}b & if f \quad \varphi(a) > \varphi(b) \\ aI^{I}b & if f \quad \varphi(a) = \varphi(b) \end{cases}$$

> All alternatives are comparable and there are no inconsistencies

PROMETHEE

🗲 Vis	ual PROMETHEE Aca	ademic - EOS	S6.vpg (sav	ed)											
File	Edit Model Cont	rol PROME	THEE-GAIA	GDSS GIS	Custom	Assistants	Snapshots Options	S							
Help															
🗈 💣	🔳 🐹 🗈 🛅 🗮	5 😽 🐻 🐻	ii ii	🔙 🥼 💡	🐵 💋 💉	/ // Y									
∣≅ �	X 🖉 📰 🔛 🗠	9 🔛 🔛	5 🖓 🧌 🍿	^{ut.} [С Ф]	H 💷 🚱	🥒 🖻									
		V		1	1	 Image: A set of the set of the									
	Scenario1	Software	Support	Docume	Training	Integrati	ProfServi								
	Unit	unit	unit	unit	unit	unit	unit								
	Cluster/Group	•	•	•	•	•	•				Tabla				X
•	Preferences									COMETHEE FIOW	able				
	Statistics								Dan	action		Dhi	Dhi+	Dhi-	
	Evaluations	7		7		_			Kan	action		F 111	- FIII 1		
	EOSS2	0	6	7	6	7	5		1	EUSS2		0,4500	0,5000	0,0500	
	EOSS2	6	7	7	6	6	5		2	EOSS4		0,0500	0,3500	0,3000	
	EOSS4	8	6	5	5	6	6		3	EOSS1		-0,0750	0,2500	0,3250	
	EOSS5	7	6	6	5	7	6		4	EOSS5		-0,1750	0,2250	0,4000	
									5	EOSS3		-0,2500	0,3000	0,5500	
AI	cenario1/											-	-		
Action	s: 5 (5 active) Crite	eria: 6 (6 acti	ve) Scena	rios: 1 (1 acti	ve) Locale	: Belgium [€,	/,] Saved	.41							

Education Open	Total Maturity	PROMETHEE
Source Software	Score	Ranking
EOSS1	-0.075	3
EOSS2	0.450	1
EOSS3	-0.250	5
EOSS4	0.050	2
EOSS5	-0.175	4

> Requires the definition of thresholds, to handle levels of imprecision.

- the indifference threshold q_i
- the preference threshold p_i
- the veto threshold v_i
- Low level of criteria compensation
- ➤ The concordance index for two alternatives (a,b) is computed based on the formula:

$$c_{j}(a,b) = \begin{cases} 0 & g_{j}(b) - g_{j}(a) \leq q_{j} \\ 1 & g_{j}(b) - g_{j}(a) \geq p_{j} \\ \frac{p_{j} + g_{j}(a) - g_{j}(b)}{p_{j} - q_{j}} q_{j} \leq g_{j}(b) - g_{j}(a) \leq p_{j} \end{cases}$$

where $g_j(a)$ corresponds to the evaluation of the alternative a on criterion j. 81st Meeting of the European Working Group «Multiple Criteria Decision Aiding», Annecy, France 26-28 March 2015

> The discordance index is computed based on the formula:

$$d_{j}(a,b) = \begin{cases} 0 & g_{j}(b) - g_{j}(a) \leq p_{j} \\ 1 & g_{j}(b) - g_{j}(a) \geq v_{j} \\ \frac{g_{j}(a) - g_{j}(b) - p_{j}}{v_{j} - p_{j}} p_{j} \leq g_{j}(b) - g_{j}(a) \leq v_{j} \end{cases}$$

> The overall concordance index is then computed by:

$$C(a,b) = \frac{1}{\sum_{j=1}^{r} k_j} \sum_{j=1}^{r} k_j c_j(a,b)$$

where k_i is equal to the weight given by the decision maker

- The credibility index is calculated, corresponding to the credibility of comparisons between a over b
 - Based on the overall concordance index

$$S(a,b) = \begin{cases} C(a,b)d_{j} \leq C(a,b) \ \forall j \\ C(a,b)\prod_{j \in J(ab)} \frac{1-d_{j}(a,b)}{1-C(ab)} & d_{j}(a,b) > C(a,b) \\ J(a,b):d_{j}(a,b) > C(a,b) \end{cases}$$

> The λ_{max} value (maximum value), is computed as follows:

$$\lambda_{max} = \max S(a, b)$$

> The λ_{max} values allows the computation of the ascending and descending distillation of the preferences

Their conjunction corresponds to the final ranking

Education Open	ELECTRE
Source Software	Ranking
EOSS1	4
EOSS2	1
EOSS3	2
EOSS4	2
EOSS5	5

REGIME

> Regime Analysis can handle various types of data:

- Binary
- Ordinal
- Categorical
- Cardinal (ratio and interval scale)
- Mixed data

> Based on concordance analysis for ranking alternatives

- procedure similar to PROMETHEE and ELECTRE methods
- basic idea of concordance analysis → rank a set of actions by means of their pairwise comparisons in relation to the chosen criteria

REGIME

- Concordance index C_{ik} = the sum of the weights that are related to the criteria for which i is better than k
- \succ Concordance index C_{ki} considering the criteria for which k is better than i
- Net concordance index

$$\mu_{ij} = C_{ik} - C_{ki}$$

> The method applies the performance indicator p_{ij} for the dominance of criteria *i* with respect to *j*

$$p_{ij} = prob(\mu_{ij} > 0)$$

Finally the performance score is calculated based on

$$p_i = \frac{1}{I-1} \sum_{j \neq i} p_{ij}$$

where I is the number of chosen alternatives

REGIME

🖻 listform								
File Edit								
050%								
Criterium nr.	1	2	6	5	4	3		
Weights:	4.	2.	1.	1.	1.	1.		
Rank Name			Score	es			Result	
1 EOSS2 2 EOSS1 3 EOSS4 4 EOSS5 5 EOSS3	8. 7. 8. 6.	6. 6. 6. 7.	6. 5. 6. 5.	7. 6. 7. 6.	6. 5. 5. 6.	7. 7. 6. 7.	1. .62 .48 .34 .06	
1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.0								1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.4 0.3 0.2 0.1 0.0

Education Open	Total Maturity	REGIME
Source Software	Score	Ranking
EOSS1	0.62	2
EOSS2	1	1
EOSS3	0.06	5
EOSS4	0.48	3
EOSS5	0.34	4

- > The different techniques generated minor differences
- WSM, PROMETHEE and AHP rankings are in the vast majority of cases in total agreement
- ELECTRE III and REGIME present minor differentiations
- However, if methods were deployed for the selection of the optimal alternative, the variation of technique would result to the same option

Rankings Comparison

EducationOpenSource Software	OSMM Ranking	PROMETHEE Ranking	ELECTRE Ranking	AHP Ranking	REGIME Ranking
EOSS1	3	3	4	3	2
EOSS2	1	1	1	1	1
EOSS3	5	5	2	5	5
EOSS4	2	2	2	2	3
EOSS5	4	4	5	4	4

Rankings Comparison

Pearson Correlation Coefficients

Correlation between sets of data is a measure of how well they are related.

Pearson Correlation	OSMM	PROMETHEE	ELECTRE	AHP	REGIME
Coefficient	Ranking	Ranking	Ranking	Ranking	Ranking
OSMM Ranking	1.000				
PROMETHEE Ranking	1.000	1.000			
ELECTRE Ranking	0.481	0.481	1.000		
AHP Ranking	1.000	1.000	0.481	1.000	
REGIME Ranking	0.900	0.900	0.289	0.900	1.000

High correlation: 0.5 to 1.0 or -0.5 to 1.0 *Medium correlation:* 0.3 to 0.5 or -0.3 to 0.5 *Low correlation:* 0.1 to 0.3 or -0.1 to -0.3

Conclusions

The purpose of this analysis was to test the level of convergence between the final rankings of alternatives produced by the five MCDA methods

Results show that changing MCDA technique generates minor differences

- > WSM, PROMETHEE and AHP rankings are in the vast majority of cases in total agreement
- > ELECTRE III and REGIME present minor differentiations in the final order of preference
- ➢ If the particular methods were being deployed exclusively for the selection of the optimal alternative, then the variation of technique would result to the same option

Future Work

- Implementation of MCDA methods, based on the criteria and weights proposed by OSMM, on widely used open source software projects
 - Currently focus on educational virtual learning environments
- > Comparison of the results generated by MCDA methods adopting varying weights
- Extension of the analysis relying on the criteria and weights introduced by other open source quality assessment models

Acknowledgement

This research is implemented through the Operational Program "Education and Lifelong Learning" and is co-financed by the European Union (European Social Fund) and Greek national funds. Project title: "Digital map of higher technological education professions"

Thank you for your attention