

Rapid dynamic activation of a marine-based Arctic ice cap

N. Gourmelen¹, M. McMillan², A. Shepherd^{2,3}, A. Dehecq⁴, A. Leeson², A. Ridout³, T. Flament², A. Hogg², L. Gilbert³, T. Benham⁵, M. van den Broeke⁶, J. Dowdeswell⁵, X. Fettweis⁷, B. Noel⁶, T. Strozzi⁸, T. Nagler⁹

1 School of Geosciences, University of Edinburgh, Edinburgh, UK
2 Centre for Polar Observation and Modelling, University of Leeds, Leeds, UK
3 Centre for Polar Observation and Modelling, University College London, London, UK
4 LISTIC, Université de Savoie, Chambéry, France
5 Scott Polar Research Institute, University of Cambridge, Cambridge, UK
6 Institute for Marine and Atmospheric Research, Utrecht University, Utrecht, Netherlands
7 Department of Geography, University of Liège, Liège, Belgium
8 GAMMA Remote Sensing Research and Consulting AG, Gümligen, Switzerland
9 ENVEO, Insbruck, AT

Austfonna

Ice velocity, Austfonna

Ice velocity, Austfonna

1995

ERS1/2

McMillan, Shepherd, Gourmelen et al., 2014

ERS1/2

McMillan, Shepherd, Gourmelen et al., 2014

McMillan, Shepherd, Gourmelen et al., 2014

Sentinel-1a over Svalbard, 22/04/2014

Sentinel-1a over Svalbard, 22/04/2014

Sentinel-1a, 2014

Sentinel satellite spies ice cap speed-up

By Jonathan Amos Science correspondent, BBC News

Sentinel-1a, IW mode availability

Display 1 to 5 of 5 products			
S1A_IW_SLC1SSH_20150202T150402_20150202T150429_004446_005720_025A https://scihub.esa.int/dhus/odata/v1/Products('f1e07816-b982-4cc4-8cc6-7b2f20dfeb31')/\$value Date : 2015-02-02T15:04:02.703Z, Instrument : SAR-C, Mode : IW, Satellite : Sentinel-1, Size : 3 GB	<u>q</u>	Ħ	2
S1A_IW_SLC1SSH_20150214T150401_20150214T150429_004621_005B1A_8C80 https://scihub.esa.int/dhus/odata/v1/Products('d0117d48-3a83-4337-8777-ffc78abada3a')/\$value Date : 2015-02-14T15:04:01.857Z, Instrument : SAR-C, Mode : IW, Satellite : Sentinel-1, Size : 3 GB	<u>d</u>	Ħ	4
S1A_IW_SLC1SSH_20150131T053348_20150131T053415_004411_00563F_9492 https://scihub.esa.int/dhus/odata/v1/Products('89888c90-0403-4831-a624-32650e21cb8a')/\$value Date : 2015-01-31T05:33:48.273Z, Instrument : SAR-C, Mode : IW, Satellite : Sentinel-1, Size : 3 GB	<u>q</u>	Ħ	Ŀ
S1A_IW_SLC1SSH_20150121T150402_20150121T150429_004271_00531B_076F https://scihub.esa.int/dhus/odata/v1/Products('4e8f145f-d5cf-4417-9249-4c782acf1997')/\$value Date : 2015-01-21T15:04:02.448Z, Instrument : SAR-C, Mode : IW, Satellite : Sentinel-1, Size : 3 GB	<u>٩</u>	Ħ	Ŀ
S1A_IW_SLC1SSH_20150119T053348_20150119T053415_004236_00526A_225A https://scihub.esa.int/dhus/odata/v1/Products('9b6dfc29-eadc-4290-a392-be07cb0f63da')/\$value Date : 2015-01-19T05:33:48.496Z, Instrument : SAR-C, Mode : IW, Satellite : Sentinel-1, Size : 3 GB	<u>q</u>	Ħ	Ŀ

Sentinel-1a, 2015 Basin-3 velocity

Multitemp, Annecy - 23 July 2015

Austfonna, Elevation change, 2010-2015

Loss of floatation

- Sentinel-1a reveals Basin-3 ice discharge increased 45-folds over the last 2 decades
- CryoSat SARIn reveals rapid thinning (up to 40m/yr)
- Activation initiated at the ocean front, possibly from ocean warming, and propagated inland to the entire basin
- Destabilisation still ongoing
- Sentinel acquisition plan will allow continuous monitoring of ice loss

Sentinel, results so far

Sentinel-1 offset tracking: Svalbard

Sentinel-1 IW SLC 19/31.01.2015 – 20.01/02.01.2015 10 m ground-resolution Sentinel-1 EW GRDM 19/31.03.2015 40 m ground-resolution

Sentinel, results so far - Mountain glaciers

Baltoro Glacier, Karakoram mountain range

Historical SAR Ice Sheet SAR Coverage

Sentinel, results so far - Antarctica

Pine Island Glacier, West Antarctica

Sentinel, results so far - Greenland

Greenland Ice Sheet

Surface Velocity

Sentinel-1 January – March 2015

28 tracks ~900 slices ~28000 bursts

IV Product v_E, v_N, v_{dz} 250 m pixel spacing

Nagler et al. *The Sentinel-1 Mission: New Opportunities for Ice Sheet Observations.* Remote Sensing 7/ 2015

Greenland Ice Sheet

s,

Length-Profiles S1 versus TSX & PALSAR Store Glacier and Umiammakku Glacier

enveo

Intercomparison of Sentinel-1 and TSX Jakobshavn Isbrae

Sentinel-1 3-15 January 2015

TerraSAR-X, 8-19 February 2015

Intercomparison of Sentinel-1 and TSX Jakobshavn Isbrae

Monitoring Greenland Margins with Sentinel-1with 12 days repeat

Systematic monitoring of Greenland Margins with 12 days repeat enables:

- Cumulative yearly discharge -> accurate sea level contribution
- Observation of short term velocity variations of outlet glaciers
- Variations of Calving fronts

Example from ERS/ENVISAT

Thank you!

Multitemp, Annecy - 23 July 20