

A keypoint approach for change detection between SAR images based on graph theory

> presented by Minh-Tan PHAM¹

Co-authors: Grégoire MERCIER¹, Julien MICHEL² ¹TELECOM Bretagne, France - ²CNES, France minh.pham@telecom-bretagne.eu

MULTITEMP - Annecy, France July 24, 2015

Contents

Introduction

Methodology

- Non-dense approach based on characteristic points
- Weighted graph and characteristics
- Graph for keypoints
- Generation of change measure between images

Experimental study

- Data sets
- Evaluation criteria and reference methods
- Results

Contents

Introduction

Methodology

- Non-dense approach based on characteristic points
- Weighted graph and characteristics
- Graph for keypoints
- Generation of change measure between images

Experimental study

- Data sets
- Evaluation criteria and reference methods
- Results

4 Conclusion and future work

Introduction

Context

Change detection between two SAR images **Applications:**

- Understanding/evaluating land-cover changes occurring after a natural or anthropic disaster
- Identifying/monitoring land-use development over time, etc.
- SAR imagery: capable of acquiring data under any atmosphere and illumination conditions

Reference methods:

- Ratio-based detectors: mean ratio (MR), log-ratio (LR), fusion of MR+LR
- Higher order statistics approaches: Pearson-based/cumulant-based Kullback-Leibler distance, etc.
- \rightarrow constrained to the evaluation of dense neighborhoods around image pixels
- \longrightarrow large-size windows need to be considered!

Introduction

Objective of this work

- Non-dense approach based on the interaction of characteristic points (i.e. keypoints) to measure changes
- Graph-based model \longrightarrow encode both image intensity and geometry information
- Experiments on real SAR image data
 - Qualitative and quantitative evaluation
 - Comparison to reference approaches for validation

Contents

2 Methodology

- Non-dense approach based on characteristic points
- Weighted graph and characteristics
- Graph for keypoints
- Generation of change measure between images

- Results

Non-dense approach based on characteristic points Weighted graph and characteristics Graph for keypoints Generation of change measure between images

Methodology - Proposed framework

page 7

Non-dense approach based on characteristic points Weighted graph and characteristics Snaph for Keypoints

Methodology - Non-dense approach based on characteristic points

 \bullet Our recent work \Rightarrow texture representation and description using a set of characteristic points, not all image pixels

- Texture \Rightarrow spatial arrangement of pixels holding some intensity variations
- Can be approximated by the local maximum/minimum pixels
- Relevant to large-size images without requirement of stationarity hypothesis
- In this work ⇒ exploit the local maximum pixels to represent and perform change detection algorithm

$$p\in S^{\sf max}_{\omega}(I)\Leftrightarrow \left\{p={\sf argmax}_{q\in\mathcal{N}_{\omega}(p)}\,I(q)
ight\},$$

where $\mathcal{N}_{\omega}(p)$: set of neighboring pixels of p inside $\omega \times \omega$ search window.

Advantages:

- Easy to be extracted
- Appear together with any variation of intensity (i.e. presence of texture)
- Good density and distribution on the image plane

M.T. Pham, G. Mercier, J. Michel, *Pointwise graph-based local texture characterization* for VHR multispectral image classification, IEEE-JSTARS, vol. 12(5), 2015.

Non-dense approach based on characteristic points Weighted graph and characteristics

Generation of change measure between images

Methodology - Weighted graph and characteristics

Weighted graph

A graph
$$\mathcal{G} = (V, E, w)$$
 consists of:

- V: vertex set (i.e. nodes)
- E: set of edges between vertices
- w: edge weights involving vertex similarity

Characteristics

Adjacency matrix (i.e. matrix of weights)

$$V = \begin{pmatrix} 0 & w_{1,2} & \cdots & w_{1,N} \\ w_{2,1} & 0 & \cdots & w_{2,N} \\ \vdots & \vdots & \ddots & \vdots \\ w_{N,1} & w_{N,2} & \cdots & 0 \end{pmatrix}$$

V

page 9

Non-dense approach based on characteristic points Weighted graph and characteristics

Generation of change measure between images

Methodology - Weighted graph and characteristics

Weighted graph

A graph
$$\mathcal{G} = (V, E, w)$$
 consists of:

V: vertex set (i.e. nodes)

- E: set of edges between vertices
- w: edge weights involving vertex similarity

CharacteristicsDegree matrix $\mathcal{D}_{ii} = \sum_{j} \mathcal{W}_{ij}$ $\mathcal{D} = \begin{pmatrix} \sum_{k} w_{1,k} & 0 & \cdots & 0 \\ 0 & \sum_{k} w_{2,k} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \sum_{k} w_{N,k} \end{pmatrix}$ $\mathcal{D}_{ij} = 0, \forall j \neq i$ $\mathcal{D} = \begin{pmatrix} \sum_{k} w_{1,k} & 0 & \cdots & 0 \\ 0 & \sum_{k} w_{2,k} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \sum_{k} w_{N,k} \end{pmatrix}$

Keypoint approach and graph theory for SAR image change detection

Non-dense approach based on characteristic points Weighted graph and characteristics

Generation of change measure between images

Methodology - Weighted graph and characteristics

Weighted graph

A graph
$$\mathcal{G} = (V, E, w)$$
 consists of:

V: vertex set (i.e. nodes)

- E: set of edges between vertices
- w: edge weights involving vertex similarity

Characteristics

Laplacian matrix $\mathcal{L} = \mathcal{D} - \mathcal{W} \qquad \qquad \mathcal{L} = \begin{pmatrix} \sum_{k} w_{1,k} & -w_{1,2} & \cdots & -w_{1,N} \\ -w_{2,1} & \sum_{k} w_{2,k} & \ddots & -w_{2,N} \\ \vdots & \vdots & \ddots & \vdots \\ -w_{N,1} & -w_{N,2} & \cdots & \sum_{k} w_{N,k} \end{pmatrix}$

Keypoint approach and graph theory for SAR image change detection

page 9

Non-dense approach based on characteristic points Weighted graph and characteristics

Generation of change measure between images

Methodology - Weighted graph and characteristics

Characteristics

Denote $f = \{f(n) \in \mathbb{R}, n = 1 \dots N\}$:

$$(\mathcal{W}f)(n) = \sum_{k \sim n} w(n,k)f(k)$$

 \rightarrow concentration of information diffused from neighboring vertices

 \longrightarrow filtering operator on graph signal

$$(\mathcal{L}f)(n) = \sum_{k \sim n} w(n,k) \left[f(n) - f(k) \right]$$

 \longrightarrow local difference operator on graph signal

D. I. Shuman, S. K. Narang, P. Frossard, A. Ortega and P. Vandergheynst, *The emerging field of signal processing on graphs: Extending high-dimensional data analysis to networks and other irregular domains*, IEEE Sig. Proc. Society, vol. 30, no. 3, pp. 83-98, May, 2013.

Non-dense approach based on characteristic points Weighted graph and characteristics Graph for keypoints

Methodology - Proposed framework

page 11

Non-dense approach based on characteristic points Weighted graph and characteristics Graph for keypoints

Methodology - Graph for keypoints

Graph construction

- Vertex set = set of extracted max keypoints
- Each vertex connects to K closest neighbors
- Weight computation:

$$w(p_n,p_k)=e^{-\gamma\left[\operatorname{dist}(p_n,p_k)\right]},$$

$$\forall (p_n, p_k) \in E$$

Employing log-ratio distance:

$$\mathsf{dist}(p_n,p_k) = \left|\log\frac{\mu_1(p_n)}{\mu_1(p_k)}\right|$$

 $\mu_1(p_n)$ (resp. $\mu_1(p_k)$): the mean intensity of the pixel patch around vertex p_n (resp. p_k) from the first image l_1 .

$$(\mathcal{W}f)(p_n) = \sum_{p_k \sim p_n} w(p_n, p_k)f(p_k)$$

Non-dense approach based on characteristic points Weighted graph and characteristics Graph for keypoints Generation of change measure between images

Methodology - Proposed framework

page 13

Non-dense approach based on characteristic points Weighted graph and characteristics Graph for keypoints Generation of change measure between images

Methodology - Generation of change measure

Proposed strategy

Change measure = the **coherency/compatibility** of radiometric information captured by the vertices of graph \mathcal{G} from two images.

• Two signals on graph \mathcal{G} capturing radiometric information from l_1 and l_2 :

$$f_1 = [\log \mu_1(p_1), \log \mu_1(p_2), \dots, \log \mu_1(p_N)]^T, f_2 = [\log \mu_2(p_1), \log \mu_2(p_2), \dots, \log \mu_2(p_N)]^T.$$

Change measure at keypoint p_n:

$$CM(p_n) = \left| \left| (\mathcal{W}f_1)(p_n) - (\mathcal{W}f_2)(p_n) \right| \right|_1$$

= $\left| \sum_{p_k \sim p_n} w(p_n, p_k) \log \mu_1(p_k) - \sum_{p_k \sim p_n} w(p_n, p_k) \log \mu_2(p_k) \right|$
= $\sum_{p_k \sim p_n} w(p_n, p_k) \left| \log \frac{\mu_1(p_k)}{\mu_2(p_k)} \right|.$

Contents

Introduction

2 Methodology

- Non-dense approach based on characteristic points
- Weighted graph and characteristics
- Graph for keypoints
- Generation of change measure between images

Experimental study

- Data sets
- Evaluation criteria and reference methods
- Results

Onclusion and future work

Data sets

Evaluation criteria and reference methoc Results

Experimental study - Data sets

Dataset 1

- Two 800 \times 400 images acquired by *Radarsat-1* satellite, 10-m resolution
- Before and after the eruption of Nyiragongo vocalno, DR. of Congo
- Semi-urban zone near Goma international airport

Before eruption

Change mask

Keypoint approach and graph theory for SAR image change detection

Data sets

Evaluation criteria and reference methoc Results

Experimental study - Data sets

Dataset 2

- Series of 10 Radarsat-2 images, 5-m resolution
- An intensively agricultural area in Chartres, France
- = Two extracted ROIs of 1000×850 pixels

Keypoint approach and graph theory for SAR image change detection

Data sets Evaluation criteria and reference methods Results

Experimental study - Evaluation criteria

Reference methods

- Ratio-based detectors: mean-ratio (MRD), log-ratio (LRD)
- Higher order statistics: Gaussian-based Kullback-Leibler (GKLD), Cumulant-based Kullback-Leibler (CKLD)

Evaluation criteria

- False alarm (FA) rate and good detection (GD) rate
- Percentage of total errors (TE) consisting of false alarms and missed detections
- Percentage of overall accuracy (OA)
- \blacksquare ROC (Receiver operating characteristics) curve \longrightarrow plots the GD rate in function of FA rate

Data sets Evaluation criteria and reference methods Results

Experimental study - Results

Dataset 1

- Two 800 \times 400 images by *Radarsat-1* satellite, 10-m resolution
- Before and after the eruption of Nyiragongo vocalno, DR. of Congo

Before eruption

After eruption

Change mask

Keypoint approach and graph theory for SAR image change detection

Data sets Evaluation criteria and reference methods Results

Experimental study - Results

Dataset 1

- Compared to reference methods: MRD and CKLD
- Window size 35×35 pixels, K = 50 for graph construction

Proposed method

Data sets Evaluation criteria and reference methods Results

Experimental study - Results

Dataset 1

- **ROC plots** compared to MRD, LRD, GKLD and CKLD
- Window size 35×35 pixels, K = 50 for graph construction

Data sets Evaluation criteria and reference methods Results

Experimental study - Results

Comparison of False Alarm rate (P_{FA}), Good Detection rate (P_{GD}), percentage of Total Errors (P_{TE}) and percentage of Overall Accuracy (P_{OA}) **Dataset 1** ($N_c = 2011$ points, $N_u = 7534$ points)

Thresholding Method	Detector	False Alarms (points)	Missed Detections (points)	Good Detections (points)	P_{GD}/P_{FA}	P_{TE} (%)	P_{OA} (%)
K-means	MRD	804	690	1321	6.1555	15.65	84.35
	LRD	686	775	1236	6.7501	15.31	84.69
	GKLD	662	886	1125	6.3666	16.22	83.78
	CKLD	533	959	1052	7.3944	15.63	84.37
	Proposed	549	795	1216	8.2980	14.08	85.92
Otsu	MRD	840	652	1359	6.0611	15.63	84.37
	LRD	701	768	1243	6.6430	15.39	84.61
	GKLD	733	835	1176	6.0106	16.43	83.57
	CKLD	554	939	1072	7.2493	15.64	84.36
	Proposed	583	766	1245	8.0004	14.13	85.87
KI	MRD	723	754	1257	6.5134	15.47	84.53
	LRD	688	775	1236	6.7304	15.33	84.67
	GKLD	534	979	1032	7.2402	15.85	84.15
	CKLD	766	739	1272	6.2212	15.77	84.23
	Proposed	645	722	1289	7.4870	14.32	85.68

Dataset 2

- Series of 10 Radarsat-2 images, 5-m resolution
- An intensively agricultural area in Chartres, France
- 2 ROIs of 1000 × 850 pixels

Dataset 2

- Compared to reference meththods: MRD and GKLD
- Window size 35×35 pixels, K = 50 for graph construction

GKLD

MRD

page 20

Data sets Evaluation criteria and reference methods Results

Dataset 2

- Compared to reference meththods: MRD and GKLD
- Zoomed results for RED zone

Red cut from image 1

Red cut from image 2

Keypoint approach and graph theory for SAR image change detection

Data sets Evaluation criteria and reference methods Results

Dataset 2

- Compared to reference meththods: MRD and GKLD
- Zoomed results for RED zone

日安日間

Introduction Methodolog Experimental stud Conclusion and future worl Data sets Evaluation criteria and reference methods Results

Dataset 2

- Compared to reference meththods: MRD and GKLD
- Zoomed results for GREEN zone

Green cut from image 1

MRD

Green cut from image 2

GKLD

Keypoint approach and graph theory for SAR image change detection

Contents

Introduction

2 Methodology

- Non-dense approach based on characteristic points
- Weighted graph and characteristics
- Graph for keypoints
- Generation of change measure between images

Experimental study

- Data sets
- Evaluation criteria and reference methods
- Results

4 Conclusion and future work

Conclusion and future work

Conclusion

- Change detection strategy by a non-dense approach based on the interaction between characteristic points encoded by a graph model
- Superior performance compared to reference methods
- Robust to different thresholding techniques

Future work

- Investigation on multi-date SAR data
 - \Rightarrow study major changes overtime
 - \Rightarrow understand the development of agricultural crops, forest/urban zones, movement of glaciers, etc.

page 23

Thanks for your attention!

Minh-Tan PHAM et al.

Keypoint approach and graph theory for SAR image change detection