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 Image co-registration is the process of spatially overlaying images acquired
over the same areas at different times.

 Poor misalignment results in Registration Noise (RN), which is a critical
source of errors when performing multitemporal information extraction.

Open issue: Even after effective state-of-the-art co-registration, Very High
Resolution (VHR) multitemporal images show a residual misalignment due to
local effects such as differences in the acquisition conditions (e.g., view angle of
the sensor, acquisition geometry).

Introduction

Original QuickBird image Multitemporal false-color composite
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Aim of the Work
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 Design a method for fine automatic co-registration of multitemporal VHR
images that reduces the impact of residual Registration Noise (RN) and
thus improves co-registration accuracy.

 The proposed method:

• Refines the result of standard state-of-the-art co-registration methods.

• Extracts spatial context-based Control Points (CPs).

• Exploits RN properties for identifying and reducing the residual local
misalignment.

• Establishes the correspondence of CPs according to local misalignment.

 Test the proposed method on simulated and real multitemporal VHR
images.
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Proposed Approach: Block Scheme
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Basic assumption: homogeneous areas and objects are locally affected by
similar distortions.

Goal: Identify CPs that are representative of objects and account for their spatial
context properties.

6Y.Han, F.Bovolo, L.Bruzzone

Spatial Context-based CPs Extraction
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Goal: Use Registration Noise information to estimate the amount of local
displacement.

Working hypotheses:

 Under the assumption that Images ଵܺ and ܺଶ are co-registered the residual
misalignment can be modeled by small rigid translation effects only;

 Different portions/objects in the considered scene may be affected by
different local misalignments.

Definitions:

 Let Ω ൌ Ωଵ,… , Ωௗ, … , Ω஽ (Ωௗ ൌ ሼ∆ݔௗ, ௗሽݕ∆ ) be the set of possible ܦ
displacements.

 Let ܺଶ஽ ൌ ሼܺଶௗ, ݀ ൌ ሽܦ…,1 be the set of slave images ܺଶ after applying
displacements in Ω.

7Y. Han, F. Bovolo, L. Bruzzone

RN-based Displacement Analysis
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Step 1: for each pair ( ଵܺ, ܺଶௗ) and Ωௗ ∈ Ω	 compute RN map ሺ݀	ௗܯ ൌ 1,… .ሻܦ,

8Y. Han, F. Bovolo, L. Bruzzone

RN-based displacement analysis
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F. Bovolo, L. Bruzzone and S. Marchesi, “Analysis and adaptive estimation of the registration noise distribution in multitemporal VHR
images,” IEEE Transactions on Geoscience and Remote Sensing, vol. 47, no. 8, pp. 2658–2671, 2009.
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Step 2:

 Perform local analysis by dividing each RN map
ሺ݀	ௗܯ ൌ 1,… , ሻܦ into the L segments computed on X1.

 For each segment and pair ( ଵܺ , ܺଶௗ ) estimate the
amount of misaligned pixels ௗܯܣ)

௟ ):
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RN-base displacement analysis
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 Each segment Sl is associated to the local
displacement Ω௟ ∈ Ω that minimizes the local
residual misalignment for on the ( ଵܺ, ܺଶௗ) pairs:

∀ Sl ∈ S 		Ω௟ ൌ min	݃ݎܽ
ஐ೏∈ஐ

ௗܯܣ
௟

 The m-th corresponding CP pair ሼሺݔଵ,௟௠ , ௠	ଵ,௟ݕ ሻ ,
ሺݔଶ,௟௠ , ଶ,௟௠ݕ ሻሽ in the l-th segment is defined as:

ቊ
ଶ,௟௠ݔ ൌ ଵ,௟௠ݔ െ ௟ݔ∆
ଶ,௟௠ݕ ൌ ଵ,௟௠ݕ െ ௟ݕ∆

∀݈ ൌ 1,… , ݉∀		;ܮ ൌ 1,… ܯ,
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CPs matching
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 Remove inconsistent CPs due to uncertainty factors (e.g., shadows), by
evaluating geometric consistency:

i. Estimation of affine transformation using all CPs.

ii.Removal of CP pairs having large Root Mean Square Error (RMSE).

The process ends when all the remaining CP pairs have RMSE smaller than
a threshold ோܶெௌா.

 Perform warping by the piecewise linear function ௉௅ܯ to effectively mitigate
local distortions by a non-rigid transformation.

 ௉௅ܯ is constructed on all CP pairs and applied to warp the slave image ܺଶ to
spatial coordinates of master image ଵܺ as:

ܺଶோ ൌ ௉௅ܯ ܺଶ .

11Y. Han, F. Bovolo, L. Bruzzone

Image warping
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Study area: City of Trento, Italy.

Master image (X1):
• pansharpened QuickBird image;
• acquired in October 2005;
• 1000x1000 pixels.

Slave image (X2): Distorted X1 image
• x direction: ݑ ൌ ݔ െ 4 sin ݔߨ0.5 ൅ 150 ;
• y direction: ݒ ൌ ݕ ൅ 3 sin ݕߨ0.5 ൅ 200 .

Goal:
• Validate the effectiveness of the proposed

method in performing co-registration.

Average segments area: 500 m2

Experimental Results: Simulated dataset

12Y. Han, F. Bovolo, L. Bruzzone

Master image (X1)
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Experimental Results: Simulated dataset
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Chessboard images

No registration Proposed approach

[2] Y. Han, J. Choi, Y. Byun and Y. Kim, “Parameter optimization for the extraction of matching points between high-resolution multisensor
images in urban areas,” IEEE Transactions on Geoscience and Remote Sensing, vol. 52, no. 9, pp. 5612–5621, 2014.

Registration method Correlation
Coefficient

Normalized Mutual
Information 

No registration 0.810 0.634
State of the art approach[2] 0.811 0.660
Proposed approach 0.969 0.924

X1 X2

R Red NIR
G Green Red
B Blue Green
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Master image (X1): a 1000ൈ1000 pixels pansharpened QuickBird image
acquired in October 2005.

Slave image (X2):
 Pansharpened QuickBird image (July 2006);
 1200ൈ1200 pixels (Totally covers the master image);
 Pre-aligned by scale-invariant feature transform (SIFT)-based method[2].

Experimental Results: Real dataset

14Y. Han, F. Bovolo, L. Bruzzone

Master image (X1) Slave image (X2)
[2] Y. Han, J. Choi, Y. Byun and Y. Kim, “Parameter optimization for the extraction of matching points between high-resolution multisensor
images in urban areas,” IEEE Transactions on Geoscience and Remote Sensing, vol. 52, no. 9, pp. 5612–5621, 2014.

Shadows Mixed segments
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Experimental Results: Real dataset
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Parameters Values
Spectral bands Red & NIR
Multiscale level N 4

Th
re

sh
ol

d magnitude T Automatic 
selection

RN density ோܶே 10ିସ

RMSE ோܶெௌா 10
Displacements Ωௗ [-5, +5]
Sampling interval of Ωௗ 0.5
Manually selected
checkpoints 20

Registration method RMSE 
(pixels)

RMSE STD
(pixels)

No registration 25.51 2.03
State of the art approach 3.70 2.21
Proposed approach 1.39 0.65

X1 X2

R Red NIR
G Green Red
B Blue Green

Chessboard images

State of the art approach Proposed approach
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Conclusion

16Y. Han, F. Bovolo, L. Bruzzone

 A fine co-registration method for VHR multitemporal images that improves
co-registration accuracy of images already geometrically pre-aligned by
standard methods has been proposed.

 The proposed method uses spatial context-based CPs to exploit the spatial
correlation of pixels in VHR images and prevent inhomogeneous distribution
of CPs.

 The proposed method effectively mitigates the local residual misalignment
by exploiting the properties of RN to estimate the local misalignment of
CPs.

 The proposed method improved the co-registration accuracy over the
considered state-of-the-art methods both in simulated and real datasets.
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Future developments
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 Improve the mechanism to reduce and handle CPs inconsistencies due to:

• Uncertain factors (e.g., shadow areas, occlusions);

• The presence of non completely homogeneous segments.

 Extend the use of the proposed context-based fine co-registration method to
VHR multispectral images acquired by different sensors.

Y. Han, F. Bovolo, L. Bruzzone


