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ECMWF, Technical Report 499, 2006  



 Assimilation of Observations originated 
from the need of defining initial conditions for 
Numerical Weather Predictions 





Value as of early 2013 : around 25 millions per day  

ECMWF 
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Physical laws governing the flow	


  Conservation of mass	

	
 Dρ/Dt + ρ divU  =  0	
 	


  Conservation of energy	

	
 De/Dt - (p/ρ2) Dρ/Dt =  Q	


  Conservation of momentum	

	
 DU/Dt + (1/ρ) gradp - g + 2 Ω ∧U =  F	


  Equation of state	

	
  f(p, ρ, e) =  0	
 	
 	
 (p/ρ = rT, e = CvT)	


  Conservation of mass of secondary components (water in  the atmosphere, salt 
in the ocean, chemical species, …)	


	
 Dq/Dt + q divU  = S	


Physical laws available in practice in the form of a discretized (and necessarily	

imperfect) numerical model	
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A schematic of an Atmospheric General Circulation Model (L. 
Fairhead /LMD-CNRS) 
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European Centre for Medium-range Weather Forecasts (ECMWF, 
Reading, UK) 

Horizontal spherical harmonics triangular truncation T1279 
(horizontal resolution ≈ 16 kilometres) 

137 levels on the vertical (0 - 80 km) 

Dimension of state vector n ≈ 2.3 109  

Timestep (semi-implicit semi-Lagrangian scheme) ≈ 10 minutes 
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 Purpose of assimilation : reconstruct as accurately as possible the state 
of the atmospheric or oceanic flow, using all available appropriate 
information. The latter essentially consists of 

  The observations proper, which vary in nature, resolution and accuracy, 
and are distributed more or less regularly in space and time. 

  The physical laws governing the evolution of the flow, available in 
practice in the form of a discretized, and necessarily approximate, 
numerical model. 

  ‘Asymptotic’ properties of the flow, such as, e. g., geostrophic balance of middle latitudes. 
Although they basically are necessary consequences of the physical laws which govern the 
flow, these properties can usefully be explicitly introduced in the assimilation process. 



 Assimilation  is  one  of  many  ‘inverse  problems’  encountered  in  many 
fields of science and technology	


•  solid Earth geophysics	


•  plasma physics	


•  ‘nondestructive’ probing	


•  navigation (spacecraft, aircraft, ….)	


•  stellar and terrestrial magnetism 	


•  …	


	
 Solution  most  often  (if  not  always)  based  on  Bayesian,  or  probabilistic, 
estimation. ‘Equations’ are fundamentally the same. 



Difficulties specific to assimilation of meteorological observations :	


	
 -  Very  large  numerical  dimensions  (n  ≈  106-109  parameters  to  be 
estimated,  p  ≈  1-3.107  observations  per  24-hour  period).  Difficulty 
aggravated in Numerical Weather Prediction by the need for the forecast to 
be ready in time.	


	
 -  Non-trivial,  actually  chaotic,  underlying  dynamics.  The  problem  is 
largely to control the instabilities that can develop in the course of the 
assimilation.	
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Courtier and Talagrand, QJRMS, 1987	
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Courtier and Talagrand, QJRMS, 1987	
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500-hPa  geopotential  field  as  determined  by  :  (left)  operational  assimilation  system  of 
French Weather Service (3D, primitive equation) and (right) experimental variational system 
(2D, vorticity equation)	


Courtier and Talagrand, QJRMS, 1987	
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Typical situation	


  A ‘background’ estimate  (e.  g.  forecast  from the  past),  belonging  to  state 
space, with dimension n 	


	
 xb  =  x  + ζb	
 	
 E(ζbζbT) ≡ Pb 	


  An additional set of data (e. g. observations), belonging to observation space, 
with dimension p	


	
 y  =  Hx + ε	
 	
 E(εεT) ≡ R 	


	
 H is known observation operator (assumed to linear at this stage)	
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Least-variance linear estimate of x from xb and y	


	
 	
 	
 xa = xb + PbHT [HPbHT + R]-1 (y - Hxb)	

	
 	
 	
 Pa = Pb

 - PbHT [HPbHT + R]-1  HPb	


 	
 xa is the Best Linear Unbiased Estimate (BLUE) of x from xb and y.	

	
 	

 	
 The vector y – Hxb is the difference between the observation and what 

the background predicts for the observation. It is called the innovation 
vector.  	


	
 	

	
 The matrix K = PbHT [HPbHT + R]-1 = Pa

 HT
 R-1 is gain matrix.	


	
 If  joint  probability  distribution  of  errors  (ζb,  ε)  is  gaussian,  BLUE 
achieves bayesian estimation, in the sense that P(x | xb, y) = N [xa, Pa].	




Thépaut et al., 1993, Mon. Wea. Rev., 121, 3393-3414 



Analysis increments in a 3D-Var corresponding to a u-component wind observation at the 
1000-hPa pressure level (no temporal evolution of background error covariance matrix) 

Thépaut et al., 1993, Mon. Wea. Rev., 121, 3393-3414 



Best Linear Unbiased Estimate	


	
 Variational form of the BLUE	


	
  BLUE xa minimizes following scalar objective function, defined on state space	


	
 ξ ∈  S  → 	


•      J(ξ) ≡  (1/2) (xb - ξ)T [Pb]-1 (xb - ξ) +  (1/2) (y - Hξ)T R-1 (y - Hξ) 
    
   = 	
         Jb	
 	
      + 	
      Jo	


	
 Can easily, and heuristically, be extended to the case of a nonlinear observation operator H.	

	
 	

	
 A  large  part  of  what  is  done  in  assimilation  of  observations,  in  geophysical 

applications  as  well  as  in  other  applications,  is  based  on  more  or  less  empirical 
extensions of the BLUE  to (moderately) nonlinear situations.     	
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 How to introduce time dimension (that is the real problem in assimilation) ?	


  Observation vector at time k	


 yk = Hkxk + εk     k = 0, …, K 

	
 E(εk) = 0   ;  E(εkεj
T) ≡ Rk δkj	


 	
 	
 	
 	
 	

  Evolution equation	


 xk+1 = Mkxk + ηk     k = 0, …, K-1	

 E(ηk) = 0   ;  E(ηkηj

T) ≡ Qk δkj 	


	
 E(ηkεj
T) = 0 	
 	
 	


  Background estimate at time 0 

 xb
0 = x0 + ζb

0  

 E(ζb
0) = 0   ;  E(ζb

0 ζb
0
T) ≡ Pb

0 	


	
  E(ζb
0εk

T) = 0    ;  E(ζb
0ηk

T) = 0   

•  Errors uncorrelated in time  
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 Sequential assimilation assumes the form of Kalman filter (Kalman, 1960)	


	
 Background xb
k and associated error covariance matrix Pb

k known	


  Analysis step	


	
  xa
k = xb

k + Pb
k Hk

T
 [HkPb

kHk
T 

 + Rk]-1 (yk - Hkxb
k)	


	
  Pa
k = Pb

k - Pb
k Hk

T
 [HkPb

kHk
T 

 + Rk]-1 HkPb
k	


  Forecast step 

  xb
k+1 =  Mk xa

k	


	
  Pb
k+1 = Mk Pa

k Mk
T + Qk  



 	

	
 Costliest part of computation	

	
 	
 	
 	

	
 	
 Pb

k+1 = Mk Pa
k Mk

T + Qk  

	
 Multiplication by Mk = one integration of the model between times k and k+1.	

	
 Computation of Mk Pa

k Mk
T  ≈ 2n integrations of the model 	


	
 Need  for  determining  the  temporal  evolution  of  the  uncertainty  on  the  state 
of  the  system is  the  major  difficulty  in  assimilation  of  meteorological  and 
oceanographical observations.	
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Analysis of 500-hPa geopotential for 1 December 1989, 00:00 UTC (ECMWF, spectral 
truncation T21, unit m. After F. Bouttier)	
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Temporal  evolution  of  the  500-hPa  geopotential  autocorrelation  with  respect  to 
point located at 45N, 35W. From top to bottom: initial time, 6- and 24-hour range.  
Contour interval 0.1. After F. Bouttier. 



25 

Most common approach at present is Ensemble Kalman Filter (EnKF) 	


•  Uncertainty is represented, not by a covariance matrix, but by an 
ensemble of point estimates in state space which are meant to 
sample the conditional probability distribution for the state of the 
system (dimension N ≈ O(10-100)).	


	
 Ensemble  is  evolved  in  time  through  the  full  model,  which 
eliminates  any  need  for  linear  hypothesis  as  to  the  temporal 
evolution.	


	
 	

	
 G.  Evensen  (Bergen),  J.  Anderson,  C.  Snyder,  T.  Hamill, 

(NCAR) ….	




How to update predicted ensemble with new observations ?	


Predicted ensemble at time k : {xb
l},	
 l = 1, …, L	


Observation vector at same time : y = Hx + ε	


•  Gaussian approach	

 	
 	

	
 Produce sample of probability distribution for real observed quantity Hx 	

	
 yl = y - εl 

	
 where εl is distributed according to probability distribution for observation error ε.   	
 	


	
 Then use Kalman formula to produce sample of ‘analysed’ states	


	
 xa
l = xb

l + Pb
 HT

 [HPbHT 
 + R]-1 (yl - Hxb

l) ,	
 l = 1, …, L	
	
 (2)	


	
 where Pb
 is the sample covariance matrix of predicted ensemble {xb

l}.	


	
 Remark.  In  case  of  Gaussian  errors,  if  Pb  was  exact  covariance  matrix  of 
background error, (2) would achieve Bayesian estimation, in the sense that {xa

l} 
would be a sample of conditional probability distribution for x, given all data up to 
time k.	




⎯  EnKF   ⎯ 3DVar (prior, solid; posterior, dotted) 

Prior  

posterior 

Better performance of EnKF than 3DVar also seen in both 12-h forecast and posterior 
analysis in terms of root-mean square difference averaged over the entire month  

Month-long Performance of EnKF vs. 3Dvar with WRF 

(Meng and Zhang 2007c, MWR, in review ) 



	
 EnKF  is  used  operationally  at  several  meteorological 
and  oceanographical  centres  (Deutscher  Wetterdienst, 
Canadian Meteorological Center, …). 	


	
 	




	
 Variational Assimilation.	


	
 Available data	


	
 	
 - Background estimate at time 0	

	
 	
    x0

b  =  x0
  + ζ0

b 	
  E(ζ0
bζ0

bT) = P0
b	


	
 	
 - Observations at times k = 0, …, K	

	
 	
    yk = Hkxk + εk	
 E(εkεj

T) = Rk δkj	


	
 	
  - Model (supposed for the time being to be exact) 	

	
 	
    xk+1 = Mkxk  k = 0, …, K-1	
 	
 	
 	


	
 	
 Errors assumed to be unbiased and uncorrelated in time, Hk and Mk linear 	


	
 Then objective function	

	
 	

ξ0 ∈  S  → 	


J(ξ0)  =  (1/2) (x0
b - ξ0)T [P0

b]-1 (x0
b - ξ0) + (1/2) Σk[yk - Hkξk]T Rk

-1 [yk - Hkξk]  
  
 subject to ξk+1 = Mkξk ,	
 k = 0, …, K-1	
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J(ξ0)  =  (1/2) (x0
b - ξ0)T [P0

b]-1 (x0
b - ξ0) + (1/2) Σk[yk - Hkξk]T Rk

-1 [yk - Hkξk]  
 subject to ξk+1 = Mkξk ,	
 k = 0, …, K-1	


   Propagates information both forward and backward in time.	


  Background  is  not  necessary,  if  observations  are  in  sufficient  number  to 
overdetermine the problem. Nor is strict linearity.	


 How to  minimize  objective  function  with  respect  to  initial  state  u  = ξ0  (u  is 
called the control variable of the problem) ?	


	
 Use  iterative  minimization  algorithm,  each  step  of  which  requires  the 
explicit knowledge of the local gradient ∇u J ≡  (∂J/∂ui) of J with respect to u.	


	
 How to numerically compute gradient ∇u J ?	




Adjoint Method	


	
 Input vector u = (ui), dimu = n	

	
 Numerical  process,  implemented  on  computer  (e.  g.  integration  of 

numerical model)	


u → v = G(u)	

	
 v = (vj) is output vector , dimv = m	


	
 Perturbation δu = (δui) of input. Resulting first-order perturbation on v	


	
 δvj = Σi (∂vj/∂ui) δui 	


	
 or, in matrix form	

	
 δv  =  G’δu	


	
 where G’≡ (∂vj/∂ui) is local matrix of partial derivatives, or jacobian matrix, of G. 	




Adjoint Method (continued 1)	


	
 	
 	
 	
        δv  =  G’δu	
 	
 	
 (D)	


•  Scalar function of output 	

J(v)  =  J[G(u)]	


	
 Gradient ∇u J of J with respect to input u?	


	
 ‘Chain rule’	
 	
  	


∂J/∂ui = Σj ∂J/∂vj (∂vj/∂ui)	


 	
  or 	

	
          ∇u J  =  G’T ∇v J 	
 	
  	
 (A)	




Evolution equation	


dx/dt  = F(x(t))	


Tangent linear equation	

dδx/dt  = F’(x(t), t) δx	


describes to first order evolution of small perturbation δx on x	


Adjoint equation	


dx’/dt  = - F’*(x(t), t) x’	


describes (exact) evolution of gradient x’ of (any) scalar function with respect 
to x. Adjoint equation is to be integrated baclward in time.	




Thépaut et al., 1993, Mon. Wea. Rev., 121, 3393-3414 



Analysis increments in a 3D-Var corresponding to a u-component wind observation at the 
1000-hPa pressure level (no temporal evolution of background error covariance matrix) 

Thépaut et al., 1993, Mon. Wea. Rev., 121, 3393-3414 



Same as before, but at the end of a 24-hr 4D-Var 

Thépaut et al., 1993, Mon. Wea. Rev., 121, 3393-3414 



ECMWF, Results on one FASTEX case (1997) 



	
 Strong  Constraint  4D-Var  is  used  operationally  at 
several  meteorological  centres  (Météo-France,  UK 
Meteorological Office, Japan Meteorological Agency, …) 
and, until recently, at ECMWF. The latter now has a ‘weak 
constraint’ component in its operational system. 	


	
 	




	
 Buehner et al. (Mon. Wea. Rev., 2010)	

	
 	

	
 For  the  same  numerical  cost,  and  in 

meteorologically  realistic  situations,  Ensemble 
Kalman  Filter  and  Variational  Assimilation 
produce results of similar quality.	




Conclusion on Ensemble Kalman Filter	


	
 Pros 	

	
      	
 ‘Natural’, and well adapted to many practical situations	

           Provides, at least relatively easily, explicit estimate of estimation 

error	


	
 Cons 	

	
 	
 Carries information only forward in time (of no importance 	

if one is interested only in doing forecast)	

            In present form, optimality is possible only if errors are independent 

in time	

	
 	
 	


	
 	




Conclusion on Variational Assimilation	


	
 Pros 	

	
  	
 Carries  information  both  forward  and  backward  in  time  (important  for 

reassimilation of past data).	

	
 	
 Can easily take into account temporal statistical dependence (Järvinen et al.)	

	
 	
 Does not require explicit computation of temporal evolution of estimation error	

	
 	
 Very  well  adapted  to  some  specific  problems  (e.  g.,  identification  of 

tracer sources)	


	
 Cons 	

	
  	
 Does not readily provide estimate of estimation error 	

	
 	
 Requires  development  and  maintenance  of  adjoint  codes.  But  the 

latter can have other uses (sensitivity studies).	

	
  	

•  Dual approach seems most promising. But still needs further development for 

application in non exactly linear cases. 	


•  Is ensemble variational assimilation possible ? Probably yes. But also needs 
development.	




Exact bayesian estimation ?	


Particle filters	


Predicted ensemble at time t : {xb
n, n = 1, …, N },  each element with its 

own weight (probability) P(xb
n) 	


Observation vector at same time : y = Hx + ε	


Bayes’ formula	

P(xb

n|y) ∼ P(y|xb
n) P(xb

n) 	


Defines updating of weights	




Bayes’ formula	

P(xb

n|y) ∼ P(y|xb
n) P(xb

n) 	


Defines  updating  of  weights;  particles  are  not  modified.  Asymptotically 
converges to bayesian pdf. Very easy to implement.	


Observed fact. For large state dimension, ensemble tends to collapse.	




C. Snyder, http://www.cawcr.gov.au/staff/pxs/wmoda5/Oral/
Snyder.pdf 



Problem originates  in  the  ‘curse  of  dimensionality’.  Large  dimension 
pdf’s are very diffuse, so that very few particles (if any) are present in 
areas where conditional probability  (‘likelihood’) P(y|x) is large.	


Bengtsson et al. (2008) and Snyder et al. (2008) evaluate that stability of 
filter  requires the size of ensembles to increase exponentially with 
space dimension.	




Importance Sampling. 	


Use a proposal density that is closer to the new observations than the density 
defined by the predicted particles (for instance the density defined by 
EnKF,  after  the  latter  has  used  the  new  observations).  Independence 
between particles is then lost in the computation of likelihood P(y|x) (or 
is it ?)	


In particular, Guided Sequential Importance Sampling (van Leeuwen, 2002). 
Idea  :  use  observations  performed at  time k  to  resample  ensemble  at 
some timestep anterior to k, or ‘nudge’ integration between times k-1 and 
k towards observation at time k.	


Particle filters are actively studied (van Leeuwen, Morzfeld, …) 	




Particle filters are actively studied (van Leeuwen, Morzfeld, …)  
  

  

  

  



49 Dense observations (from Dunbinkina and Goosse, Clim. Past, 9, 2013)  



© Crown copyright   Met Office  	


ratio of supercomputer costs:   
1 day's  assimilation / 1 day forecast
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Computer power increased by 1M in 30 years. 
Only 0.04% of the Moore’s Law increase over this time 
went into improved DA algorithms, rather than improved 
resolution! 

Courtesy A. Lorenc 
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Assimilation,  which originated  from the  need of  defining initial  conditions  for  numerical 
weather forecasts, has gradually extended to many diverse applications	


•  Oceanography	

•  Atmospheric chemistry (both troposphere and stratosphere)	

•  Oceanic biogeochemistry	

•  Ground hydrology	

•  Terrestrial biosphere and vegetation cover	

•  Glaciology	

•  Magnetism (both planetary and stellar)	

•  Plate tectonics	

•  Planetary atmospheres (Mars, …)	

•  Reassimilation of past observations (mostly for climatological purposes, ECMWF, 

NCEP/NCAR)	

•  Identification of source of tracers	

•  Parameter identification	

•  A priori evaluation of anticipated new instruments	

•  Definition of observing systems (Observing Systems Simulation Experiments)	

•  Validation of models	

•  Sensitivity studies (adjoints)	

•  …	


It has now become a major tool of numerical environmental science 



A few of the (many) remaining problems : 

 Observability (what to observe in order to know what 
we want to know ? Data are noisy, system is 
chaotic !)  

 More accurate identification and quantification of 
errors affecting data particularly the assimilating 
model (will always require independent hypotheses) 

 Assimilation of images 

 … 





Thanks !	



