Deformation Estimation on Low Coherence Areas by Means of Polarimetric Differential SAR Interferometry

<u>Stéphane Guillaso¹</u> Franck Garestier²

UN(AEN

¹Computer Vision and Remote Sensing, Technische Universität Berlin, Germany ²M2C, University of Caen, France

berlin

Overview

I. Context: Survey of the permafrost environment

II. The Yakutsk Region

- Temporal backscattering variation / temperature
- The differential interferometry processing chain
- Investigation of the Data

III. Phase estimation in low coherence area: Preliminary study

- Presentation of the problem
- Phase estimation based on ESPRIT approach
- Preliminary results: masked areas, mean deformation velocity, DEM correction

IV. Conclusions & Perspectives

SAR Potential for Survey of the Permafrost Environment

20% of the continental surface: freezing/thaw cycles

- Need to quantify the carbon emissions (CO₂ and CH₄) for climate modelling
- Predominant physical parameters:
 - → Active layer thickness
 - → Moisture Variation
 - → Type of soil
 - → Vegetation (type and biomass)

Use of Differential SAR Interferometry

- cm/mm ground movement estimation
 - Subsidence due to hydrology (water state), heat transfer, ice thickness variation

F

Possibility to inverse the active layer thickness

SAR Data Acquisition over the Yakutsk Region

TerraSAR-X

- Emitting frequency: 9.65 GHz ($\lambda \sim 3$ cm)
- Ground resolution: ~ 6 m
- Coverage: 2 sites of 30 × 70 km
- Revisit time: 11 days
- Acquisition during 1 years

SAR Data Acquisition over the Yakutsk Region

Temporal Backscattering Evolution

Temporal Backscattering Evolution

New method to characterise permafrost soil

Development of an interferometric processing chain (SBAS type)

- Images are co-registered 2 by 2, successively, to keep a good coherence.
- DEM generated directly from the stack

TerraSAR-X: Temporal baseline of 11 days

- Deterministic phase over the all dataset for successive pairs
- Minimise phase error/noise term

Investigation of the Data

Localized surface movement

Quite continuous time behaviour (integrated over 3 months)

- Alaces & small thermokarstic depressions: + varying ice thickness?
- Slow mass movements (horizontal component)

Garestier et. al. 2015

Investigation of the Data

Localized surface movement

Quite continuous time behaviour (integrated over 3 months)

- Alaces & small thermokarstic depressions: + varying ice thickness?
- Slow mass movements (horizontal component)

Garestier et. al. 2015

Phase Estimation over Low Coherence Areas

Decorrelation Source

- **Temporal decorrelation** (γ_t)
- Low signal-to-noise ratio (γ_{SNR})
- Bad SAR processing
- Baseline decorrelation(γ_{BI})
- **Volume decorrelation** (γ_v)

ESPRIT* - The Signal Model

2 fully polarimetric sensor C_1 and $C_2 \Rightarrow$ received polarimetric signal s_1 and s_2 :

$$s_1^{pq} = \sum_{k=1}^d \sigma_k \zeta_k^{pq} e^{i\frac{4\pi}{\lambda}R} + n_1^{pq}$$
$$s_2^{pq} = \sum_{k=1}^d \sigma_k \zeta_k^{pq} e^{i\frac{4\pi}{\lambda}(R+\Delta R_k)} + n_2^{pq}$$

p, *q* Polarization channel (e.g. *HH*, *HV*, *VV*)

- d Number of local scatterers ($d \le 2$)
- σ Amplitude of the observed scatterer
- ζ Polarization state
- *R* Slant range distance
- ΔR_k Slant range difference
- *n* Additive gaussian noise

Yamada et. al. 2001, Guillaso et. al. 2003

*Estimation of signal parameters via rotational invariance techniques

ESPRIT* - Phase Center Estimation

Vector notation

$$\vec{s}_1 = [s_1^{HH}, s_1^{HV}, s_1^{VV}]^T = \mathbf{A}\vec{\sigma} + \vec{n}_1$$

$$\vec{s}_2 = [s_2^{HH}, s_2^{HV}, s_2^{VV}]^T = \mathbf{A} \mathbf{\Phi} \vec{\sigma} + \vec{n}_2$$

$$\vec{k} = \begin{bmatrix} \vec{s}_1 \\ \vec{s}_2 \end{bmatrix} = \begin{bmatrix} \mathbf{A} \\ \mathbf{A} \mathbf{\Phi} \end{bmatrix} \vec{\sigma} + \begin{bmatrix} \vec{n}_1 \\ \vec{n}_2 \end{bmatrix} = \mathbf{\bar{A}} \vec{\sigma} + \vec{n}$$

- → Observed signal master track
- Observed signal slave track

→ Interferometric target vector

 \downarrow

 $\downarrow \downarrow$

Roy et. al. 1989

*Estimation of signal parameters via rotational invariance techniques

ESPRIT - Experimental Results

Guillaso et. al. 2005

ESPRIT - Processing Chain

M interferograms

$\prod^{M} Mask_k$ **Dual/Quad Pol** Dual/Quad Pol Mask non Mask non Vmean SLC Images SLC Images valid areas valid areas k=1Slave master Opt_1 Opt_1 Opt_1 v and herr Unwrapped Region Interferometric radiometric Herr → Coregistration Growing Interferometric estimation via Phase calibration Phase Unwrapping IS Opt_ Opt Opt_1 v and herr Unwrapped Range Spectral Slave Interferometric Herr **ESPRIT** estimation via resample Filtering Phase IS HH-HV-VV HH-HV-VV Region MInterferometric Mask non Mask non Covariance $\prod Mask_k$ Vmean X2 oversample -> Growing Phase valid areas valid areas Formation Unwrapping k=1HH-HV-VV HH-HV-VV HH-HV-VV HH-HV-VV Covariance Select mask out Coherence Presumming Estimation coh > 0.6pix<50% HH-HV-VV

P.Prats, A. Reigber, J. J. Mallorquí, R. Scheiber and A. Moreira, "Estimation of the Temporal Evolution of the Deformation Using Airborne Differential SAR Interferometry," *IEEE TGRS*, Vol. 46, No. 4, 2008.

ESPRIT - Increase of the Valid Area

ESPRIT - Estimation of the Mean Deformation Velocity

Orbital errors: ramp => Need correction!

ESPRIT - DEM Correction

*P.Prats, A. Reigber, J. J. Mallorquí, R. Scheiber and A. Moreira, "Estimation of the Temporal Evolution of the Deformation Using Airborne Differential SAR Interferometry," *IEEE TGRS*, Vol. 46, No. 4, 2008.

ESPRIT - DEM Correction

Profiles

ESPRIT - DEM Correction

Profiles

Conclusions & Perspectives

Conclusions

- Survey of permafrost environment by means of SAR data
- First results over the Yakutsk region
- Preliminary study over low coherence area using the ESPRIT approach

Perspectives

- Implementation of ESPRIT in the Yakutsk dataset
- Quantitative validation of the approach
- Use of polarimetric technique to estimate biophysical parameters.

Thank you for your attention.

contact: <u>stephane.guillaso@tu-berlin.de</u>

berlin

