

Sparse + smooth decomposition models for multi-temporal SAR images

Sylvain LOBRY^{1,3}

1 - Télécom ParisTech - LTCI 2 - Laboratoire Hubert Curien - Université de Saint-Etienne 3 - CNES

24/07/2015

Florence Tupin¹

Loïc Denis²

24/07/2015 1/22

Sylvain LOBRY

TV+L0 on SAR series

- 1. Introduction
- 2. Decomposition model
- 2.1 Model presentation
- 2.2 Exact discrete optimization
- 3. Application: scatterers change detection
- 4. Conclusion
- 5. Bibliography

Context

Context

х

Context

Original scene

Rayleigh noise (L=3)

Context

Context

 Speckled images (Rayleigh multiplicative model when considering amplitude images):

Goals

- Find regularization models.
- Use multi-temporal information.

24/07/2015 3/22

Sylvain LOBRY

TV+L0 on SAR series

Plan

1. Introduction

- 2. Decomposition model
- 2.1 Model presentation
- 2.2 Exact discrete optimization
- 3. Application: scatterers change detection
- 4. Conclusion
- 5. Bibliography

Model presentation

- Scene to estimate $U = \{u_1, \dots, u_n\}$.
- Observed images $\mathbf{V} = {\mathbf{v}_1, \dots, \mathbf{v}_n}.$
- In a Markov Random Field framework:

$$\hat{\mathbf{U}} = \arg \min_{\mathbf{U}} - \log \left(P(\mathbf{U} | \mathbf{V}) \right) = \arg \min_{\mathbf{U}} - \log \left(P(\mathbf{V} | \mathbf{U}) \right) - \log \left(P(\mathbf{U}) \right) = \arg \min_{\mathbf{U}} \mathcal{E}(\mathbf{U})$$

Model presentation

- Scene to estimate $U = \{u_1, \dots, u_n\}$.
- Observed images $\mathbf{V} = {\mathbf{v}_1, \dots, \mathbf{v}_n}.$
- In a Markov Random Field framework:

$$\hat{\mathbf{U}} = \arg \min_{\mathbf{U}} - \log \left(P(\mathbf{U} | \mathbf{V}) \right) = \arg \min_{\mathbf{U}} - \log \left(P(\mathbf{V} | \mathbf{U}) \right) - \log \left(P(\mathbf{U}) \right) = \arg \min_{\mathbf{U}} \mathcal{E}(\mathbf{U})$$

Model presentation

- Scene to estimate $U = \{u_1, \dots, u_n\}$.
- Observed images $\mathbf{V} = {\mathbf{v}_1, \dots, \mathbf{v}_n}.$
- In a Markov Random Field framework:

$$\hat{\mathbf{U}} = \arg \min_{\mathbf{U}} - \log \left(P(\mathbf{U} | \mathbf{V}) \right) = \arg \min_{\mathbf{U}} - \log \left(P(\mathbf{V} | \mathbf{U}) \right) - \log \left(P(\mathbf{U}) \right) = \arg \min_{\mathbf{U}} \mathcal{E}(\mathbf{U})$$

Likelihood distribution can be considered separable:

$$-\log (P(\mathbf{V}|\mathbf{U})) = -\log \left(\prod_{t=1}^{n} \prod_{i \in \Omega} p(\mathbf{v}_{t}(i)|\mathbf{u}_{t}(i))\right)$$
$$= -\log \left(\prod_{t=1}^{n} \prod_{i \in \Omega} \frac{2\mathbf{v}_{t}(i)}{\mathbf{u}_{t}^{2}(i)} \exp\left(\frac{-\mathbf{v}_{t}^{2}(i)}{\mathbf{u}_{t}^{2}(i)}\right)\right)$$
$$= \sum_{t=1}^{n} \sum_{i \in \Omega} \left(-\log(2\mathbf{v}_{t}(i)) + 2\log(\mathbf{u}_{t}(i)) + \frac{\mathbf{v}_{t}^{2}(i)}{\mathbf{u}_{t}^{2}(i)}\right)$$
$$= \mathsf{DT}(\mathbf{V}, \mathbf{U})$$

Likelihood-term definition

Conditional negative log likelihood of Rayleigh distribution for u = 5

Likelihood-term definition

Conditional negative log likelihood of Rayleigh distribution

Prior definition

 A widely used regularization for noise reduction is the anisotropic total variation (TV)

$$-\log p(\mathbf{U}) = \mathrm{TV}_{\mathsf{3D}}(\mathbf{U})$$
$$= \sum_{t,(i,j)\in\mathcal{C}} |\mathbf{u}_t(i) - \mathbf{u}_t(j)| + \sum_{t,i\in\Omega} |\mathbf{u}_t(i) - \mathbf{u}_{t+1}(i)|$$

But it is not adapted to scatterers present in SAR images ([Denis et al., 2009]):

Prior definition

- A widely used regularization for noise reduction is the anisotropic total variation (TV)
- But it is not adapted to scatterers present in SAR images ([Denis et al., 2009]):

Prior definition

- A widely used regularization for noise reduction is the anisotropic total variation (TV)
- But it is not adapted to scatterers present in SAR images ([Denis et al., 2009]):

Proposed model: sparse + smooth

The scene is modeled as the sum of 2 components:

$$\mathbf{U} = \{\dots, \mathbf{u}_{\mathbf{B}\mathbf{V}t} + \mathbf{u}_{\mathbf{S}t}, \dots\} = \mathbf{U}_{\mathbf{B}\mathbf{V}} + \mathbf{U}_{\mathbf{S}t}$$

- u_{BVt} is a component with bounded variations, representing the background;
- **u**_{St} is a sparse component, representing the bright scatterers.

Rewrite the prior:

$$-\log(\mathbf{p}(\mathbf{U})) = -\beta_{BV} \log \mathbf{p}(\mathbf{U}_{\mathbf{BV}}) - \beta_{S} \log \mathbf{p}(\mathbf{U}_{\mathbf{S}})$$

• We want a low total variation on the background:

$$-\log \mathrm{p}(U_{\mathsf{BV}}) = \mathrm{TV}_{\mathsf{3D}}(U_{\mathsf{BV}})$$

Rewrite the prior:

$$-\log(\mathbf{p}(\mathbf{U})) = -\beta_{BV} \log \mathbf{p}(\mathbf{U}_{\mathbf{BV}}) - \beta_{S} \log \mathbf{p}(\mathbf{U}_{\mathbf{S}})$$

• We want a low total variation on the background:

$$-\log \mathrm{p}(U_{\mathsf{BV}}) = \mathrm{TV}_{\mathsf{3D}}(U_{\mathsf{BV}})$$

 \blacksquare Sparsity of the scatterers is achieved using the L0 pseudo-norm:

$$-\log p(\mathbf{U}_{\mathbf{S}}) = \|\mathbf{U}_{\mathbf{S}}\|_0$$
.

Model: final form

• We have to optimize:

$$\hat{\mathbf{U}} = \arg\min_{\mathbf{U}} \mathcal{E}(\mathbf{U}) = \arg\min_{\mathbf{U}} - \log \left(P(\mathbf{V}|\mathbf{U}) \right) - \log \left(P(\mathbf{U}) \right)$$

Model: final form

• We have to optimize:

$$\begin{aligned} \hat{\mathbf{U}} &= \arg\min_{\mathbf{U}} \mathcal{E}(\mathbf{U}) \\ &= \arg\min_{\mathbf{U}} - \log\left(P(\mathbf{V}|\mathbf{U})\right) - \log\left(P(\mathbf{U})\right) \\ &= \sum_{t=1}^{n} \left(\mathsf{DT}(\mathbf{v}_{t}, \mathbf{u}_{\mathsf{BV}t}, \mathbf{u}_{\mathsf{S}t}) + \beta_{\mathsf{S}}\mathsf{L0}(\mathbf{u}_{\mathsf{S}t})\right) + \beta_{\mathsf{BV}}\mathsf{TV}_{\mathsf{3D}}(\mathbf{U}_{\mathsf{BV}}) \end{aligned}$$

 Non convex problem because of the data term and the pseudo norm L0.

Solving the sub-problem for a fixed UBV

• We need to solve the problem for a fixed U_{BV} :

$$\widehat{\mathbf{U}_{S}}(\mathbf{U}_{\mathbf{B}\mathbf{V}}) = \arg\min_{\mathbf{U}_{S}} \sum_{t=1}^{n} \left(\mathsf{DT}(\mathbf{v}_{t}, \mathbf{u}_{\mathbf{B}\mathbf{V}_{t}}, \mathbf{u}_{\mathbf{S}t}) + \beta_{S} \mathsf{L0}(\mathbf{u}_{\mathbf{S}t}) \right) \\ + \beta_{BV} \mathsf{TV}_{3D}(\mathbf{U}_{\mathbf{B}\mathbf{V}})$$

Since terms are separable, we can solve for each pixel at each date:

$$\widehat{\mathbf{u}_{\mathbf{S}t}(i)}(\mathbf{u}_{\mathbf{B}\mathbf{V}t}(i)) = \begin{cases} \mathbf{u}_{\mathbf{S}t}(i)^{\star} & \text{if } \mathsf{DT}(\mathbf{v}_{t}(i), \mathbf{u}_{\mathbf{B}\mathbf{V}t}(i), \mathbf{u}_{\mathbf{S}t}(i)^{\star}) \\ & +\beta_{S} < \mathsf{DT}(\mathbf{v}_{t}(i), \mathbf{u}_{\mathbf{B}\mathbf{V}t}(i), 0) \\ 0 & \text{otherwise} \end{cases}$$

With $\mathbf{u}_{St}(i)^* = \arg \min_{\mathbf{u}_{St}(i)} \mathsf{DT}(\mathbf{v}_t(i), \mathbf{u}_{BVt}(i), \mathbf{u}_{St}(i))$ which can be found analytically.

Solving the whole problem

Problem only depending **U**_{BV}:

$$\underset{\mathbf{u}_{\mathsf{B}\mathsf{V}}}{\arg\min} \ \mathcal{E}(\mathsf{U}) = \arg\min_{\mathbf{u}_{\mathsf{B}\mathsf{V}}} \quad \sum_{t=1}^{n} \mathsf{DT}(\mathbf{v}_{t}, \mathbf{u}_{\mathsf{B}\mathsf{V}_{t}}, \widehat{\mathbf{u}_{\mathsf{S}t}}(\mathbf{u}_{\mathsf{B}\mathsf{V}_{t}}))$$
$$+ \ \beta_{\mathsf{S}} \|\widehat{\mathbf{u}_{\mathsf{S}t}}(\mathbf{u}_{\mathsf{B}\mathsf{V}t})\|_{0} + \beta_{\mathsf{B}\mathsf{V}} \mathsf{TV}_{3\mathsf{D}}(\mathbf{U}_{\mathsf{B}\mathsf{V}})$$

Solving the whole problem

Problem only depending UBV:

$$\arg\min_{\mathbf{u}_{\mathsf{BV}}} \mathcal{E}(\mathsf{U}) = \arg\min_{\mathbf{u}_{\mathsf{BV}}} \sum_{t=1}^{n} \mathsf{DT}(\mathsf{v}_{t}, \mathsf{u}_{\mathsf{BV}t}, \widehat{\mathsf{u}_{\mathsf{S}t}}(\mathsf{u}_{\mathsf{BV}t})) + \beta_{\mathsf{S}} \|\widehat{\mathsf{u}_{\mathsf{S}t}}(\mathsf{u}_{\mathsf{BV}t})\|_{0} + \beta_{\mathsf{BV}} \mathsf{TV}_{3\mathsf{D}}(\mathsf{U}_{\mathsf{BV}})$$

■ The first two terms are separable and the third one is convex and involves only pairs of pixel values ⇒ [Ishikawa, 2003]

The pixel grid is mapped to a graph with two terminal nodes:

A minimum s-t-cut is computed:

The cut is interpreted as a solution of the original problem:

24/07/2015 13/22

24/07/2015 13/22

24/07/2015 13/22

24/07/2015 13/22

24/07/2015 13/22

Plan

1. Introduction

- 2. Decomposition model
- 2.1 Model presentation
- 2.2 Exact discrete optimization

3. Application: scatterers change detection

- 4. Conclusion
- 5. Bibliography

Method

- From a series of observed images V, we obtain decomposition $\{(u_{BV1}, u_{S1}), \dots, (u_{BVn}, u_{Sn})\}$
- Keep the binarized version of the scatterers $\{u_{S_{t}}^{bin}\}$.

Method

- From a series of observed images V, we obtain decomposition $\{(u_{BV1}, u_{S1}), \dots, (u_{BVn}, u_{Sn})\}$
- Keep the binarized version of the scatterers $\{u_{S_{t}}^{bin}\}$.
- To cope with non-stability of the scatterers, construct:

$$T(i) = \left| \sum_{\delta} \mathbf{u_{S}}_{1}^{bin}(i+\delta) - \sum_{\delta} \mathbf{u_{S}}_{2}^{bin}(i+\delta) \right|$$

Method

- From a series of observed images V, we obtain decomposition $\{(u_{BV1}, u_{S1}), \dots, (u_{BVn}, u_{Sn})\}$
- Keep the binarized version of the scatterers $\{u_{S_{t}}^{bin}\}$.
- To cope with non-stability of the scatterers, construct:

$$T(i) = \left| \sum_{\delta} \mathbf{u_{S}}_{1}^{bin}(i+\delta) - \sum_{\delta} \mathbf{u_{S}}_{2}^{bin}(i+\delta) \right|$$

 T(i) is then thresholded to obtain the changes.

24/07/2015 15/22

Sylvain LOBRY

TV+L0 on SAR series

Changes on image 1. Changes on image 26.

Change detection results using the proposed method on images of Saint-Gervais series. Regions with changes that have been detected are indicated in red.

Sylvain LOBRY

Comparison with other algorithms

False positive alarm versus true positive curves of various change detection algorithms ([Su et al., 2014], [Lombardo and Oliver, 2001], [Krylov et al., 2012])

1. Introduction

- 2. Decomposition model
- 2.1 Model presentation
- 2.2 Exact discrete optimization
- 3. Application: scatterers change detection

4. Conclusion

5. Bibliography

- We introduced a decomposition model that:
 - Combines TV regularization with an L0 pseudo-norm suitable to SAR images.
 - Is able to take advantage of multi-temporal SAR series.
 - Can be used in a change detection application.
- Future work:
 - A change detection algorithm using all components.
 - Using optimization methods requiring less memory (see [Shabou et al., 2009]).

Questions ?

- Denis, L., Tupin, F., Darbon, J., and Sigelle, M. (2009).
 Sar image regularization with fast approximate discrete minimization.
 Image Processing, IEEE Transactions on, 18(7):1588–1600.
- Ishikawa, H. (2003). Exact optimization for Markov random fields with convex priors. *Pattern Analysis and Machine Intelligence, IEEE Transactions on*, 25(10):1333–1336.
- Krylov, V., Moser, G., Voisin, A., Serpico, Sebastiano, B., and Zerubia, J. (2012).

Change detection with synthetic aperture radar images by Wilcoxon statistic likelihood ratio test.

In *IEEE International Conference on Image Processing 2012*, Orlando, United States.

 Lombardo, P. and Oliver, C. (2001).
 Maximum likelihood approach to the detection of changes between multitemporal SAR images.
 IEEE Proceedings-Radar, Sonar and Navigation, 148(4):200–210.

Shabou, A., Tupin, F., and Darbon, J. (2009).
 A graph-cut based algorithm for approximate mrf optimization.
 In *ICIP*, pages 2413–2416.

Su, X., Deledalle, C.-A., Tupin, F., and Sun, H. (2014). NORCAMA: Change Analysis in SAR Time Series by Likelihood Ratio Change Matrix Clustering. ISPRS Journal of Photogrammetry and Remote Sensing, pages 247–261.