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= Speckled images (Rayleigh multiplicative model when considering
amplitude images):
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= Speckled images (Rayleigh multiplicative model when considering
amplitude images):

50 50
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Input signal Additive Gaussian noise (o = 5)
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Introduction

= Speckled images (Rayleigh multiplicative model when considering
amplitude images):

Original scene Rayleigh noise (L=3)
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Introduction

= Speckled images (Rayleigh multiplicative model when considering
amplitude images):

original scene Rayleigh noise (L=3) Moisy scene

Goals

Find regularization models.

Use multi-temporal information.
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2. Decomposition model
2.1 Model presentation
2.2 Exact discrete optimization
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Decomposition model Model presentation

Model presentation

Scene to estimate U = {uy,...,u,}.

Observed images V = {vy,...,v,}.

In a Markov Random Field framework:

U = argmdn—log(P(U|V))
= arg mJn —log (P(V|U)) — log (P(U))
= arg mdn &(U)
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Decomposition model Model presentation

Likelihood-term definition

= Likelihood distribution can be considered separable:

—log (P(V|U)) = —log (HHp ve(1)|ue(7) )

t=1ieQ

e ([ = (55)
- ZZ ( log(2v¢(i)) + 2log(ue(i)) + Z

t=1ieQ
=DT(V,U)

~+ N

o)

~+N

24/07/2015 6/22 Sylvain LOBRY TV+LO on SAR series



Decomp on model Model presentation

Likelihood-term definition
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Conditional negative log likelihood of Rayleigh distribution for u =15
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Decomposition model Model presentation

Conditional negative log likelihood of Rayleigh distribution
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Decomposition model Model presentation

Prior definition

A widely used regularization for noise reduction is the anisotropic total
variation (TV)

—log p(U) = TV3p(U)
=Y ) w3 i) — wea(i)

t,(ij)ecC t,ieQ

But it is not adapted to scatterers present in SAR images
([Denis et al., 2009]):
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Decomposition model Model presentation

A widely used regularization for noise reduction is the anisotropic total
variation (TV)

But it is not adapted to scatterers present in SAR images
([Denis et al., 2009]):
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Decomposition model Model presentation

A widely used regularization for noise reduction is the anisotropic total

variation (TV)

But it is not adapted to scatterers present in SAR images

([Denis et al., 2009]):

gt sigral
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Decomposition model Model presentation

Proposed model: sparse + smooth

The scene is modeled as the sum of 2 components:

U:{...,qut-i-Ust,...}:UBv-i-Us

ugy, is a component with bounded variations, representing the
background;

Us; is a sparse component, representing the bright scatterers.
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Decomposition model Model presentation

Proposed model: sparse + smooth

Rewrite the prior:

— log(p(U)) = —Bpv log p(Usv) — Bs log p(Us)

We want a low total variation on the background:

—log p(Ugv) = TV3p(Ugv)
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Decomposition model Model presentation

Proposed model: sparse + smooth

Rewrite the prior:

— log(p(U)) = —Bpv log p(Usv) — Bs log p(Us)

We want a low total variation on the background:

—log p(Ugv) = TV3p(Ugv)

Sparsity of the scatterers is achieved using the LO pseudo-norm:

—logp(Us) = [[Us]lo-
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Decomposition model Model presentation

Model: final form

= We have to optimize:
U=arg mUin (V)
= arg mdn —log (P(V|U)) — log (P(U))
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Decomposition model Model presentation

Model: final form

= We have to optimize:

A

U=arg mUin (V)
= arg mdn —log (P(V|U)) — log (P(U))

n

= (DT(ve, ugvy, us;) + BsLO(us;)) + Bev TVsp(Usv)

t=1

= Non convex problem because of the data term and the pseudo norm
LO.
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Decomposition model Exact discrete optimization

Solving the sub-problem for a fixed Ugy

We need to solve the problem for a fixed Ugy:

Us(Usv) = argmin > (DT(ve, ugvy, us,) + BsLO(us,))
S =1

+ BevTVip(Usy)

Since terms are separable, we can solve for each pixel at each date:

_ us. (/)" if DT(ve(i), uve(i), use(i)*)
USt(i)(UBVt(i)) = +8s < DT(Vt(i), UBVt(i),O)
0 otherwise

With ug,(i)* = arg min DT(v¢(i),ugv(i),us.(i)) which can be
ug(/

found analytically.
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Decomposition model Exact discrete optimization

Solving the whole problem

= Problem only depending Ugy:

n
argmin £(U) = arg min Z DT(v¢, ugvy, Use (Ugyy))

ugv ugv
t=1

+ Bsllus:(ugve)llo + BevTVsp(Usvy)
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Decomposition model Exact discrete optimization

Solving the whole problem

Problem only depending Ugy:

n
argmin £(U) = arg min Z DT(V¢, vy, Use (Uvy))

upv upv
t=1

+ Bslus:(ugvy)llo + BevTVsp(Usv)

The first two terms are separable and the third one is convex and
involves only pairs of pixel values = [Ishikawa, 2003]
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Decomposition model Exact discrete optimization

Graph-cut optimization

The pixel grid is mapped to a graph with two terminal nodes:

pixel grid
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Decomposition model Exact discrete optimization

min s-t-cut
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Decomposition model Exact discrete optimization

minimizer min s-t-cut
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Decomposition model Exact discrete optimization

Graph-cut op ation

pixel grid
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Ishikawa's graph for multi-valued images
[Ishikawa PAMI2003]
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Decomposition model Exact discrete optimization

Original Images Background Scatterers Result of our model Residual noise

Decomposition of an image of Saint-Gervais acquired by TerraSAR-X. Thanks to
the German Aerospace Agency (DLR) for the images (project MTH0232 and
LAN1746).
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Decomposition model Exact discrete optimization
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Appl on: scatterers change dete

3. Application: scatterers change detection
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Appl on: scatterers change dete

From a series of observed images V, we obtain decomposition

{(uv1,us1), ..., (uBvy, usy)} ,
Keep the binarized version of the scatterers {ug?"}.
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Application: scatterers change detection

= From a series of observed images V, we obtain decomposition
{(UBV17USI)7"'7(UBVn7uSn)} ]

Keep the binarized version of the scatterers {ug?"}.

To cope with non-stability of the scatterers, construct:

T(i) =Y _ust™(i+06) = > us"(i +4)
5 5
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Application: scatterers change detection

From a series of observed images V, we obtain decomposition
{(UBV17USI)7"'7(UBVn7uSn)} ]

Keep the binarized version of the scatterers {ug?"}.

To cope with non-stability of the scatterers, construct:

T(i) =Y _ust™(i+06) = > us"(i +4)
5 5

= T (i) is then thresholded to obtain the changes.
TV+LO on SAR series



Input image 1. Input image 26.

Changes on image 1. Changes on image 26.

Change detection results using the proposed method on images of Saint-Gervais
series. Regions with changes that have been detected are indicated in red.
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False positive alarm versus true positive curves of various change detection
algorithms ([Su et al., 2014], [Lombardo and Oliver, 2001], [Krylov et al., 2012])
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4. Conclusion
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Conclusion

Conclusion

We introduced a decomposition model that:

Combines TV regularization with an LO pseudo-norm suitable to SAR
images.

Is able to take advantage of multi-temporal SAR series.

e Can be used in a change detection application.

Future work:

= A change detection algorithm using all components.
= Using optimization methods requiring less memory (see
[Shabou et al., 2009]).
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