Robust glacier displacements using knowledge-based image matching

ice dynamics (internal hydrology, topography)

erc

MULTITEMP knowledge-based matching

Introduction

Motivation

Objective

Methodology

Similarity in appearance Flow consistency Orderly flow

Implementation

Results

Error estimate Triangle closure Relaxation labellir

Conclusions

Achievement: Outlook

Optical image matching potentials in Landsat archive:

- Iong time-series
- world wide coverage

Current workflow

Introduction

Motivation

Objective

Methodology

Similarity in appearance Flow consistency Orderly flow

Implementation

Results

Error estimate Triangle closure Relaxation labellin

Conclusions

Achievements Outlook

disadvantage during preprocessing:
 manual selection of scenes
 (cloud free, high contrast, snow free, limited shadow).

Image matching

MULTITEMP knowledge-based matching

Introduction

Objective

Methodology

Similarity in appearar Flow consistency Orderly flow

Implementation

Results

Error estimate Triangle closure Relaxation labellin

Conclusions

Achievements Outlook

disadvantage during matching:
 based on heuristics
 (fixed template size, winner-takes-it-all)

Temporal analysis

MULTITEMP knowledge-based matching 22 June 2000, 21 March 2001

Introduction

Motivation

Objective

Methodology

Similarity in appearance Flow consistency Orderly flow

Implementation

Results

Error estimate Triangle closure

Conclusions

Achievement Outlook

& disadvantage during post processing:

data driven (*stack statistics, manual editing*)

Temporal analysis

MULTITEMP knowledge-based matching

Not only the glacier is moving through time..

Introduction

Motivation

Objective

Methodology

Similarity in appearance
Flow consistency
Orderly flow

Implementation

Results

Error estimate Triangle closure

riolaxator laboling

Conclusions

Achievemen Outlook

Yanert glacier, winter 2001-2002

Chasing shadows, instead of glacier movement

Objective

MULTITEMP knowledge-based matching

Introduction

Motivation Objective

Methodology

Similarity in appearance Flow consistency Orderly flow

Implementation

Results

Error estimate Triangle closure Relaxation labelling

Conclusions

Achievements Outlook Make an effort to achieve a **robust** matching approach which is ignorant to speed-up or change in flow-regime.

Robustness is introduced when **redundancy** is present, hence multi-temporal analysis.

Our approach

MULTITEMP knowledge-based matching

Introduction

Motivation Objective

Methodology

Similarity in appearance
Flow consistency
Orderly flow

Implementation

Results

Error estimate Triangle closure Relaxation labellin

Conclusions

Achievement Outlook Use priors rooted from knowledge about glacial systems

- a feature needs some similarity in images
- if a feature is detectable it can be tracked
- there exists orderly flow in glaciers

Exploit cross-correlation

Achievements

include multiple maxima in the analysis
derive uncertainty of such estimates

Multi-temp correlation

MULTITEMP knowledge-based matching

Introduction

Motivatior Objective

Methodology Similarity in appearance Flow consistency

Orderly flow

Implementation

Results

Error estimate Triangle closure Relaxation labellin

Conclusions

Achievements Outlook

Match with three different template sizes:

(improves uniqueness, but reduces when deformed).

Utilize temporal domain

MULTITEMP knowledge-based matching

Introduction

Motivation Objective

Match all combinations of three images.

Methodology

Similarity in appearance

Flow consistency

Orderly flow

Implementation

Results

Error estimate

Triangle closure

Relaxation labelling

Conclusions

Achievement Outlook

The resulting displacements should form a triangle.

Utilize temporal domain

MULTITEMP knowledge-based matching

Introduction

Objective

Methodology

Similarity in appearance

Flow consistency

Orderly flow

Implementation

Results

Error estimate Triangle closure Relaxation labelli

Conclusions

Achievement Outlook

Probabilistic testing

MULTITEMP knowledge-based matching

Introduction

Objective

Methodology

Similarity in appearance

Flow consistency

Orderly flow

Implementation

Results

Error estimate Triangle closure Relaxation labellin

Conclusions

Achievements Outlook Because for all displacements (\underline{y}), the dispersion is known (\mathbf{Q}_{yy}),

and the displacements over time are vector additions (**A**), we can use least squares adjustment:

$$\underline{\hat{e}} = \underline{y} - \mathbf{A} \cdot \underbrace{(\mathbf{A}^{\top} \cdot \mathbf{Q}_{yy}^{-1} \cdot \mathbf{A})^{-1} \cdot \mathbf{A}^{\top} \cdot \mathbf{Q}_{yy}^{-1} \cdot \underline{y}}_{\hat{x}}$$

and probabilistic model testing:

$$T = \underline{\hat{e}}^{\top} \cdot \mathbf{Q}_{yy}^{-1} \cdot \underline{\hat{e}}$$

Which is χ^2 distributed, and used to assess alternative hypothesis.

Exploit knowledge of glacier flow

MULTITEMP knowledge-based matching

Problem:

Introduction

Motivatior Objective

Methodology

Similarity in appearance Flow consistency Orderly flow

Implementation

Results

Error estimate Triangle closure

Relaxation labelling

Conclusions

Achievement: Outlook

Features need to be present in all imagery:

Exploit knowledge of glacier flow

MULTITEMP knowledge-based matching

Introduction

Motivation Objective

Methodology

Similarity in appearance Flow consistency Orderly flow

Implementation

Results

Error estimate Triangle closure Relaxation labelli

Conclusions

Achievements Outlook

Recovery of rejected displacements through relaxation labelling.

Neighborhood support

Compatibility function

An iterative updating scheme redistributes confidence to displacement estimates.

Automatic scene selection

MULTITEMP knowledge-based matching

Introduction

Motivation Objective

Methodology

Similarity in appearance
Flow consistency
Orderly flow

Implementation

Results

Error estimate Triangle closure Relaxation labellin

Conclusions

Achievement Outlook Automatic querying of image database, using scene specific facies- and cloud-maps:

MULTITEMP knowledge-based matching

Introduction Motivation

Methodology Similarity in appearance Flow consistency

Implementation

Results

Error estimate

Triangle closure Relaxation labelling

Conclusions

Achievement Outlook

Altena, Kääb & Nuth (UiO

ell

vec

MULTITEMP knowledge-based matching

Introduction

Motivatio Objective

Methodology

Similarity in appearance Flow consistency Orderly flow

Implementation

Results

Error estimate

Triangle closure

Relaxation labelling

Conclusions

Achievements Outlook

MULTITEMP knowledge-based matching Introduction Methodology Implementation Results Relaxation labelling Conclusions

546000 546500 547000 547500 548000 548500 549000

Altena, Kääb & Nuth (UiO)

fixed estimate
 recovered estimate
 candidate

Achievements

MULTITEMP knowledge-based matching

Introduction

Motivatior Objective

Methodology

Similarity in appearance Flow consistency Orderly flow

Implementation

Results

Error estimate Triangle closure Relaxation labellin

Conclusions

Achievements

Outlook

- Potential of scalability, by automated scene selection
- Progress in robustness, through adaptive template size
- Enhanced interpretation, through precision estimate
- Increased toolbox, by introducing time domain

Outlook

MULTITEMP knowledge-based matching

Introduction

Motivatio Objective

Methodology

Similarity in appearance
Flow consistency
Orderly flow

Implementation

Results

Error estimate Triangle closure Relaxation labellin

Conclusions

Achievements Outlook An approach from data driven to priors from glacial knowledge seems promising, but improvements are needed, such as,

- Merge best of both worlds:
 - combine relaxation labelling and probabilistic testing
- Extend to more imagery, to detect shadow chasing