Multi-temporal High-Resolution SAR for Geometric Measurements and for Ground Deformation Monitoring

Michael Eineder & SAR teams Remote Sensing Technology Institute, DLR & Technische Universität München

Knowledge for Tomorrow

Medium Resolution (5×25m²) ERS, Sentinel-1

Very High Resolution (1.1×0.6 m²) TerraSAR-X

Outline

- Short tutorial Accuracy of SAR geometry
 - Methods for error reduction
 - Range & azimuth measurements
 - Exploitation of accurate geometry
- Some recent examples from TerraSAR-X and TanDEM-X

"Range" Measurements with SAR: How Accurate?

R? c´?

SAR Signal Propagation and Coordinate Systems

Water Vapor: Spatio-Temporal Distribution

 \rightarrow Error of 2.5 m ± 20 cm; seasons, stratification

Tropospheric Delay Correction Methods

 PSI: temporal averaging 	expensive, slow
• Local GNSS measurements: σ < 2-4 mm	simple, location restricted, 0D
• 3D ECMWF reanalysis models: $\sigma \approx 13 \text{ mm}$	simple, global, low res., 3D
• 3D numerical model, e.g. WRF : σ < 13 mm?	comp. expensive, global
 Empirical model fit 	1D, assumes uncorr. h / Δ r

MultiTemporal Tropospheric Stratification from ECMWF

Mitigation of Atmospheric Delay Using ERA-Interim Data

Summary: Geophysical Range Error Contributions

SAR Azimuth Positioning Errors

- Typical error sources
 - Not: Attittude
 - Timing synchronization between SAR and orbit metrology (GNSS)
 - <u>SAR processor approximations (start-stop, ...)</u>
 - .
 - Calibration errors
 - Ionospheric gradients (C/L-Band)
 - Orbit angle error

→ 1-2 cm achievable in X-Band

Localization of Points in Images

• Corner reflector: < 1/100 pixel accuracy achievable with point target analysis, e.g.

$$\sigma_{\text{point}} = \frac{\sqrt{3}}{\pi} \frac{1}{\sqrt{SCR}} \approx \frac{0.55}{\sqrt{SCR}}$$
 [res. elem.]

- E.g. 1.5 m CR, 1m resolution \rightarrow 2 mm error
- Persistent Scatterers: modified point target analysis
 - < 1/100 pixel accuracy (SCR)

Localization of Features in Images

- Contrast / Texture: (in)coherent correlation
 - < 1/100 pixel accuracy (SNR)

E.g. coherent snow

2D Correlation

E.g. glacier crevasses

VLBI \rightarrow GPS \rightarrow SAR Imaging Geodesy

"SAR as a next generation positioning method?"

DLR's Geodetic SAR-Calibration Network

TerraSAR-X Slant Range Localization Accuracy

Reflector Wettzell

Imaging Geodesy Application Examples

Knowledge for Tomorrow

Velocity Measurements without GCPs

Mass changes of outlet glaciers along the Nordensjköld Coast, northern Antarctic Peninsula, based on TanDEM-X satellite measurements, H. Rott et al, Geophysical Research Letters, 2014.

Video: M. Eineder

Applications: Offshore Platform Monitoring. Test site

- Helwin1: seabed attached platform installed by Siemens in the North Sea in 2013
- Converts AC power generated by wind farms into low-loss DC for transmission to land
- Closest land more than 40 km away

Duque S. et al., Accurate Measurements Using TerraSAR-X And TanDEM-X Data Without Any Reference, IGARSS 2014, DLR-IMF

Master Image

TerraSAR-X Staring Spotlight 4.11.2013

Slave Image

TerraSAR-X Staring Spotlight 15.11.2013

Applications: Offshore Platform Monitoring

3D Localization of Reflectors using Stereo-SAR

A lamp pole near the central railway station Coordinates in the ITRF 2008 reference frame:

> $x = 3783630.014 \pm 0.010$ m; $y = 899035.0040 \pm 0.010$ m; $z = 5038487.589 \pm 0.011$ m.

Diameter of ca. 20cm \rightarrow systematic bias, still to be considered!

Automated Munich processing

• Geodetic Stereo SAR for about **1200 PS** in the city of Munich (0.2 m)

24.06.2015

26th IUGG General Assembly

C. Gisinger, TUM/IAPG

26

🛞 www.spiegel.de/wissenschaft/natur/erdbeben-in-nepal-satellitenbild-zeigt-bodenbewegung-a-1031575.html

D - C

Q univ frederico II

SPIEGEL ONLINE WISSENSCHAFT

Politik Wirtschaft Panorama Sport Kultur Netzwelt Wissenschaft Gesundheit einestages Karriere Uni Reise Auto Stil

Nachrichten > Wissenschaft > Natur > Satellitenbild der Woche > Erdbeben in Nepal: Satellitenbild zeigt Bodenbewegung

Satellitenbild der Woche: Wie das Erdbeben Nepal verändert

Bodenveränderung nach Erdbeben: Blau zeigt Hebung, Gelb und Rot Senkung

Rodriguez

Das schwere Erdbeben hat katastrophale Folgen für Nepal - und das Land gravierend verändert. Ganze Landstriche wurden höher und tiefer gelegt.

TanDEM-X DEMs

Knowledge for Tomorrow

TanDEM-X DEM Kamtchatka

Mass balance of glaciers from DEM differencing

$$\frac{dM}{dt} = \int_{A} \rho \frac{\Delta h}{\Delta t} dA$$

Surface elevation change rate

TanDEM-X 21.04.2014 - 9.05.2011

Acceleration of surface lowering

Rice Growth Monitoring using MultiTemporal DEMs

Rossi, C.; Erten, E., Paddy-Rice Monitoring Using TanDEM-X,, IEEE TGRS 2015

High Resolution SAR Interferometry

Knowledge for Tomorrow

Case Study: Berlin, Central Railway Station

TerraSAR-X

ТЛП

S. Gernhardt TUM

Height Dependent Motion on Buildings (I)

SV Verlagsgebäude, Munich

- Recently built steel-concrete building
- Height dependent linear motion

Photo: M. Eineder

Color: Linear deformation S. Gernhardt, TUM (2014)

Height Dependent Motion on Buildings (II)

Reason: compaction of concrete (dehydration & creeping) !

Gernhardt G, Bamler R (2015) Structural Deformation and Non-seasonal Motion of Single Buildings in Urban Areas Revealed by PSI. Proc. Joint Urban Remote Sensing Event, Lausanne, submitted.

SAR Tomography

Knowledge for Tomorrow

LÒS

Tomographic SAR Imaging of Urban Areas (>600 img.)

Gernhardt, Zhu DLR/TUM

2D → 3D SAR: Separation of Wall / Ground Reflection

From TomoSAR Point Clouds to Objects – Façade

Sentinel-1A

What comes next? ^{Co} MultiSensoral?

ALOS-2

TerraSAR-X/TanDEM-X