Agricultural monitoring with Polarimetric SAR time series

Knowledge for Tomorrow

Alberto Alonso-Gonzalez^a, Thomas Jagdhuber^a, Irena Hajnsek^{a,b}

^aGerman Aerospace Center, DLR

^bInstitute of Environmental Enginnering, ETH Zurich

Synthetic Aperture Radar - Advantages

Synthetic Aperture Radar (SAR) are <u>active & coherent systems</u> providing information about the <u>scene reflectivity</u> at <u>microwave frequencies</u>.

- High spatial resolution: The Synthetic Aperture concept allows under 1m resolution
 - Own illumination source \rightarrow independent of the day/night cycle
 - Atmosphere is transparent at microwave frequencies → independent of cloud coverage / atmospheric state
- All-weather imaging sensors: very reliable for the observation of all the Earth surface
- Sensitive to target structure & deformation: since SAR are coherent sensors, interferometric & polarimetric information may be fully exploited
 - SAR Interferometry: phase differences between two (or more) acquisitions are exploited.

Target height / displacement / vertical profile

 SAR Polarimetry: distinct polarization states are employed for transmitted and received waves.

Multidimensional SAR – Polarimetry and time series

Multidimensional SAR systems acquire *m* complex SAR images

Target vector

 $\boldsymbol{k} = [S_1, S_2, \dots, S_m]^T$

Multidimensional SAR systems provide additional information to improve scene characterization SAR Polarimetry: distinct polarization states are employed for transmitted and received waves.

$$\begin{bmatrix} E_{h}^{s} \\ E_{v}^{s} \end{bmatrix} = \frac{e^{-jkr}}{r} \begin{bmatrix} S_{hh} & S_{hv} \\ S_{vh} & S_{vv} \end{bmatrix} \begin{bmatrix} E_{h}^{i} \\ E_{v}^{i} \end{bmatrix}$$
$$\boldsymbol{k} = \begin{bmatrix} S_{hh}, \sqrt{2}S_{hv}, S_{vv} \end{bmatrix}^{T}$$

Information related to target structure and properties

• Temporal series: several acquisitions of the same scene at different times.

Some types of Multidimensional SAR data

Temporal Analysis

• Extended covariance matrix: includes the polarimetric temporal evolution information

$$\boldsymbol{Z}_{N} = \begin{vmatrix} \boldsymbol{Z}_{11} & \boldsymbol{\Omega}_{12} & \cdots & \boldsymbol{\Omega}_{1N} \\ \boldsymbol{\Omega}_{12}^{H} & \boldsymbol{Z}_{22} & \cdots & \boldsymbol{\Omega}_{2N} \\ \vdots & \vdots & \ddots & \vdots \\ \boldsymbol{\Omega}_{1N}^{H} & \boldsymbol{\Omega}_{2N}^{H} & \cdots & \boldsymbol{Z}_{NN} \end{vmatrix}$$

The temporal stability is evaluated for each area with a similarity measure

The average similarity measure for all the combinations of Z_{ii} is computed

For time series BPT the temporal stability may be measured by comparing the different Z_{ii} matrices:

$$t_{s} = \frac{2}{N(N-1)} \sum_{i=1}^{N} \sum_{j=i+1}^{N} \left\| \log \left(\boldsymbol{Z}_{ii}^{-1/2} \boldsymbol{Z}_{jj} \boldsymbol{Z}_{ii}^{-1/2} \right) \right\|_{F}$$

TE BPT measures the amount of polarimetric change among all the acquisitions (temporal stability)

Time series dataset

Demmin test site

07. June 06

ESAR @ L-band

Pauli

RGB

dihedra

volume

surface

05. July 06

19. April 06

07. June 06

Demmin test site

05. July 06

ESAR @ L-band

19. April 06

07. June 06

Demmin test site

05. July 06

ESAR @ L-band

DLR

Demmin test site

ESAR @ L-band

Small change

19. April → 07. June

Information of the <u>amount of change</u> but not about the <u>type of change</u>.

 $07. June \rightarrow 05. July$

ESAR @ L-band

Polarimetric change analysis

A method is proposed to analyze the change among two acquisitions in the polarimetric space

$$P_{c}(\boldsymbol{T}_{1},\boldsymbol{T}_{2},\boldsymbol{w}) = \frac{\boldsymbol{w}^{H}\boldsymbol{T}_{2}\boldsymbol{w}}{\boldsymbol{w}^{H}\boldsymbol{T}_{1}\boldsymbol{w}}$$

Polarimetric contrast for each polarization state *w*

```
Only information
about the relative
change
```

The range of values for the polarimetric contrast may be obtained from:

$$\boldsymbol{T}_2 \boldsymbol{w} = \lambda \boldsymbol{T}_1 \boldsymbol{w}$$

which may be solved by the equation:

$$det(\boldsymbol{T}_2 - \lambda \boldsymbol{T}_1) = 0$$

The set of generalized eigenvalues represent the polarimetric contrast


```
Generalized eigendecomposition
between T_1 and T_2
```

The set of generalized eigenvectors represent the corresponding polarization states

 w_1, w_2, w_3

Fully polarimetric (magnitude and phase information)

Polarimetric change representation

A change representation is proposed to condense all the information of the polarimetric change analysis and make it more comprehensible

- Extract the information related to the polarization states that have increase & decrease between the 2 acquisitions
- Weight each polarization state by the amount of change it represents

19. April 06

07. June 06

 p_{inc}

 p_{dec}

Polarimetric change analysis representation (Winter wheat)

19. April 06

07. June 06

Polarimetric change analysis representation (Winter wheat)

19. April 06

07. June 06

Polarimetric change analysis representation (Winter wheat I)

Polarimetric change analysis representation (Winter wheat I)

Polarimetric change analysis representation (Winter wheat II)

Polarimetric change analysis representation (Winter wheat)

Polarimetric change analysis representation (Winter wheat flowering)

Polarimetric change analysis representation (Rape & Sugar beet)

Polarimetric change analysis representation (Rape & Sugar beet)

19. April 06 DLR

Pauli RGB 3-10 dB

DLR

07. June 06

05. July 06

 p_{inc}

 p_{dec}

Pauli RGB 3-10dB $|S_{hh}+S_{vv}|$ $|S_{hv}+S_{vh}|$ $|S_{hr}-S_{vv}|$

DLR

DLR

Polarimetric change analysis representation (Sugar beet & Maize)

Polarimetric change analysis representation (Rape & Winter barley)

Polarimetric change analysis representation (Winter wheat)

- Group regions with similar polarimetric temporal evolution.
- Group regions having similar polarimetric changes among the different acquisitions

Conclusions

- Polarimetric SAR time series contain valuable information for the monitoring and characterization of agricultural areas.
- The proposed temporal stability measure is able to detect the changes of the scene, containing information about the amount of change.
- The polarimetric change analysis is a useful mechanism for detecting the type of change. It is related with the polarimetric contrast.
- A polarimetric change representation is proposed which has proven to be sensitive to distinct phenological changes and plant evolution.
- This polarimetric change analysis information is useful for unsupervised classification. It is able to identify and separate into classes the different content of the scene, improving considerably the agricultural land-use classification performance.

Thank you for your attention!

