Evaluation of medium spatial resolution BRDF-adjustment techniques using multi-angular SPOT4 (Take5) acquisitions

Martin Claverie, Belen Franch (UMD/NASA); Eric Vermote, Jeff Masek (NASA); Mohamed Kadiri (CESBIO); Tao He (UMD)

Presented by Olivier Hagolle (CESBIO)

8th International Workshop on the Analysis of Multitemporal Remote Sensing Images July 22-24, 2015 – Annecy France

Context: the Harmonized Landsat/Sentinel2 product (HLS)

- □ Merging Sentinel-2 and Landsat data streams could provide < 5-day coverage
- □ Goal is "seamless" near-daily 30m surface reflectance record
- □ Cross-calibration, atmospheric corrections, spectral and BRDF adjustments, regridding
- □ Prototype over 20-30 sites during first MSI year.

- □ Some Specifications:
- ➢ Nadir-corrected − constant SZA
- Landsat-like bands + Red-edge + thermal
- 30m spatial res., Sinusoidal proj., WELD tiling system (equivalent MODIS @30m)
- 6-day temporal composite product (best pixel, no averaging)
- Intermediate products distributed (without temporal compositing)

Sentinel 2A and B - LDCM Europe

Bidirectional Reflectance Distribution Function

• The BRDF describes the directional way solar radiation reflects from the surface.

 $\rho(\theta_{S}, \theta_{V}, \Delta \phi, \lambda) = f_{iso}(\lambda)$ $+ k_{vol}(\theta_{S}, \theta_{V}, \Delta \phi) \times f_{vol}(\lambda)$ $+ k_{geo}(\theta_{S}, \theta_{V}, \Delta \phi) \times f_{geo}(\lambda)$

Photographs by Don Deering.

Moderate resolution BRDF retrieval

- MODIS BRDF products (MCD43) include albedo, BRDF parameters and NBAR
- NBAR = Nadir BRDF-Adjusted Reflectances (and mean sun zenith angle)
- Inversion approaches were developed using the high temporal and angular sampling (e.g. MODIS = daily, +/- 60°)
- MCD43 products
 - relies on 16-day SR stability to invert $f_{iso}/f_{vol}/f_{geo}$
 - $f_{iso}/f_{vol}/f_{geo}$ are temporally and spatially explicit

 $\rho(\theta) = f_{iso}(\lambda)$ $+ k_{vol}(\theta) \times f_{vol}(\lambda)$ $+ k_{aeo}(\theta) \times f_{aeo}(\lambda)$

- VJB (Vermote et al. 2009):
 - Simplification of the BRDF eq.
 - *V*&*R* = Related to NDVI variation and spatially explicit

$$V(\lambda) = f_{vol}(\lambda)/f_{iso}(\lambda) \qquad R(\lambda) = f_{geo}(\lambda)/f_{iso}(\lambda)$$

$$\rho(\theta, \lambda) = f_{iso}(\lambda) \left(1 + V(\lambda)k_{vol}(\theta) + R(\lambda)k_{geo}(\theta)\right)$$

$$V(\lambda) = V_0(\lambda) \times NDVI + V_1(\lambda)$$

$$R(\lambda) = R_0(\lambda) \times NDVI + R_1(\lambda)$$

Medium resolution BRDF retrieval

- Not enough temporal and angular sampling to retrieve the BRDF
- BRDF retrieval needs to rely on a-priori of the BRDF shape
 - From Archetypes (fix BRDF shape)
 - From moderate resolution BRDF

Five BRDF-adjustment techniques

	Cst	 Constant technique (from CESBIO analysis) Constant BRDF shape for all surfaces Rely on VJB model 					
Rely on the VJB model	AV	 Average technique (Breon et al. 2012) Use of 20m NDVI Not based on MODIS BRDF retrieval Rely on VJB method 					
Rely on the MODIS BRDF	VI-dis	 NDVI-disaggregation technique (claverie, 2015) Use of 20m NDVI to disaggregate BRDF shape Based on VJB MODIS BRDF retrieval (@1250m) 					
	LC-dis	 Land Cover disaggregation technique (Franch et al. 2014) Use of per-scene-Land-Cover to disaggregate BRDF shape Based on VJB MODIS BRDF retrieval (@1250m) 					
	LUM	 Look-up maps (LUM) technique (Gao et al., 2014) Use of the Crop Data Layer (USDA) to disaggregate BRDF shape Based on MCD43 MODIS BRDF products (@500m) 					

The SPOT4 (Take5) experiment

- From 01/29/2013 to 06/19/2013, SPOT4's orbit was lowered by 3km
- 5 day repeat cycle orbit.
- 45 sites have been observed every 5 days
- SPOT4 HRV1-2 specs:
 - Spatial: 20m
 - Spectral (550nm, <u>650nm</u>, <u>850nm</u>, 1600nm)
 - Swath: 60km (but can be extend to 120km using HRV1&2)
 - Pointing capability: +/-30°
- Three Multi-angular sites
 - Sudmipy (France)
 - ProvLanguedoc (France)
 - Maricopa (Arizona, USA)

Take5 Multi-angular sites

Evaluation procedure: Time series Noise

Noise Analysis – Maricopa site

Noise Analysis – French sites

Conclusion

- The Multi-angular SPOT4 (Take5) sites provided a unique dataset for medium spatial resolution BRDF retrieval techniques.
- Study can be repeated with SENTINEL-2A
- Results highlights
 - Significant decrease of the Noise using any of the 5 techniques (average reduction: Red=40%; NIR=50%);
 - Spatially uniform techniques (Cst and Av) produce very decent results, knowing the simplicity of the approaches;
 - LUM: very good result over grassland and agriculture land cover, less over shrubland;
 - VI-dis produced the best overall result; consistent over the studied LC; easy to implement in an operational chain.
 - A forward-scattering issue that needs to be studied

- Limitations
 - Need to evaluate additional MOD43-based techniques (eg, Roy et al. 2008);
 - We evaluate BRDF performances over a limited range of sun-view geometry (VZA<28);
 - Forest LC poorly represented (SPOT/ TAKE5)

Claverie, M., et al. Evaluation of medium spatial resolution BRDF retrieval techniques using multi-angular SPOT4 (Take5) acquisitions. <u>Remote Sensing MDPI</u>, Special Issue "Lessons Learned from the SPOT4 (Take5): Experiment in Preparation for Sentinel-2", In revision.

"Sorry for not being present at the 2015 MultiTemp, feel free to contact me for any questions regarding this presentation or the Landsat/Sentinel2 Harmonized product. *Merci beaucoup Olivier* !"

hank you!

Martin (martin.claverie@nasa.gov)

8th International Workshop on the Analysis of Multitemporal Remote Sensing Images July 22-24, 2015 – Annecy, Brance

Combined NoiseRatio scores (per LC / Site / band)

- Better overall Noise reduction for NIR (43-50%) than Red (28-42%)
- VI-dis = best performances
- LC-dis displays contrasted performances
- Cst and Av show decent performances for such simple approaches

		Red					NIR					NI /im
low high Noise Ratio level		Cst	Av	VI-dis	LC-dis	ТЛМ	Cst	Av	VI-dis	LC-dis	LUM	millions)
	Mar	0.755	0.828	0 749	0 731*	0.748	0.816	0.812	0 781	0.907	0 779*	1 27
Agri- culture	SMP	0.652	0.769	0.582	0.502*	0.7 10	0.556	0.562	0.502	0.438*	0.770	4.35
	PI	0.571	0.681	0.002	0.413		0.503	0.469	0.002	0.301		1.84
	3 Sites	0.638	0.754	0.570	0.527*	0.748	0.556	0.400	0.473	0.464*	0 779	7.46
Grass- land	Mar	0.000	0.734	0.070	0.828	0.740	0.330	0.040	0.475	0.404	0.674	0.50
	SMD	0.039	0.072	0.029	0.020	0.017	0.730	0.701	0.090	0.880	0.074	0.50
		0.703	0.775	0.009	1.067		0.687	0.676	0.004	0.863		0.03
		0.724	0.755	0.775*	0.806	0.917	0.007	0.070	0.052	0.003	0.674	1.14
	3 Siles	0.672	0.642	0.775	0.600	0.617	0.000	0.632	0.052	0.755	0.674	1.14
shrub- land	IVIAI	0.072	0.042	0.594	0.507	0.000	0.590	0.577	0.492	0.505	0.596	11.04
	SIVIP	0.000	0.737	0.587	0.528"		0.596	0.570	0.545	0.563		1.73
		0.074	0.005	0.500	0.504*	0.000	0.504	0.570	0.400*	0.540	0.500	40.70
	3 Sites	0.671	0.665	0.593	0.581*	0.680	0.591	0.576	0.499*	0.512	0.596	12.76
Forest	Mar											
	SMP	0.615	0.716	0.553	0.509*		0.550	0.548	0.482	0.466*		0.76
	PL											
	3 Sites	0.615	0.716	0.553	0.509*		0.550	0.548	0.482	0.466*		0.76
Bare soil / Urban	Mar											
	SMP	0.636	0.735	0.620*	0.800		0.590	0.604	0.536*	0.886		0.53
	PL											
	3 Sites	0.636	0.735	0.620*	0.800		0.590	0.604	0.536*	0.886		0.53
All classes	Mar	0.698	0.683	0.631	0.622*	0.702	0.624	0.609	0.528*	0.537	0.622	12.81
	SMP	0.658	0.757	0.589	0.535*		0.568	0.566	0.518*	0.524		7.99
	PL	0.571	0.681	0.409*	0.415		0.503	0.470	0.273*	0.302		1.85
	3 Sites	0.660	0.721	0.592	0.575*	0.702	0.577	0.567	0.499*	0.516	0.622	22.65

Table: Median NoiseRatio values for the 5 BRDF-adjustment techniques, the 2 spectral bands, the 3 sites (Mar=Maricopa, SMP= Sudmipy, PL= ProvLanguedoc) and 5 majors Land-Cover (LC, Agriculture, Grassland, Shrubland, Forest, Bare soil / Urban).

Cells are colored using the colorbar located in the upper left and Median Noise values of each band-site-LC configuration, corresponding to half-a-row.

Lower value of each configuration is written in bold with a star.

Forward scattering on Barley fields

