0000			000	0000		
UNIVERSITÉ DE RENNES	Université de Rennes 1		Sapienza Università di Roma	MINIS TELECOM 学家前 INSTITUT Mines-Télécom	Institut Mines-Telecom	
В	uilding p TerraS/ and to	rofile AR-X mogra	reconstruc data time- phic techr	tion us -series niques	sing	

M.Porfiri^{*†}, L. Ferro – Famil^{*} and J.M. Nicolas[‡]

* University of Rennes 1, IETR, Remote Sensing Group, Rennes, France
† University of Rome 'La Sapienza', DICEA, Geodesy and Geomatics Division, Rome, Italy
‡ Institut Mines-Telecom, Telecom ParisTech, CNRS LTCI, Paris, France

MultiTemp 2015 8th International Workshop on the Analysis of Multitemporal Remote Sensing Images July 22-24, 2015 - Annecy, France

MULTITEMP 2015

M. Porfiri, L. Ferro-Famil and J.M. Nicolas

Index	Introduction	3-D reconstruction	Temporal analysis	Conclusions

1 Introduction

- Aim of the work
- Urban area: layover
- TomoSAR: main principles
- Dataset

2 Interferometric products

3 3-D reconstruction

- 3-D height model
- 3-D reflectivity

4 Temporal analysis

- 2-D temporal stability
- 3-D temporal stability

5 Conclusions

M. Porfiri, L. Ferro-Famil and J.M. Nicolas

Index	Introduction	3-D reconstruction	Temporal analysis	Conclusions

1 Introduction

- Aim of the work
- Urban area: layover
- TomoSAR: main principles
- Dataset

2 Interferometric products

- 3 3-D reconstruction
 - 3-D height model
 - 3-D reflectivity
- 4 Temporal analysis
 - 2-D temporal stability
 - 3-D temporal stability

5 Conclusions

M. Porfiri, L. Ferro-Famil and J.M. Nicolas

Index	Introduction	3-D reconstruction	Temporal analysis	Conclusions
Aim of the wor	k			

Aim of the work

Why?

- Necessity to monitor and characterize Earth's surface dynamics
- ↗ Interest on multitemporal data analysis and processing
- Number of satellites with high spatial and temporal resolution

What?

3-D characterization (height, reflectivity, time stability) of built-up areas

How?

- SAR Tomography classical estimators vs. Compressive Sensing: temporal analysis and focusing with smaller number of images
- TerraSAR-X data: multibaseline and multitemporal single-pol high resolution Spotlight stack

M. Porfiri, L. Ferro-Famil and J.M. Nicolas

Index	Introduction	3-D reconstruction	Temporal analysis	Conclusions
	0000			
Urban area	: lavover			

Layover elevation displacement

M. Porfiri, L. Ferro-Famil and J.M. Nicolas

Index	Introduction	3-D reconstruction	Temporal analysis	Conclusions
TomoSAR:	main principles			

Tomographic approach

Tomography SAR principles

- SAR principle in elevation direction (syntethic vertical aperture: L_{tomo})
- Multiple passes of the radar and resolving ambiguities in elevation
- Phase+amplitude signal information
- Spectral analysis: backscattered energy distribution at different heights
- Good geometric resolution : high details in the elevation direction

$$\delta_z = \delta_n \sin\theta$$
 with $\delta_n = \frac{\lambda}{R_0} 2L_{tomo}$

M. Porfiri, L. Ferro-Famil and J.M. Nicolas

Index	Introduction ○○○●	3-D reconstruction	Temporal analysis	Conclusions
Dataset				

Test site

21 TerraSAR-X* High Resolution Spotlight (HS) single-pol (HH) images acquired on Paris urban area *Achonolegyment to DLR in the frame of the project ID LANI746

Area Of Interest: multitemporal averaged amplitude (top)

and Google Map (bottom) images

Stack main characteristics

AOI	A	cquisition date	Mean look angle (deg)	Orbit	Polarisation	Normal E (m	laseline)	Tempo (ral Baseline days)
Paris	from	24/01/2009	34.7	Asc	НН	Max abs Min abs	386.70 13.38	Max Min	506 11
	to	26/11/2010				Mean abs	116.57	Mean	241.39

M. Porfiri, L. Ferro-Famil and J.M. Nicolas

Index	Introduction	Interferometric products	3-D reconstruction	Temporal analysis	Conclusions

Introduction

- Aim of the work
- Urban area: layover
- TomoSAR: main principles
- Dataset

2 Interferometric products

- 3 3-D reconstruction
 - 3-D height model
 - 3-D reflectivity
- 4 Temporal analysis
 - 2-D temporal stability
 - 3-D temporal stability

5 Conclusions

M. Porfiri, L. Ferro-Famil and J.M. Nicolas

Interferometric products

3-D reconstructi

Temporal ana

Conclusions

Interferogram-coherence matrix: increasing temporal baseline

M. Porfiri, L. Ferro-Famil and J.M. Nicolas

Index		Interferometric products	3-D reconstruction	Temporal analysis	Conclusion
	0000		000	0000	

Interferogram-coherence matrix: increasing (abs) spatial baseline

Spatial-temporal trend of coherence mean values

M. Porfiri, L. Ferro-Famil and J.M. Nicolas

Index	Introduction	3-D reconstruction	Temporal analysis	Conclusions

- Introduction
 - Aim of the work
 - Urban area: layover
 - TomoSAR: main principles
 - Dataset
- 2 Interferometric products
- 3 3-D reconstruction
 - 3-D height model
 - 3-D reflectivity
- 4 Temporal analysis
 - 2-D temporal stability
 - 3-D temporal stability

5 Conclusions

M. Porfiri, L. Ferro-Famil and J.M. Nicolas

Index	Introduction	3-D reconstruction ●○○	Temporal analysis	Conclusions
3-D height mod	el			

Slant range tomograms

Layovered profile over AOI

M. Porfiri, L. Ferro-Famil and J.M. Nicolas

Index	Introduction	3-D reconstruction ●○○	Temporal analysis	Conclusions
3-D height mod	el			

Slant range tomograms

Layovered profile over AOI

M. Porfiri, L. Ferro-Famil and J.M. Nicolas

Index	Introduction	3-D reconstruction ○●○	Temporal analysis	Conclusions
3-D height mod	lel			

3-D elevation map

MUSIC: dominant, second and third detected scatterers

M. Porfiri, L. Ferro-Famil and J.M. Nicolas

Index	Introduction	3-D reconstruction ○●○	Temporal analysis	Conclusions
3-D height mod	lel			

3-D elevation map

AOI: Google Earth 3-D view

MUSIC: dominant, second and third detected scatterers

M. Porfiri, L. Ferro-Famil and J.M. Nicolas

Index	Introduction	3-D reconstruction ○○●	Temporal analysis	Conclusions
3-D reflectivity				

3-D intensity map

MUSIC: second detected scatterers

MUSIC: dominant, second and third detected scatterers

M. Porfiri, L. Ferro-Famil and J.M. Nicolas

Index	Introduction	3-D reconstruction ○○●	Temporal analysis	Conclusions
3-D reflectivity				

3-D intensity map

MUSIC: dominant, second and third detected scatterers

M. Porfiri, L. Ferro-Famil and J.M. Nicolas

Index	Introduction	3-D reconstruction	Temporal analysis	Conclusions

- Introduction
 - Aim of the work
 - Urban area: layover
 - TomoSAR: main principles
 - Dataset
- 2 Interferometric products
- 3 3-D reconstruction
 - 3-D height model
 - 3-D reflectivity
- 4 Temporal analysis
 - 2-D temporal stability
 - 3-D temporal stability

5 Conclusions

M. Porfiri, L. Ferro-Famil and J.M. Nicolas

Stationarity parameter Λ

2-D temporal (incoherent) stability of

 $\{I_i(x,y)\}_{j=1,j\neq i}^{19}$

Boats, main streets: very low stationary Maximum Likelihood statistical test behaviour 201 200 400 0.8 40 601 0.7 60 Azimuth [bin] Azimuth [bin] 801 801 0.6 0.5 1200 1200 0.4 140 0.3 1600 1600 0.2 1800 180 2000 2000 1200 800 Range [bin] Range [bin]

Stationarity parameter $\Lambda^{(1)}$ on the test site

Multitemporal averaged amplitude image

Buildings, bridges: high stationary

behaviour

(1) L. Ferro-Famil and E. Pottier, "Urban area remote sensing from L-band PoISAR data using time-frequency techniques," Urban Remote Sensing Joint Event, URS, 2007

M. Porfiri, L. Ferro-Famil and J.M. Nicolas

Index	Introduction	3-D reconstruction	Temporal analysis ○●○○	Conclusions
2-D temporal st	ability			

Coherence indicator ρ

2-D temporal (coherent) stability of

 $\{s_j\}_{j=1, j \neq i}^{19}$

Maximum Likelihood statistic test

- Man-made targets, buildings: very high cross-correlation
- Natural environments: very low cross-correlation

Coherence indicator $\rho^{(2)}$ over a subset

Multitemporal averaged amplitude image

(2) C. Hu, L. Ferro-Famil, and G. Kuang, "Ship discrimination using polarimetric SAR data and coherent time-frequency analysis," Remote Sensing, vol. 5, no. 12, pp. 6899–6920, 2013

M. Porfiri, L. Ferro-Famil and J.M. Nicolas

Index	Introduction	3-D reconstruction	Temporal analysis ○○●○	Conclusions
3-D tempo	ral stability			

Temporal stability analysis I

$$\{s_{j}\}_{j=1,j\neq i}^{19} \quad \text{TomoSAR} \quad \bigcup_{\{l_{i}(x, y, z)\}_{j=1, j\neq i}^{19}}^{2-D} \quad \bigcup_{3-D}$$

3-D temporal stability in term of a modified **CV** from **incomplete tomograms**

$$\{I_i(x, y, z)\}_{i=1}^{19}$$

3-D reconstruction of the estimated CV

M. Porfiri, L. Ferro-Famil and J.M. Nicolas

Index	Introduction	3-D reconstruction	Temporal analysis ○○●○	Conclusions
3-D temporal st	tability			

Temporal stability analysis I

$$\{s_{j}\}_{j=1,j\neq i}^{19} \qquad \qquad \begin{array}{c} 2\text{-D} \\ \downarrow \\ \downarrow \\ \{l_{\mathbf{i}}(x,y,z)\}_{j=1,j\neq i}^{19} \qquad \qquad \begin{array}{c} 3\text{-D} \\ \end{array}$$

3-D temporal stability in term of a modified **CV** from **incomplete tomograms**

 $\{I_i(x, y, z)\}_{i=1}^{19}$

Index	Introduction	3-D reconstruction	Temporal analysis ○○●○	Conclusions
3-D temporal st	tability			

Temporal stability analysis I

3-D temporal stability in term of a modified **CV** from **incomplete tomograms**

$$\{I_i(x, y, z)\}_{i=1}^{19}$$

Similar resolution properties and importance of the missing image

M. Porfiri, L. Ferro-Famil and J.M. Nicolas

Index	Introduction	3-D reconstruction	Temporal analysis ○○○●	Conclusions
3-D temporal sta	ability			

Temporal stability analysis II

Extraction of the most perturbing contributions

3-D reconstruction of the relative indices at the first step

M. Porfiri, L. Ferro-Famil and J.M. Nicolas

Index	Introduction	3-D reconstruction	Temporal analysis	Conclusions

- Introduction
 - Aim of the work
 - Urban area: layover
 - TomoSAR: main principles
 - Dataset
- 2 Interferometric products
- **3** 3-D reconstruction
 - 3-D height model
 - 3-D reflectivity
- 4 Temporal analysis2-D temporal stability
 - 3-D temporal stability

5 Conclusions

M. Porfiri, L. Ferro-Famil and J.M. Nicolas

Index	Introduction	3-D reconstruction	Temporal analysis	Conclusions

Conclusions

- Improvement in 3-D imaging capabilities processing high resolution TerraSAR-X multitemporal data
- Strong geometric distortions derived from layover in urban areas analysis
- Global characterization of **build-up** areas
- 3-D reconstructions regarding buildings heights, vertical reflectivity and time stability analysis
- TomoSAR technique potentialities:
 - layover distortions correction
 - separating different scatterers and detecting the corresponding reflectivity within one resolution cell
 - using classical mono-dimensional estimators (not Compressive Sensing)

Index	Introduction	3-D reconstruction	Temporal analysis	Conclusions

Conclusions

- Improvement in 3-D imaging capabilities processing high resolution TerraSAR-X multitemporal data
- Strong geometric distortions derived from layover in urban areas analysis
- Global characterization of build-up areas
- 3-D reconstructions regarding buildings heights, vertical reflectivity and time stability analysis
- TomoSAR technique potentialities:
 - layover distortions correction
 - separating different scatterers and detecting the corresponding reflectivity within one resolution cell
 - using classical mono-dimensional estimators (not Compressive Sensing)

... thank you for your attention!