M. Nodet

modelling

Dealing with missing data

Accounting for missing data in image data assimilation

Vincent Chabot, Maëlle Nodet and Arthur Vidard

Univ. Grenoble Alpes / INRIA / Météo France

Multitemp 2015

M. Nodet

Introduction

Observation error covariance modelling

Dealing with missing data

Outline

Introduction

Observation error covariance modelling

Dealing with missing data

M. Nodet

Introduction

Observation error covariance modelling

Dealing with missing data

What is data assimilation?

Direct problem:

Medical imaging (external measurements \rightarrow tissue properties)

UNIVERSITÉ GRENOBLE ALPES

Numerical Weather Prediction (NWP) (observations \rightarrow initial condition to produce a weather forecast) $_{3/17}$

M. Nodet

Introduction

modelling

Dealing with missing data

Variational data assimilation

Numerical Weather Prediction (NWP) (observations \rightarrow initial condition to produce a weather forecast)

Optimal initial condition: x_0^a minimizer of the cost function:

$$J(x_0) = \frac{1}{i} + \frac{1}{2} \sum_{i} \left\| H(\mathcal{M}_{t_0 \to t_i}(x_0)) - \frac{y_i^o}{i} \right\|_{\mathbf{R}}^2$$

regularisation misfit to observations

UNIVERSITÉ GRENOBLE ALPES

 $\left\|x\right\|_{\mathbf{R}}^2 = x^T \mathbf{R}^{-1} x$

R : observations error covariance matrix $\frac{4}{4}$

M. Nodet

Introduction

Observation error covariance modelling

UNIVERSITÉ GRENOBLE ALPES

Dealing with missing data

${\bf R}$ to account for heterogeneous information

NOISER DE RESER

- Heterogeneous in quality, quantity, nature.
- Sparse under the surface
- Continuously increasing number.

M. Nodet

Introduction

Observation erro covariance modelling

Dealing with missing data

Observation error covariances modelling

$$J(x_0) = \dots + \frac{1}{2} \sum_{i} \left\| H(\mathcal{M}_{t_0 \to t_i}(x_0)) - \mathbf{y}_i^{\boldsymbol{\rho}} \right\|_{\mathbf{R}}^2$$

with $\left\| x \right\|_{\mathbf{R}}^2 = x^T \mathbf{R}^{-1} x$

Dense-field observations are large, therefore ${\bm R}$ is big.

- computing issue: var. assim. requires its inverse
- storage issue: even if sparse, its inverse is not
- \blacktriangleright \rightarrow diagonal **R** !

 $\boldsymbol{\mathsf{R}}$ for dense-field observations:

- errors correlated in space
- ▶ in general, diagonal approx + obs. thinning
- thinning: small scale information is lost!

Idea of this work: use the sparseness of multiscale decomposition to try and **keep the diagonal approximation** for **R** alive (still **accounting for some spatial correlation**)

M. Nodet

Introduction

Observation error covariance modelling

Dealing with missing data

Outline

Introduction

Observation error covariance modelling

Dealing with missing data

M. Nodet

Introduction

Observation error covariance modelling

Dealing with missing data

True correlation matrices

Assuming Gaussian statistics and correlated noise

 $\mathbf{C}_{wav} = W \mathbf{C}_{pix} W^T$

Pixels

Daubechies

UNIVERSITÉ GRENOBLE ALPES

 \Rightarrow Diagonal approximation seems "less wrong" in wavelet space...

M. Nodet

Introduction

Observation error covariance modelling

Dealing with missing data

Change of variable into wavelet space

Trick to keep R diagonal

M. Nodet

Introduction

Observation error covariance modelling

Dealing with missing data

Change of variable into wavelet space

Trick to keep R diagonal

Why does it work?

Wavelet basis contains spatial correlation:

M. Nodet

Introduction

Observation error covariance modelling

Dealing with missing data

Correlations obtained when using diagonal covariance matrices

M. Nodet

Introduction

Observation error covariance modelling

Dealing with missing data

Impact of error statistics

Numerical results (1)

Mean over 10 experiments of the residual error after image assimilation:

Signal to Noise Ratio	26.8 dB	20.8 dB	14.8 dB
(SNR)	(small noise)		(high noise)
Pixel – Scalar	15.2%	21.8%	36.8%
Curvelets – Diag	8.1%	7.7%	8.3%
Wavelets <i>D</i> ₈ – Diag	7.0%	7.5%	9.1%
Fourier – Diag	7.3%	7.3%	7.3%

Perfect data // Noisy images, SNR 26.8 dB, 20.8 dB and 14.8 dB:

M. Nodet

Observation error covariance modelling

Dealing with missing data

Impact of error statistics Numerical results (2)

UNIVERSITÉ GRENOBLE ALPES

True velocities

Diag - pixel

M. Nodet

Introduction

Observation error covariance modelling

Dealing with missing data

Outline

Introduction

Observation error covariance modelling

Dealing with missing data

M. Nodet

Introduction

Observation error covariance modelling

Dealing with missing data

Managing missing data

Many images may suffer from missing data, as for example ocean colour masked by a passing cloud.

M. Nodet

Introduction

Observation error covariance modelling

Dealing with missing data

Managing missing data

Many images may suffer from missing data, as for example ocean colour masked by a passing cloud.


```
Grid/pixel space: easy!
```

in grid space

```
\|H(x) - y^{seen}\|^2_{R^{seen}_{grid}}
```

in a wavelet basis

Observed gridpoint

Masked gridpoint

 $W(v_{M}^{\circ})$

Partially observed wavelet coefficients

where H includes a projection (masking).

Wavelet space: tricky!

 naive approach: mask out the synthetic observation and take it as normal image.

not so naive approach: account for the information content of each way. coefficients

M. Nodet

Introduction

Observation error covariance modelling

Dealing with missing data

Managing occultations (2)

the more holes, the less Emmental cheese...

Conflicting issues:

- missing data: no error
 - \implies correction: deflate error statistics
- missing data: more discontinuity in the signal + perturbed small scale coefficients
 - \implies correction: inflate error statistics

M. Nodet

Introduction

Observation error covariance modelling

Dealing with missing data

Managing occultations (2)

the more holes, the less Emmental cheese...

Conflicting issues:

- missing data: no error
 - \implies correction: deflate error statistics
- missing data: more discontinuity in the signal + perturbed small scale coefficients
 - \implies correction: inflate error statistics

M. Nodet

Introduction

Observation error covariance modelling

Dealing with missing data

Thank you for your attention

References:

- V. Chabot, M. Nodet, N. Papadakis and A. Vidard, Assimilation of images in the presence of observation error, Tellus A, 2015
- V. Chabot, Etude de représentations parcimonieuses des statistiques d'erreur d'observation pour différentes métriques. Application à l'assimilation d'images, PhD thesis manuscript, Université de Grenoble, 2014
- G. Desroziers, L. Berre, B. Chapnik, and P. Poli. Diagnosis of observation, background and analysis-error statistics in observation space, Quarterly Journal of the Royal Meteorological Society, 2005.

L. M. Stewart, S. Dance, and N. K. Nichols. *Data assimilation with correlated observation errors: experiments with a 1-d shallow water model*, Tellus A, 2013.

O. Titaud, A. Vidard, I. Souopgui, and F.-X. Le Dimet. Assimilation of image sequences in numerical models, Tellus A, 2010.

M. Nodet

Correlations

Numerical setup

Observations thinning

Multiscale analysis

Observation errors representation

Occultations formula

Outline

Correlations

Numerical setup

Observations thinning

Multiscale analysis and wavelets

Observation errors representation

Occultations formula

M. Nodet

Correlations

- Numerical setup
- Observations thinning
- Multiscale analysis
- Observation errors representation
- Occultations formula

M. Nodet

Correlations

Numerical setup

Observations thinning

Multiscale analysis

Observation errors representation

Occultations formula

Estimated an acculted noise

II Approximation

M. Nodet

Correlations

Numerical setup

Observations thinning

Multiscale analysis

Observation errors representation

Occultations formula

Outline

Correlations

Numerical setup

Observations thinning

Multiscale analysis and wavelets

Observation errors representation

Occultations formula

M. Nodet

Correlations

Numerical setup

- Observations thinning
- Multiscale analysis
- Observation errors representation

UNIVERSITÉ GRENOBLE ALPES

Occultations formula

Numerical setup

Optimisation:

- ▶ Background at rest $(\mathbf{x}^{\mathbf{b}} = (\mathbf{0}, \mathbf{0}, \mathbf{h}_{\text{mean}})^{\mathsf{T}})$
- Usual B^{1/2} change of variable with correlation built using Weaver and Courtier (2001) approach.
- Progressive (or quasi-static) minimisation technique [Luong et al.(1998), Pires et al. (1996)]
- Minimizer: M1QN3 [Gilbert and Lemarechal]
- Twin experiments...

Observations:

- Image resolution: 128×128 (same as model)
- Error correlation: 3 pixels

M. Nodet

Correlations

Numerical setup

Observations thinning

Multiscale analysis

Observation errors representation

Occultations formula

Outline

Correlations

Numerical setup

Observations thinning

Multiscale analysis and wavelets

Observation errors representation

Occultations formula

M. Nodet

Correlations

Numerical setup

Observations thinning

Multiscale analysis

Observation errors representation

Occultations formula

UNIVERSITÉ GRENOBLE ALPES

What do the observations look like?

Results

M. Nodet

Correlations

Numerical setup

Observations thinning

Multiscale analysis

Observation errors representation

Occultations formula

0.7 Small Noise ----Medium Noise 0.6 High Noise 0.5 0.4 0.3 0.2 0.1 0 2 3 4 5 1 6 Sampling (every ... pixels) (noise correlation: 3 pixels)

M. Nodet

Correlations

Numerical setup

Observations thinning

Multiscale analysis

Observation errors representation

Occultations formula

Outline

Correlations

Numerical setup

Observations thinning

Multiscale analysis and wavelets

Observation errors representation

Occultations formula

M. Nodet

Correlations

Numerical setup

Observations thinning

Multiscale analysis

Observation errors representation

UNIVERSITÉ GRENOBLE

ALPES

Occultations formula

Interpretation levels of images (1)

Elementary level: value at each pixel

- Large quantity of information
- Strong dependance from acquisition conditions and measuring uncertainties

(image MODIS, source NASA)

M. Nodet

Correlations

Numerical setup

Observations thinning

Multiscale analysis

Observation errors representation

Occultations formula

Interpretation levels of images (2)

Structured (global) level: spacial organization of pixels

- Weak dependance from acquisition conditions and measuring uncertainties
- Dominated by the global dynamics

(image MODIS, source NASA)

M. Nodet

Correlations

Numerical setup

Observations thinning

Multiscale analysis

Observation errors representation

Occultations formula

Interpretation levels of images

Elementary level: value at each pixel

Structured (global) level: spacial organization of pixels

UNIVERSITÉ GRENOBLE ALPES

\rightarrow Multiscale analysis to take into account structure information

M. Nodet

Correlations

Numerical setup

Observations thinning

Multiscale analysis

Observation errors representation

Occultations formula

Wavelets

Mallat's Multiresolution Analysis (1)

Assume we have an image/signal at given at a fine scale M + 1. Let V_M be the approximation space of a given signal at scale M. W_M (the *details* space) is defined as the orthogonal complement of V_M in V_{M+1} :

$$V_{M+1} = V_M \bigoplus W_M$$

M. Nodet

Correlations

Numerical setup

Observations thinning

Multiscale analysis

Observation errors representation

Occultations formula

Wavelets

Mallat's Multiresolution Analysis (1)

Assume we have an image/signal at given at a fine scale M + 1. Let V_M be the approximation space of a given signal at scale M. W_M (the *details* space) is defined as the orthogonal complement of V_M in V_{M+1} :

$$V_{M+1} = V_M \bigoplus W_M$$

 V_{M+1} can be decomposed as:

$$\frac{P_{V_{M+1}}f(x)}{\text{Fine signal}} = \underbrace{\sum_{k} c_{M-N,k}\phi_{M-N,k}(x)}_{\text{Coarse approx. in } V_{M-N}} + \underbrace{\sum_{r=M-N\cdots M} \underbrace{\sum_{k} d_{r,k}\psi_{r,k}(x)}_{\text{Details in } w_{r}}}_{\text{Details in } w_{r}}$$

M. Nodet

Correlations

Numerical setup

Observations thinning

Multiscale analysis

Observation errors representation

Occultations formula

UNIVERSITÉ GRENOBLE ALPES

Wavelets

Mallat's Mutliresolution Analysis (2)

V_{M+1} can be decomposed as:

M. Nodet

Correlations

Numerical setup

Observations thinning

Multiscale analysis

Observation errors representation

Occultations formula

Wavelet representation

Original image

Wavelet decomposition representation

Wavelet coefficients distribution (log)

M. Nodet

Correlations

Numerical setup

Observations thinning

Multiscale analysis

Observation errors representation

Occultations formula

Outline

Correlations

Numerical setup

Observations thinning

Multiscale analysis and wavelets

Observation errors representation

Occultations formula

M. Nodet

Correlations

Numerical setup

Observations thinning

Multiscale analysis

Observation errors representation

Occultations formula

Effect of noise in the wavelet space

Noise free image

Uncorrelated noise

Correlated noise

M. Nodet

Correlations

Numerical setup

Observations thinning

Multiscale analysis

Observation errors representation

Occultations formula

Effect of noise in the wavelet space

Uncorrelated noise

Correlated noise

M. Nodet

Correlations

Numerical setup

Observations thinning

Multiscale analysis

Observation errors representation

Occultations formula

Effect of noise in the wavelet space

M. Nodet

Correlations

Numerical setup

Observations thinning

Multiscale analysis

Observation errors representation

Occultations formula

Outline

Correlations

Numerical setup

Observations thinning

Multiscale analysis and wavelets

Observation errors representation

Occultations formula

M. Nodet

Correlations

Numerical setup

Observations thinning

Multiscale analysis

Observation errors representation

UNIVERSITÉ GRENOBLE ALPES

Occultations formula

wavelet decomposition:

$$c^{j-1}[n] = \sum_{p} h[p-2n]c^{j}[p]$$
$$d^{j-1}[n] = \sum_{p} g[p-2n]d^{j}[p]$$

some attempt to account for missing data:

$$\tilde{\sigma}_{d_i}^2 = (\sigma_{d_i}^2 + \alpha_{d_i}\sigma_{mean}^2) \times I$$

where

$$\alpha_{d_i} = \left| \frac{\sum g^{occ}[p-2n]}{\sum |g^{occ}[p-2n]|} \right|$$

- I^0 number of observed grid point
- I^1 weighted number of observed grid point