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Figure 6 Hurricane Katrina mean-sea-level-pressure (MSLP) analysis for 12 UTC of 29 August 2005 and
t+84h high-resolution and EPS forecasts started at 00 UTC of 26 August:

Istrow: I* panel: MSLP analysis for 12 UTC of 29 Aug
2™ panel: MSLP t+84h T;511L60 forecast started at 00 UTC of 26 Aug
3 panel: MSLP t+84h EPS-control T;255L40 forecast started at 00 UTC of 26 Aug
Other rows: 50 EPS-perturbed T;255140 forecast started at 00 UTC of 26 Aug.

The contour interval is 5 hPa, with shading patters for MSLP values lower than 990 hPa.

ECMWEF, Technical Report 499, 2006




Assimilation of Observations originated

from the need of defining initial conditions for
Numerical Weather Predictions



ECMWEF Data Coverage (All obs DA) - AMSU-A
19/Apr/2015; 00 UTC
Total number of obs = 599550
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Number of data used per day (millions)

ECMWEF

= CONV+AMV
B TOTAL

I I B P P oo [ [ | |
1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010

Value as of early 2013 : around 25 millions per day




Physical laws governing the flow

= (Conservation of mass

Dp/Dt + pdivU = 0

= Conservation of energy
De/Dt - (p/p?) Dp/Dt = Q

=  Conservation of momentum
DU/Dt + (1/p) gradp - g+ 2 QAU=F

= Equation of state
f(papae)zo (p/,O=I’T,e=CvD

= Conservation of mass of secondary components (water in the atmosphere, salt
in the ocean, chemical species, ...)

Dg/Dt + g divU =S

Physical laws available in practice in the form of a discretized (and necessarily
imperfect) numerical model 6



A schematic of an Atmospheric General Circulation Model (L.

Fairhead /LMD-CNRS)




European Centre for Medium-range Weather Forecasts (ECMWF,
Reading, UK)

Horizontal spherical harmonics triangular truncation T1279
(horizontal resolution = 16 kilometres)

137 levels on the vertical (0 - 80 km)
Dimension of state vector n = 2.3 10°

Timestep (semi-implicit semi-Lagrangian scheme) = 10 minutes



Purpose of assimilation : reconstruct as accurately as possible the state
of the atmospheric or oceanic flow, using all available appropriate
information. The latter essentially consists of

» The observations proper, which vary in nature, resolution and accuracy,
and are distributed more or less regularly in space and time.

» The physical laws governing the evolution of the flow, available in
practice in the form of a discretized, and necessarily approximate,
numerical model.

»  ‘Asymptotic’ properties of the flow, such as, e. g., geostrophic balance of middle latitudes.
Although they basically are necessary consequences of the physical laws which govern the
flow, these properties can usefully be explicitly introduced in the assimilation process.



Assimilation i1s one of many ‘inverse problems’ encountered in many
fields of science and technology

 solid Earth geophysics

e plasma physics

* ‘nondestructive’ probing

* navigation (spacecraft, aircraft, ....)

 stellar and terrestrial magnetism

Solution most often (if not always) based on Bayesian, or probabilistic,
estimation. ‘Equations’ are fundamentally the same.



Difficulties specific to assimilation of meteorological observations :

- Very large numerical dimensions (n = 10%-10° parameters to be
estimated, p = 1-3.107 observations per 24-hour period). Difficulty
aggravated in Numerical Weather Prediction by the need for the forecast to
be ready in time.

- Non-trivial, actually chaotic, underlying dynamics. The problem is

largely to control the instabilities that can develop in the course of the
assimilation.
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Figare 2. SOmbd ficid produced by the operational analysis procedure of Dercction de la
for OGMT, 26 Apedl ) Unsts: dam, contour interval: 4 dam. The ficld has been truncated to the truncation
of the model used for the expenments described in the article.

Courtier and Talagrand, QJRMS, 1987
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Figure 1. Geographical dstribution of the observations used for the assimelation cxperiments. (a) geopo-
tential observations, (b): wind observations. Al most of the pomts plotted, several observations were made at
SUCCEIIVE SAYNOPLIC howrs. o»«adocmmmzmumamumm(m
Figure 2)
13
Courtier and Talagrand, QJRMS, 1987



Figure 2. S0 mb height ficld produced by the operational analysis procedure of Dircction de la Méséorologic
for OGMT, 26 April 1984, Units: dam, contour interval: 4 dam. The Sicld has been truncated 1o the truncation o W-bh*hi:r;hn:ﬂ:z?mb@lmb{th\:-mdm—m&
of the model used for the expeniments described in the article. Gnc fnciee Gled by B over 2 24-hows period. Usits: dam: costour mterval: 4dam.

500-hPa geopotential field as determined by : (left) operational assimilation system of
French Weather Service (3D, primitive equation) and (right) experimental variational system
(2D, vorticity equation)

Courtier and Talagrand, QJRMS, 1987
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Typical situation

" A ‘background’ estimate (e. g. forecast from the past), belonging to srate
space, with dimension n

0=+ E@gT) =P

= An additional set of data (e. g. observations), belonging to observation space,
with dimension p

y = Hx+ ¢ E(ee) =R

H is known observation operator (assumed to linear at this stage)

15



Least-variance linear estimate of x from x” and y
x* = x+ PPHT [HP’H" + R]"' (y - Hx?)
P¢ = P- PPHT[HP°HT + R]"'' HP®
x“ is the Best Linear Unbiased Estimate (BLUE) of x from x? and y.

The vector y — Hx? is the difference between the observation and what

the background predicts for the observation. It is called the innovation
vector.

The matrix K = PPHT [HP’HT + R]'' = P HT R"! is gain matrix.

If joint probability distribution of errors (&, ¢) is gaussian, BLUE
achieves bayesian estimation, in the sense that P(x | x?,y) = 17\/[xa, P4].

16
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FiG. 1. Background fields for 0000 UTC 15 October-0000 UTC 16 October 1987. Shown here are the Northern Hemisphere (a) 500-
vel pressure for 15 October and the (¢) 500-hPa geopotential height and (d) mean sea level
ober are from the initial estimate of the initial conditions for the 4ADVAR minimization. The
ial conditions. Contour intervals are 80 m and 5 hPa.

WPa geopotential height and (b) mean sea le
pressure for 16 October. The fields for 15 Oct
fields for 16 October are from the 24-h T63 adiabatic model forecast from the init

Thépaut et al., 1993, Mon. Wea. Rev., 121, 3393-3414
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Analysis increments in a 3D-Var corresponding to a u-component wind observation at the
1000-hPa pressure level (no temporal evolution of background error covariance matrix)

Thépaut et al., 1993, Mon. Wea. Rev., 121, 3393-3414



Best Linear Unbiased Estimate
Variational form of the BLUE

BLUE x“ minimizes following scalar objective function, defined on state space

Ee S —
* J@=A2) X -HIPTI -5+ (112) (y- HY'R' (y- HE)

= jb + jo

Can easily, and heuristically, be extended to the case of a nonlinear observation operator H.

A large part of what is done in assimilation of observations, in geophysical
applications as well as in other applications, is based on more or less empirical
extensions of the BLUE to (moderately) nonlinear situations.



How to introduce time dimension (that is the real problem in assimilation) ?

Observation vector at time k

Vi = Hx + &
E(g)=0 ; E(skng) =R, 0

Evolution equation

X1 = Mix + 1,
E(n) =0 ; E(nkan) =0 6kj
E(ng") =0

Background estimate at time O

xPy = xo + &
E(Cbo):o ; E(CboéboT)pro
E(Cbong) =0 ; E(CbonkT):O

Errors uncorrelated in time

20



Sequential assimilation assumes the form of Kalman filter (Kalman, 1960)

Background x?, and associated error covariance matrix P?, known

Analysis step
x4 = x+ PP H T HPYHE + R (v - Hx')

pe =P’ - PP H T [HPHS + R ] HPY

Forecast step

xbk+1 = M, x%
PP = M, PYM,"+ Q,

21



Costliest part of computation
PP = My PO M+ Oy

Multiplication by M, = one integration of the model between times k and k+1.
Computation of M, P4, M,T =2n integrations of the model

Need for determining the temporal evolution of the uncertainty on the state
of the system is the major difficulty in assimilation of meteorological and
oceanographical observations.



Analysis of 500-hPa geopotential for 1 December 1989, 00:00 UTC (ECMWEF, spectral
truncation T21, unit m. After F. Bouttier)

23
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Temporal evolution of the 500-hPa geopotential autocorrelation with respect to
point located at 45N, 35W. From top to bottom: initial time, 6- and 24-hour range.
Contour interval 0.1. After F. Bouttier.
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Most common approach at present is Ensemble Kalman Filter (EnKF)

* Uncertainty is represented, not by a covariance matrix, but by an
ensemble of point estimates in state space which are meant to
sample the conditional probability distribution for the state of the
system (dimension N = O(10-100)).

Ensemble 1s evolved in time through the full model, which
eliminates any need for linear hypothesis as to the temporal
evolution.

G. Evensen (Bergen), J. Anderson, C. Snyder, T. Hamill,
(NCAR) ....

25



How to update predicted ensemble with new observations ?

Predicted ensemble at time & : {x}, I=1,...,L
Observation vector at same time : y = Hx + ¢

e Gaussian approach
Produce sample of probability distribution for real observed quantity Hx
Yi=y-¢g
where ¢, 1s distributed according to probability distribution for observation error &.
Then use Kalman formula to produce sample of ‘analysed’ states
x4 =xP,+ PPHY[HPPH" + R]! (y, - Hx?) , [=1,...,L (2)

where P?is the sample covariance matrix of predicted ensemble {x’}.

Remark. In case of Gaussian errors, if P? was exact covariance matrix of
background error, (2) would achieve Bayesian estimation, in the sense that {x}
would be a sample of conditional probability distribution for x, given all data up to
time k.



Month-long Performance of EnKF vs. 3Dvar with WRF

— EnKF —3DVar (prior, solid; posterior, dotted)
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Better performance of EnKF than 3DVar also seen in both 12-h forecast and posterior
analysis in terms of root-mean square difference averaged over the entire month

(Meng and Zhang 2007c, MWR, in review )



EnKF 1s used operationally at several meteorological
and oceanographical centres (Deutscher Wetterdienst,
Canadian Meteorological Center, ...).



Variational Assimilation.

Available data

- Background estimate at time 0

xob = X, + Cob E( Cob(;-obT) — pob
- Observations at times k=0, ..., K

- Model (supposed for the time being to be exact)
xk+]:kak k=0,...,K']

Errors assumed to be unbiased and uncorrelated in time, H, and M, linear

Then objective function

e 5
ﬂ(&o) = (172) (xob - ‘So)T [Pob]_1 (xob - ‘S()) + (172) 2, [y, - Hkgk]TRk_l (Vi - Hkgk]

subjectto &§,,, = M, &, , k=0,...,K-1



Principle of 4D-VAR assimilation
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j(go) = (1/2) (xob - go)T [P()b]_1 (xob - 'go) +(1/2) Zk[yk - Hkgk]TRk_l Ly, - Hkgk]
subjectto &, =M,§5,, k=0,...,K-1

Propagates information both forward and backward in time.

Background is not necessary, if observations are in sufficient number to
overdetermine the problem. Nor is strict linearity.

How to minimize objective function with respect to initial state u = &, (u is
called the control variable of the problem) ?

Use iterative minimization algorithm, each step of which requires the
explicit knowledge of the local gradient V /] = (9/]/du;) of /] with respect to u.

How to numerically compute gradient V] ?



Adjoint Method

Input vector u = (u;), dimu =n

Numerical process, implemented on computer (e. g. integration of
numerical model)

u—v=G(u)
v = (v)) is output vector , dimy = m

Perturbation ou = (du;) of input. Resulting first-order perturbation on v
ov; = X, (dv/ou;) ou,

or, in matrix form

ov = G’ du

where G’= (dv;/du,) is local matrix of partial derivatives, or jacobian matrix, of G.



Adjoint Method (continued 1)

ov = G’ ou

* Scalar function of output
Jv) = JiGw)]
Gradient V /] of /] with respect to input u?
‘Chain rule’
dJ/du;= 2;9J/dv; (dv/du,)

or

V.J=G"V,]

(D)

(A)



Evolution equation
dx/dt = F(x(1))

Tlangent linear equation
dox/dt = F’(x(1),t) ox

describes to first order evolution of small perturbation 6x on x
Adjoint equation
dx’/dt = - F’*(x(t),1) x’

describes (exact) evolution of gradient x’ of (any) scalar function with respect
to x. Adjoint equation is to be integrated baclward in time.
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FiG. 1. Background fields for 0000 UTC 15 October-0000 UTC 16 October 1987. Shown here are the Northern Hemisphere (a) 500-
vel pressure for 15 October and the (¢) 500-hPa geopotential height and (d) mean sea level
ober are from the initial estimate of the initial conditions for the 4ADVAR minimization. The
ial conditions. Contour intervals are 80 m and 5 hPa.

WPa geopotential height and (b) mean sea le
pressure for 16 October. The fields for 15 Oct
fields for 16 October are from the 24-h T63 adiabatic model forecast from the init

Thépaut et al., 1993, Mon. Wea. Rev., 121, 3393-3414
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Analysis increments in a 3D-Var corresponding to a u-component wind observation at the
1000-hPa pressure level (no temporal evolution of background error covariance matrix)

Thépaut et al., 1993, Mon. Wea. Rev., 121, 3393-3414



00 GMT 16 OCT 1987WIND 850 MBHEIGHT 350 M8

40°W 20°W

‘%
= 75 S
3
8
T
60°N 3 N
8 = A /
b .'.'QS‘N.< T %
el s NS '\ S
b TSI R\
e dsbanis 9 ‘s
ey 1
15N
z 5 i
3 I ik g 1
0
*N, 0 0 /

3,09

100°W

80°W

60°'W

3,02

Same as before, but at the end of a 24-hr 4D-Var

Thépaut et al., 1993, Mon. Wea. Rev., 121, 3393-3414




-day_,_forecas

3D-Var verifying analysis

=

4D-Var verifying analysis
M : :; PY 3 )
l‘ :%

7
= G

ECMWEF, Results on one FASTEX case (1997)




Strong  Constraint 4D-Var 1s wused operationally at
several meteorological centres (Météo-France, UK
Meteorological Office, Japan Meteorological Agency, ...)
and, until recently, at ECMWF. The latter now has a ‘weak
constraint’ component in its operational system.



Buehner et al. (Mon. Wea. Rev., 2010)

For the same numerical cost, and 1n
meteorologically realistic situations, Ensemble
Kalman Filter and Variational Assimilation
produce results of similar quality.



Conclusion on Ensemble Kalman Filter

Pros
‘Natural’, and well adapted to many practical situations

Provides, at least relatively easily, explicit estimate of estimation
error

Cons
Carries information only forward in time (of no importance
if one 1s interested only in doing forecast)

In present form, optimality is possible only if errors are independent
in time



Conclusion on Variational Assimilation

Pros

Carries information both forward and backward in time (important for
reassimilation of past data).

Can easily take into account temporal statistical dependence (Jarvinen et al.)
Does not require explicit computation of temporal evolution of estimation error

Very well adapted to some specific problems (e. g., identification of
tracer sources)

Cons
Does not readily provide estimate of estimation error

Requires development and maintenance of adjoint codes. But the
latter can have other uses (sensitivity studies).

e Dual approach seems most promising. But still needs further development for
application in non exactly linear cases.

* Is ensemble variational assimilation possible ? Probably yes. But also needs
development.



Exact bayesian estimation ?
Particle filters

Predicted ensemble at time 7 : {x* ,n =1, ..., N }, each element with its
own weight (probability) P(x”,)

Observation vector at same time : y = Hx + &

Bayes’ formula
PGt Jy) ~ POI,) P(:",)

Defines updating of weights



Bayes’ formula
P, Jy) ~ PGIX",) P(x",)

Defines updating of weights; particles are not modified. Asymptotically
converges to bayesian pdf. Very easy to implement.

Observed fact. For large state dimension, ensemble tends to collapse.



Behavior of max w*

> N, =103 N, =10,30,100; 10° realizations

occurences
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C. Snyder, http://www.cawcr.gov.au/staff/pxs/wmodas/Oral/

Snyder.pdf



Problem originates in the ‘curse of dimensionality’. Large dimension
pdf’s are very diffuse, so that very few particles (if any) are present in
areas where conditional probability (‘likelihood’) P(y|x) is large.

Bengtsson et al. (2008) and Snyder et al. (2008) evaluate that stability of
filter requires the size of ensembles to increase exponentially with
space dimension.



Importance Sampling.

Use a proposal density that is closer to the new observations than the density
defined by the predicted particles (for instance the density defined by
EnKF, after the latter has used the new observations). Independence

between particles is then lost in the computation of likelihood P(y|x) (or
is it ?)

In particular, Guided Sequential Importance Sampling (van Leeuwen, 2002).

Idea : use observations performed at time k to resample ensemble at
some timestep anterior to k, or ‘nudge’ integration between times k-1 and
k towards observation at time k.

Particle filters are actively studied (van Leeuwen, Morzfeld, ...)



Particle filters are actively studied (van Leeuwen, Morzfeld, ...)
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Fig. 1. Reconstructions of surface air temperature anomalies (°C) averaged over the area southward of 30° S (top panel) and over the area
southward of 66° S (bottom panel), when the dense pseudo-observations are assimilated. Gray line: pseudo-observations; yellow line: model
simulations without data assimilation; green line: the nudging; blue line: the sequential importance resampling applied over the polar cap
southward of 30° S; red line: the nudging proposal particle filter applied over the polar cap southward of 30° S. Correlations and the RMS
errors are displayed in upper left corners.

Dense observations (from Dunbinkina and Goosse, Clim. Past, 9, 2013)
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ratio of supercomputer costs:
1 day's assimilation / 1 day forecast

100
Computer power increased by 1M in 30 years.
Only 0.04% of the Moore’s Law increase over this time
went into improved DA algorithms, rather than improved
resolution!
10
1
1985 1990 1995 2000 2005 2010

Courtesy A. Lorenc



Assimilation, which originated from the need of defining initial conditions for numerical
weather forecasts, has gradually extended to many diverse applications

e Oceanography

e Atmospheric chemistry (both troposphere and stratosphere)
e QOceanic biogeochemistry

*  Ground hydrology

e Terrestrial biosphere and vegetation cover

e Glaciology

*  Magnetism (both planetary and stellar)

e Plate tectonics

e Planetary atmospheres (Mars, ...)

e Reassimilation of past observations (mostly for climatological purposes, ECMWF,
NCEP/NCAR)

e Identification of source of tracers

e Parameter identification

e A priori evaluation of anticipated new instruments

e Definition of observing systems (Observing Systems Simulation Experiments)
e  Validation of models

e Sensitivity studies (adjoints)

: : : : 51
It has now become a major tool of numerical environmental science



A few of the (many) remaining problems :

= Observability (what to observe in order to know what
we want to know ? Data are noisy, system is
chaotic !)

= More accurate identification and quantification of
errors affecting data particularly the assimilating
model (will always require independent hypotheses)

= Assimilation of images
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Thanks !



