Least squares combination of INSAR and GNSS measurements for ground displacement monitoring

Elisabeth Simonetto Stéphane Durand Jordan Burdack Laurent Polidori Laurent Morel Joëlle Nicolas-Duroy

GeF/L2G (Geodesy, Geomatics), CNAM / ESGT (Le Mans, France)

<u>Outline</u>

- 1. Research aims
- 2. Previous works
- 3. Combination method mathematical model experiment using simulated data
- 4. Conclusions and perspectives

1. Research aims

Ground deformation measurement techniques

GNSS / INSAR complementarity

Ambiguous INSAR phase High spatial sampling in INSAR High temporal sampling in GNSS Different error behaviors Similar wavelengths

Error ellipses in both techniques

Different combination strategies

Mixed level combination

2. Previous works

GNSS + total station

Similar information Point measurement at 1 date

Very different physical principles GNSS (GPS) : microwave Total station : optical

Different behaviours possible synergy ?

Parameter level combination

Hybrid triangulation, Merging points obtained from both techniques

Data level combination

Single least squares adjustment with both GPS and total station observations

Experiments: Using simulated data and then real data

Measurement accuracy of the planimetric coordinates with the data level combination always better, up to 40% of those of the most accurate technique

Accuracy of the planimetric coordinates of one point measured from two known stations

INSAR + GNSS

Parameter level combination

Atmospheric phase estimation from GNSS measurements

Analysis according to :

- INSAR configuration
- GNSS configuration: receiver number, receiver locations
- GNSS processing: atmospheric model
- atmospheric delay map interpolation method
- \rightarrow Experiments using simulated data

Deformation measurement errors according to the GNSS station number

Number of GNSS stations	Mean error (mm)	Standard deviation (mm)
0	-19.40	1.33
5	0.78	1.31
10	0.09	1.05
20	-0.59	0.64

Usefulness of the atmospheric correction for assessment of small displacement measured by millimeters to centimeters \rightarrow Experiments using real data (Piton de la Fournaise, France)

- Processing of 2 radar CSK data using DORIS software
- Two dates : 04/28/2014 and 07/09/2014
- Processing of 27 GNSS stations using GAMIT (based on VZHD and VMF1 models)

Influence of the number of GNSS stations, spatial distribution and tropospheric map interpolation method

3. Combination method

Approach:

Data level raw measurement combination

Based on least squares adjustment for INSAR and GNSS measurements

Limitations of this work:

Combination benefit not proved in this work

Equations presented for non ambiguous phases (preliminary unwrapped)

No weighting

Atmospheric effects not considered

Assumption of a linear vertical ground displacement velocity model

INSAR processing:

STUN (Spatio-Temporal Unwrapping Network) approach

Kampes BM. Radar Interferometry. Persistent Scatterer technique. Springer; 2006.

Simplified STUN method explanation:

1. Computation of N differential interferograms from N+1 radar images with one single master image

2. Persistent Scatterer detection:

PS detection using average signal to clutter ratio PS classification according to the amplitude dispersion index \rightarrow PSC network, other PS

3. Parameter inversion (phase ambiguity, DEM error, displacement velocity) for each PSC network arc :

- Least square adjustment of parameters
- LAMBDA (Least squares AMBiguity Decorrelation Adjustment) method for integer adjustment of the phase ambiguity
- Derivation of float parameters (DEM error and displacement velocity)
- 4. Integration from a reference PS_0 by a linear system inversion

5. Other PS processing: same weighted unwrapping method, MCF refinement, float parameter estimation

INSAR differential phase model:

Between two pixels P and Q:

$$\phi_{diff,P,i} - \phi_{diff,Q,i} + 2\Delta k_{P,Q,i}\pi = \frac{4\pi}{\lambda} \frac{B_{\perp,i}}{r_P \sin \theta_P} \Delta e_{P,Q} + \frac{4\pi}{\lambda} (t_i - t_0) \Delta \alpha_{P,Q}$$

$$\Delta k_{P,Q,i} = k_{P,i} - k_{Q,i} \qquad \Delta e_{P,Q,i} = e_{P,i} - e_{Q,i} \qquad \Delta \alpha_{P,Q,i} = \alpha_{P,i} - \alpha_{Q,i}$$
phase ambiguities
(integer)
DEM errors

LOS displacement velocities

GNSS processing:

Double difference concept Several stations, several sessions, several epochs per session.

GNSS phase model:

Between two stations, 1 and 2, and two GNSS satellites, k and /:

Euclidian distance between *i*-station and *j*-satellite:

$$\rho_i^j = \sqrt{\Delta X^2 + \Delta Y^2 + \Delta Z^2}$$

Considering that *i*-station is located at *P*-pixel:

$$\Delta X = \left(N_j + h_p + e_p + \frac{\alpha_p}{\cos \theta_p} (t - t_0) \right) \cos \varphi_j \cos \lambda_j - X_s$$
$$\Delta Y = \left(N_j + h_p + e_p + \frac{\alpha_p}{\cos \theta_p} (t - t_0) \right) \cos \varphi_j \sin \lambda_j + Y_s$$
$$\Delta Z = \left(N_j \left(1 - exc^2 \right) + h_p + e_p + \frac{\alpha_p}{\cos \theta_p} (t - t_0) \right) \sin \varphi_j - Z_s$$

Satellite coordinates

Proposed global inverse processing:

GNSS observation equations are added to the INSAR problem inversion Estimation of two parameters: DEM error and displacement velocity

Possible strategies:

Estimation of parameter differences along arcs	Estimation of parameters at each PS
Processing of the PSC with GNSS points and then processing of other PS	Global processing of PSC, other PS and GNSS points
Combining PS normal equations and GNSS normal equations after convergence	Combining PS linear equations and GNSS linearized equations in an iterative framework
GNSS receiver locations not correlated with the PSC locations	Some PSC equipped with a GNSS receiver and no other GNSS locations

Three networks:

Other PS

<u>Method synopsis</u>

Linearization of equations related to GNSS station network:

Cumulating linearized equations into an iterative framework:

$$B_{GNSS} = A_{GNSS} \cdot (X_{k+1} - X_k)$$
$$B_{PSC} - A_{PSC} \cdot X_k = A_{PSC} \cdot (X_{k+1} - X_k)$$
$$B_{PS} - A_{PS} \cdot X_k = A_{PS} \cdot (X_{k+1} - X_k)$$

Linearized equations related to GNSS station network for all sessions:

Linear equations related to PSC network:

Linear equations related to PS arcs:

$$B_{Global} = A_{Global} \cdot \left(X_{k+1} - X_k \right)$$

Experiment

Simulation of 8 unwrapped interferograms from:

- real ERS data parameters,
- real SRTM DEM,
- Simulated DEM error map (uniform random values between -10 and 10 m)
- Simulated vertical displacement velocity map (uniform random values between 0 and 25 mm/yr)

Interferogram index	1	2	3	4	5	6	7	8
Temporal baseline (days)	0	35	70	210	245	385	560	595
Perpendicular baseline (m)	0	53	210	100	-210	-915	614	-264

Random selection of 500 PS in the area (around 1200 km²) One PSC selected per mesh with a side length of 50 pixels

> → 179 PSC, 522 reference arcs → 321 other PS

<u>Simulation of GNSS data (GPS constellation, L1 and L2 phase</u> <u>measurements) using:</u>

- Receiver geographic coordinates
- Satellite broadcast ephemeris
- Session characteristics (duration, time centered on the radar image acquisition time, time sampling interval)

<u>Result</u>

Without GNSS		Mean	Std
	DEM error estimation error	0,03 m	0,09 m
	Displacement velocity estimation error	-0,05 mm/yr	0,86 mm/yr

With GNSS (using 48 or 16 receivers)

Error mean and std greatly reduced

4. Conclusions and perspectives

Conclusions:

- Feasibility of data level combination of GNSS and INSAR measurements
- Several possible strategies

Future works:

- Overcoming limitations of this first work
 About input assumptions: linear and vertical displacement
 no atmosphere, no noise
 About processing:
 integer ambiguities / unwrapping
 system conditioning
 weighting
- Test on real data
- Data level combination versus parameter level or mixed level combination
- Current work on mixed level combination