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Introduction

Context

Speckled images (Rayleigh multiplicative model when considering
amplitude images):

Input signal Speckle (L = 1)

Goals
Find regularization models.
Use multi-temporal information.
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Introduction

Context

Speckled images (Rayleigh multiplicative model when considering
amplitude images):

Input signal Additive Gaussian noise (σ = 5)

Goals
Find regularization models.
Use multi-temporal information.
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Decomposition model Model presentation

Model presentation

Scene to estimate U = {u1, . . . ,un}.
Observed images V = {v1, . . . , vn}.
In a Markov Random Field framework:

Û = argmin
U
− log (P(U|V))

= argmin
U
− log (P(V|U))− log (P(U))

= argmin
U
E(U)
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Decomposition model Model presentation

Likelihood-term definition

Likelihood distribution can be considered separable:

− log (P(V|U)) = − log

(
n∏

t=1

∏
i∈Ω

p(vt(i)|ut(i))

)

= − log

(
n∏

t=1

∏
i∈Ω

2 vt(i)
u2

t (i)
exp
(
−v2

t (i)
u2

t (i)

))

=
n∑

t=1

∑
i∈Ω

(
− log(2vt(i)) + 2 log(ut(i)) +

v2
t (i)

u2
t (i)

)
= DT(V,U)
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Decomposition model Model presentation

Likelihood-term definition

Conditional negative log likelihood of Rayleigh distribution for u = 5
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Decomposition model Model presentation

Likelihood-term definition

Conditional negative log likelihood of Rayleigh distribution
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Decomposition model Model presentation

Prior definition

A widely used regularization for noise reduction is the anisotropic total
variation (TV)

− log p(U) = TV3D(U)

=
∑

t,(i ,j)∈C

|ut(i)− ut(j)|+
∑
t,i∈Ω

|ut(i)− ut+1(i)|

But it is not adapted to scatterers present in SAR images
([Denis et al., 2009]):
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Decomposition model Model presentation

Proposed model: sparse + smooth

The scene is modeled as the sum of 2 components:

U = {. . . ,uBVt + uSt , . . .} = UBV + US

uBVt is a component with bounded variations, representing the
background;
uSt is a sparse component, representing the bright scatterers.
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Decomposition model Model presentation

Proposed model: sparse + smooth

Rewrite the prior:

− log(p(U)) = −βBV log p(UBV)− βS log p(US)

We want a low total variation on the background:

− log p(UBV) = TV3D(UBV)

Sparsity of the scatterers is achieved using the L0 pseudo-norm:

− log p(US) = ‖US‖0 .
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Decomposition model Model presentation

Model: final form

We have to optimize:

Û = argmin
U
E(U)

= argmin
U
− log (P(V|U))− log (P(U))

=
n∑

t=1

(DT(vt ,uBVt ,uSt) + βSL0(uSt)) + βBV TV3D(UBV)

Non convex problem because of the data term and the pseudo norm
L0.
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Decomposition model Exact discrete optimization

Solving the sub-problem for a fixed UBV

We need to solve the problem for a fixed UBV:

US

∧

(UBV) = argmin
US

n∑
t=1

(DT(vt ,uBVt ,uSt) + βSL0(uSt))

+ βBV TV3D(UBV)

Since terms are separable, we can solve for each pixel at each date:

uSt(i)
∧

(uBVt(i)) =


uSt(i)? if DT(vt(i),uBVt(i),uSt(i)?)

+βS < DT(vt(i),uBVt(i), 0)
0 otherwise

With uSt(i)? = arg min
uSt(i)

DT(vt(i),uBVt(i),uSt(i)) which can be

found analytically.
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Decomposition model Exact discrete optimization

Solving the whole problem

Problem only depending UBV:

argmin
uBV
E(U) = argmin

uBV

n∑
t=1

DT(vt ,uBVt ,uSt
∧

(uBVt))

+ βS‖uSt
∧

(uBVt)‖0 + βBV TV3D(UBV)

The first two terms are separable and the third one is convex and
involves only pairs of pixel values =⇒ [Ishikawa, 2003]
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Decomposition model Exact discrete optimization

Graph-cut optimization

The pixel grid is mapped to a graph with two terminal nodes:
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Decomposition model Exact discrete optimization

Graph-cut optimization

A minimum s-t-cut is computed:
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Decomposition model Exact discrete optimization

Graph-cut optimization

The cut is interpreted as a solution of the original problem:
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Decomposition model Exact discrete optimization

Graph-cut optimization

Graph construction for a single image
(from [Ishikawa, 2003]).

Weights
a) βBV (αi+1 − αi )

b) − log (P(vt(i)|αi ))

c) ∞
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Decomposition model Exact discrete optimization

Results

Decomposition of an image of Saint-Gervais acquired by TerraSAR-X. Thanks to
the German Aerospace Agency (DLR) for the images (project MTH0232 and
LAN1746).
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Application: scatterers change detection
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Application: scatterers change detection

Method

From a series of observed images V, we obtain decomposition
{(uBV1,uS1), . . . , (uBVn,uSn)}
Keep the binarized version of the scatterers {uS

bin
t }.

To cope with non-stability of the scatterers, construct:

T (i) =

∣∣∣∣∣∑
δ

uS
bin
1 (i + δ)−

∑
δ

uS
bin
2 (i + δ)

∣∣∣∣∣

T (i) is then thresholded to obtain the changes.
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Application: scatterers change detection

Results

Input image 1. Input image 26.

Changes on image 1. Changes on image 26.

Change detection results using the proposed method on images of Saint-Gervais
series. Regions with changes that have been detected are indicated in red.
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Application: scatterers change detection

Comparison with other algorithms
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The proposed TV+L0 change detection

False positive alarm versus true positive curves of various change detection
algorithms ([Su et al., 2014], [Lombardo and Oliver, 2001], [Krylov et al., 2012])
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Conclusion

Conclusion

We introduced a decomposition model that:
Combines TV regularization with an L0 pseudo-norm suitable to SAR
images.
Is able to take advantage of multi-temporal SAR series.
Can be used in a change detection application.

Future work:
A change detection algorithm using all components.
Using optimization methods requiring less memory (see
[Shabou et al., 2009]).
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Conclusion

Questions ?
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