Multitemporal classification without new labels: a solution with optimal transport

D. Tuia¹, R. Flamary², A. Rakotomamonjy³, N. Courty⁴

Uni. Zurich, ² Uni. Nice Sophia Antipolis
 Uni. Rouen, ⁴ University of South Brittany

Multitemp 2015 - Annecy

Multitemporal classification w/o new labels

- Revisit time of satellite is shortening
- Frequency of terrestrial campaigns (or photointerpretation) stalks
- We cannot keep the pace of the images!
- We want to
 - adapt classifiers to new acquisitions
 - take advantage of available labeled examples

The problem

The reason

NEW IMAGE

How? Adapting the data representation to match the input spaces

How? Optimal transport

We propose

- 1. A framework to match data distributions
 - \rightarrow optimal transport (OT)
 - No coregistration required
 - ► Can cope with strong deformations [Courty et al., ECML, 2014]
- 2. A regularized version using the class labels in the source domain
 - \rightarrow semi-supervised OT without new samples.

19th century: moving dirt in an optimal way

19th century: moving dirt in an optimal way

19th century: moving dirt in an optimal way

20th century: using OT to match distributions

Optimal transport [Kantorovich, 1947]

▶ All the potential transport matrices $\gamma \in \mathcal{P}$ respect the two marginals

 \rightarrow no loss of masses

- The optimal one γ₀ is the one minimizing the transportation cost wrt the metric C
 - \rightarrow favors minimal effort
 - \rightarrow favors sparsity

We look for the optimal coupling:

$$\boldsymbol{\gamma}_0 = \mathop{\arg\min}_{\boldsymbol{\gamma} \in \mathcal{P}} \left\langle \boldsymbol{\gamma}, \boldsymbol{C} \right\rangle_F$$

What does that mean?

Once γ_0 is found, we can

- transform the source elements X_s in a target domain-dependent version X̂_s,
- ▶ train any classifier with $\{\hat{\mathbf{X}}_s, Y_s\}$ to predict classes in the target domain.

This way, we can do domain adaptation!

Regularization by entropy

- Maybe this is too sparse
- A wrong assignment it is not recoverable
- Solution: de-sparsify

$$\gamma_0^{\lambda} = \operatorname*{arg\,min}_{\gamma \in \mathcal{P}} \langle \gamma, \mathbf{C} \rangle_F - \frac{1}{\lambda} h(\gamma)$$

where $h(\gamma)$ is the entropy of the γ matrix.

Non-regularized

Entropy-regularized

[Cuturi, NIPS 2013]

Regularization by class

- Enforce that labeled samples of the same class move similarly
- Solution: group-sparse regulariz.

$$egin{aligned} oldsymbol{\gamma}_0^{\lambda_c} &= rg \min_{oldsymbol{\gamma} \in \mathcal{P}} \langle oldsymbol{\gamma}, oldsymbol{\mathsf{C}}
angle_F - rac{1}{\lambda} h(oldsymbol{\gamma}) \ &+ \eta \sum_j \sum_c ||oldsymbol{\gamma} (\mathcal{I}_c, j)||_q^p, \end{aligned}$$

each column of γ is nonzero only for samples of the same (label) class.

[Courty, Flamary, Tuia, ECML 2014]

Entropy-regularized

Class-regularized

Data

class legend: commercial buildings, residential buildings, meadows, trees, roads, shadows

Setup

6 adaptation problems (all couples of domains)

(Mo
$$\rightarrow$$
 Pr), (Pr \rightarrow Mo), (Pr \rightarrow Ma)
(Ma \rightarrow Mo), (Mo \rightarrow Ma), (Ma \rightarrow Pr)

- 100 labels per class in the source domain
- 600 pixels in the target domain (unlabeled)
- Classification with 1-NN
- Compared to
 - OT-Sink vs. KPCA, Graph Matching¹, TCA²
 - ▶ **OT-labreg** vs. SSTCA²

```
[1 Tuia et al. IEEE TGRS, 2013]
```

^{[2} Pan et al., IEEE Trans. Knowl. Data Eng., 2010]

► Without labels in source

	Training on X^S							
	No adapt.	KPCA	TCA	GM	OT-Sink			
# labels X ^S	-	0	0	0	0			
$ exttt{Mo} o exttt{Pr}$	59.67±2.92	56.21±3.09	49.83±2.22	60.30±1.66	66.81±1.38			
${\tt Pr} o {\tt Mo}$	57.12±4.66	53.82±4.25	50.52 ± 2.19	62.07 ± 1.45	71.95 ± 0.97			
${ m Ma} ightarrow { m Mo}$	45.62±1.79	46.46±3.13	47.47 ± 1.95	43.92 ± 1.70	59.88 ± 1.12			
$ ext{Mo} o ext{Ma}$	33.74±1.69	32.61±3.08	31.52 ± 2.50	37.14 ± 2.31	50.75 ± 2.67			
${\tt Ma} ightarrow {\tt Pr}$	46.84±1.21	45.12±1.41	46.02 ± 1.47	43.87 ± 1.58	57.47 ± 2.33			
${\tt Pr} o {\tt Ma}$	26.40±5.27	23.71±4.16	21.49 ± 4.14	38.49 ± 1.89	49.60 ± 1.98			

► With labels in source

		Training on X ^S		Training
	No adapt.	SSTCA	OT-labreg	on X ^T
# labels X^S	-	600	600	-
$\mathrm{Mo} \to \mathrm{Pr}$	59.67±2.92	55.88±6.89	65.09±0.82	84.17±0.39
$\text{Pr} \to \text{Mo}$	57.12±4.66	57.36±5.75	72.37 ± 1.08	81.43±0.83
${\rm Ma} \to {\rm Mo}$	45.62±1.79	49.27±4.47	70.66 ± 1.98	82.12±0.74
$Mo \to Ma$	33.74±1.69	39.58±2.57	55.41 ± 2.38	80.73 ± 0.40
${\tt Ma} o {\tt Pr}$	46.84±1.21	46.12±1.55	66.60 ± 2.69	83.74±0.37
${\tt Pr} o {\tt Ma}$	26.40±5.27	31.41±3.23	54.90±1.47	80.79±0.59

Impact of the changes in w^s vs. w^t ?

Impact of the changes in w^s vs. w^t ?

- Class distributions might change between domains
- We can either assume they are the same (Agnostic)

OR

- ► Have a (+ / -) good guess of the differences
- ▶ Impact of the guess on the KL path

Impact of the changes in w^s vs. w^t ?

Summary

- ✓ Optimal transport is a probabilistic way to adaptation
- Regularization makes the difference
- √ OT can boost performance in very hard scenarios
- Needs some knowledge of the target nature to be very effective
- And forward!
 - a. Multidomain adaptation
 - b. Automatic estimation of target class distribution

Thank you!

devis.tuia@geo.uzh.ch devis.tuia.googlepages.com

... and to these great guys!

Remi

