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Data Driven Dynamical Systems (DDDS)

The goals of DDDS are to develop novel mathematical and statistical methods for
(i) discovering fundamental structures and extracting useful information contained
in high dimensional data; and (ii) assimilating this information into evolving
dynamical models in order to understand large-scale data-centric problems.

Nonlinear filtering & estimation

DA

Model of the system + Noise model

RDS

Change Detection; Sensor Control

IT

Particle Methods; Graphical Models

Numerics

DDDSElectric Power Systems Earth’s Climate System

Optimize the tradeoff between the detection delay and the frequency of false alarms.
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Motivation: Simple or “conceptual” coupled atmosphere - ocean model

Signal Process : εŻ εt = g(X ε
t ,Z

ε
t , ξ

ε
t ), Z ε0 = z ∈ Rm, core atmospheremodel

Ẋ ε
t = f (X ε

t ,Z
ε
t , ξ

ε
t ), X ε

0 = x ∈ Rn, core oceanmodel

where, Z εt represent the general circulation of the atmosphere; X ε
t are the ocean

components such as the density gradients, angular momentum, etc.. ξε represents the
unmodeled dynamics of the system or an additive noise, and the initial conditions (z , x)
are random variables. n + m-dimensional stochastic p

Observation process: Current Meters, CTDs (salinity and temperature every hour or so
for a period of up to two years), buoys, acoustic releases. For example, Meridional
Overturning Circulation and Heatflux Array (MOCHA) deployed along 26.5◦ N in the
Atlantic.

The observation process is a function of the signal process corrupted by noise

Y ε
t =

∫ t

0

hε(X ε
s ,Z

ε
s )ds + Vt ,

where h : Rn × Rm → Rp is called the sensor function.
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Dimensional reduction in nonlinear filtering: – issues in high-dimensionsMain goals: Develop efficient methods to

estimate the initial conditions / current states / parameters

obtain reliable forecast of the system evolution – prediction.

Our interest is to estimate the slowly varying signal (coarse-grained signal) X ε
t at

time t on the basis of the sigma-algebra σ{Y ε
s : 0 ≤ s ≤ t}.

More precisely for each t ≥ 0, we want to find the conditional law of the
slowly varying signal (coarse-grained signal)

πε,x
t (A)

def
= P{X ε

t ∈ A|Y ε
s : 0 ≤ s ≤ t}, for allA ∈ B(Rn).

πε
t (A) is governed by high dimensional SPDEs:“Curse-of-dimensionality”.

Show the conditional law {πε,x
t } for the coarse - grained dynamics converge

to a process {π0
t } that is governed by a lower dimensional linear SPDE.

Utilize the reduced-dimension linear SPDE for {π0
t } to develop efficient

particle filtering methods - Homogenized Hybrid Particle Filter (HHPF).

N. Sri Namachchivaya (Illinois) Random Dynamical Systems MultiTemp 2015 3 / 49



Dimensional reduction in nonlinear filtering: – issues in high-dimensionsMain goals: Develop efficient methods to

estimate the initial conditions / current states / parameters

obtain reliable forecast of the system evolution – prediction.

Our interest is to estimate the slowly varying signal (coarse-grained signal) X ε
t at

time t on the basis of the sigma-algebra σ{Y ε
s : 0 ≤ s ≤ t}.

More precisely for each t ≥ 0, we want to find the conditional law of the
slowly varying signal (coarse-grained signal)

πε,x
t (A)

def
= P{X ε

t ∈ A|Y ε
s : 0 ≤ s ≤ t}, for allA ∈ B(Rn).

πε
t (A) is governed by high dimensional SPDEs:“Curse-of-dimensionality”.

Show the conditional law {πε,x
t } for the coarse - grained dynamics converge

to a process {π0
t } that is governed by a lower dimensional linear SPDE.

Utilize the reduced-dimension linear SPDE for {π0
t } to develop efficient

particle filtering methods - Homogenized Hybrid Particle Filter (HHPF).

N. Sri Namachchivaya (Illinois) Random Dynamical Systems MultiTemp 2015 3 / 49



A recursive estimation formula for nonlinear systems

Figure: Evolution of density (FPE)

Zakai equation:

duε(t, x , z) = L ∗ε u
ε(t, x , z)dt︸ ︷︷ ︸

Fokker-Planck equation

+ uε(t, x , z)h(x , z)dY ε
t
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Technical Goals: how information interacts with complex scales
The homogenization of multiscale SDEs is a standard technique. However the
convergence of the corresponding filtering problem is not trivial, that is, under the
condition that

(X ε,Y ε)⇒ (X ,Y ),

showing that
E[f (X ε)|FY ε ]→ E[f (X )|FY ]

for all bounded continuous functions f is not trivial.

– the convergence of (X ε,Y ε) to (X ,Y ) itself does not guarantee the
convergence of filters.
– while estimation, information is lost when conditioning on Y instead of Y ε.

To come out of this conundrum, we recall that the filter is a “map from
observations to distributions” and is sufficiently continuous. This filter works well
enough when the limiting observations are replaced by the pre-limit ones:

π0
t (·, ~Yε

[0,t]) is close to πε,x
t (·, ~Yε

[0,t])

In other words, the filter of the coarse-grained dynamics conditioned to the real

observation is close to x-marginal of the original filter!!
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Multi-dimensional Case: Homogenization in multiscale filtering

Construction of a Homogenized filter

Find ρ0:

dρ0
t (ϕ) = ρ0

t

(
L̄ϕ
)
dt + ρ0

t

(
h̄ϕ
)
dY ε

t , ρ0
0(ϕ) = E

[
ϕ
(
X 0

0

)]
π0
t (ϕ)

def
=

ρ0
t (ϕ)

ρ0
t (1)

and L̄ =
∑m

i=1 b̄i (x) ∂
∂xi

+ 1
2

∑m
i,j=1 āij (x , z) ∂2

∂xi∂xj

Goal:

1. Find a suitable version of π0 associated with (X 0,Y ε) (homogenized process, actual
observation)
2. Show that πε,x is close to π0 in Lp-sense as ε→ 0a

lim
ε→0

sup
t≤T

EQ

[
d
(
πε,xt , π0

t

)p]
= 0, ∀T > 0

aP. Imkeller, N. Sri Namachchivaya, N. Perkowski, and H. Yeong, Dimensional
reduction in nonlinear filtering: A homogenization approach. Annals of Applied
Probability, Vol. 23, No. 6, 2290-2326, 2013 (extension of J. H. Park, N. Sri
Namachchivaya, and R. B. Sowers, Dimensional reduction in nonlinear filtering.
Nonlinearity, Vol. 23, 2010, Stochastics and Dynamics, Vol. 8(3) 543-560, 2008)
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Homogenized Hybrid Particle Filter (HHPF)
“curse of dimensionality” is partially resolved by the Homogenized Filtering
Equations

dρ0
t (ϕ) = ρ0

t

(
L̄ϕ
)
dt + ρ0

t

(
h̄ϕ
)
dY ε

t , ρ0
0(ϕ) = E

[
ϕ
(
X 0

0

)]
(1)

Particle method

– Numerical approximation of π0 or ρ0

– (weighted) particles to represent (conditional) density

Main Idea: The solution of the nonlinear filtering equation is approximated by a
system of N particles with varying weights

Uε
N(t) =

N∑
j=1

w xε,jt δxε,jt
,

where {xε,jt ; 1 ≤ j ≤ N} is a set of random particles which evolve according to

system dynamics and w xε,jt s are the corresponding weights.
N. Sri Namachchivaya (Illinois) Random Dynamical Systems MultiTemp 2015 7 / 49



Homogenized Hybrid Particle Filter (HHPF)
“curse of dimensionality” is partially resolved by the Homogenized Filtering
Equations

dρ0
t (ϕ) = ρ0

t

(
L̄ϕ
)
dt + ρ0

t

(
h̄ϕ
)
dY ε

t , ρ0
0(ϕ) = E

[
ϕ
(
X 0

0

)]
(1)

Particle method

– Numerical approximation of π0 or ρ0

– (weighted) particles to represent (conditional) density

Main Idea: The solution of the nonlinear filtering equation is approximated by a
system of N particles with varying weights

Uε
N(t) =

N∑
j=1

w xε,jt δxε,jt
,

where {xε,jt ; 1 ≤ j ≤ N} is a set of random particles which evolve according to

system dynamics and w xε,jt s are the corresponding weights.
N. Sri Namachchivaya (Illinois) Random Dynamical Systems MultiTemp 2015 7 / 49



Homogenized Hybrid Particle Filter (HHPF)1

true path

prediction

prior

Figure: Initial condition

Zakai equation: dūε(x , t) = L̄ūε(x , t)dt︸ ︷︷ ︸
Fokker-Planck equation

+h̄∗(x , t)ūε(x , t)dY ε
t

Weight update: wε,i
t+δt = exp

{∫ t+δt

t
h̄∗(x i

s , s)dY ε
s − 1

2

∫ t+δt

t

∥∥h̄(x i
s , s)

∥∥2
ds
}

w̄ε,i
t+δt =

w
ε,i
t+δt∑Ns

i=1 w
ε,i
t+δt

1J. H. Park, N. Sri Namachchivaya, H. Yeong, Particle Filters in a multi-scale
environment: Homogenized hybrid particle filter. J. Appl. Mech., 78(6), 2011
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Figure: Particles propagation
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1J. H. Park, N. Sri Namachchivaya, H. Yeong, Particle Filters in a multi-scale
environment: Homogenized hybrid particle filter. J. Appl. Mech., 78(6), 2011
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Homogenized Hybrid Particle Filter (HHPF)1

true path

prediction

prior

Figure: Weights update with observation Y ε
t

Zakai equation: dūε(x , t) = L̄ūε(x , t)dt︸ ︷︷ ︸
Fokker-Planck equation

+h̄∗(x , t)ūε(x , t)dY ε
t

Weight update: wε,i
t+δt = exp

{∫ t+δt

t
h̄∗(x i

s , s)dY ε
s − 1

2

∫ t+δt

t

∥∥h̄(x i
s , s)

∥∥2
ds
}

w̄ε,i
t+δt =

w
ε,i
t+δt∑Ns

i=1 w
ε,i
t+δt

D

1J. H. Park, N. Sri Namachchivaya, H. Yeong, Particle Filters in a multi-scale
environment: Homogenized hybrid particle filter. J. Appl. Mech., 78(6), 2011
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Homogenized Hybrid Particle Filter (HHPF)1

true path

prediction

Figure: Resample → Conditional density
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Lorenz ’63 model - A toy model of atmospheric convection

Ẋt = −σXt + σYt +ξx(t)

Ẏt = ρXt − Yt − XtZt +ξy (t)

Żt = −βZt − XtYt +ξz(t)

Typical values for parameters are σ = 10 (Prandtl number), ρ = 8/3 and β can
vary; model exhibits chaotic behavior at β = 28 (λ = 0.9056 and τd = 0.77 units)

“True” signal generated and observations taken every 50 timesteps (0.2 units)
which represent approximately one-fourth of doubling time (sparse data).

signal noise ξ added is vector of Gaussian random numbers premultiplied by

correlation matrix

 1 0.5 0.25
0.5 1 0.5

0.25 0.5 1

.

observation is taken as signal plus Gaussian noise with correlation matrix2 0 0
0 2 0
0 0 2

.

Particle filters implemented with 20 particles, resample when effective number of
particles falls below 5
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Figure: Lorenz ’63 model: Standard Particle filter; Ns = 3
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”Close, but no cigar” when it comes to data assimilation in chaotic systems with
sparse data – observations taken over discrete times close to “error doubling time”.

Difficult Issues:

Systems with positive Lyapunov exponents – small errors in the estimate of
the current state can grow to have a major impact on the forecast.

Probability space in large-dimensional systems is “empty” – very few of the
particles end up close to the actual location, and hence receive large fraction
of the weight – the curse of dimensionality and particle collapse.

Solutions:

Use control methods and importance sampling as a basic and flexible tool for
the construction of the proposal density.

Superimpose a control on the particle dynamics to drive the particles to
locations most representative of the observations without losing the sample
diversity.
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Optimal Nudging in Particle Filtering

Very few of the particles end up close to the actual location, and hence receive
large fraction of the weight: the curse of dimensionality and particle collapse.

Standard	
  Par)cle	
  filter	
  

Not very efficient ! 

tk

Ytk

Xtrue
tk+M

Ytk+M

Xtrue
tk

tk+1 tk+2 tk+M

Xu[t  ,t     ]k k+M

i

v

Xu[t  ,t     ]k k+2

i

v

Xu[t  ,t    ]k k+1

i

v

Par$cle	
  filter	
  with	
  	
  
proposal	
  transi$on	
  

density	
  

Figure: Standard particle filters, Optimal nudging and Nudged particle filters

Nudging consists of adding forcing terms to the “prognostic” equations, that steer
the particles toward the observations – at the same time, not to over control so
that the sample diversity is lost.
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Control the particles to construct a new proposal density
Find the optimal control u which minimizes the cost:

J(tk , xk ; u) = Êtk ,xk

1

2

∫ tk+1

tk

u(s)TQ−1u(s)︸ ︷︷ ︸
input energy

ds + g(X̂ (tk+1))︸ ︷︷ ︸
terminal cost

 , (2)

where g(x) = 1
2 (Yk+1 − h(x))TR−1(Yk+1 − h(x)) - penalty for being away from

observation and Êtk ,xk is the probability measure generated by the controlled

process X̂ staring at xk at time tk :

dX̂ (s) = b̄(X̂ (s))ds + u(s)ds + σdW , tk ≤ t ≤ tk+1, X̂ (tk) = xk .

less penalty on the size of the control in the directions with large noise
amplitude (allow for more correction!).

in directions where the quality of the observation is poor, we allow the
particles to be further away from the observations.
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Optimal Nudging Embedded on HHPF

The optimal control is u(t) = −σσTDxV (t, X̂ (t)), and taking u(t) = σv(t) for
simplicity, we construct the proposal measure from the controlled process

dX̂ (t) = b̄(X̂ (t))dt + σdW + σv(t)dt, tk ≤ t ≤ tk+1, X̂ (tk) = xk , (3)

where
v(t) = −σTDxV (t, X̂ (t)).

We evolve the particles according to (3), using the principle of importance
sampling, the weights are updated according to

wk+1
i ∝ exp

(
−g(Yk+1, X̂ i (tk+1))

) dµX̃
i

dµX̂
i
wk
i , (4)

where µX̃ and µX̂ are the measures generated by the original (??) and controlled
processes (3), respectively, evolving for tk ≤ t ≤ tk+1 with starting point x at tk .

dµX̃

dµX̂

= exp

(
−
∫ tk+1

tk

vT (s) dW (s)− 1

2

∫ tk+1

tk

v(s)T v(s) ds

)
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Figure: Lorenz ’63 model: Particle filter with optimal control; Ns = 3
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Lorenz-962: Heuristic midlatitude atmospheric model
The large scale, low frequency variables X represent some scaler meteorological quantity,

for example, vorticity or temperature at J equally spaced sites around the latitude circle.

Each X is coupled to K small scale, high frequency Z variables.

Ẋ k =

advection︷ ︸︸ ︷
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Model parameters for sparse observations

# of slow, large amplitude modes K = 36;

# of fast, low amplitude modes J = 10 implies 360 total fast modes;

constant external forcing Fx = 10;

coupling coefficients hx = −0.8, hz = 1;

ε = 0.075

Numerical integration

T = 20 (time) units = 100 days, micro timestep δt = 0.0005 = 3.6 min;

macro timestep ∆t = 0.05 = 6 hrs;

Ns = 20, Error doubling time = 36 hrs, observations at every 36 hrs

Processor: Intel Xeon DP Hexa-core X5675s (dual, 3.07GHz)

Integration scheme: Euler-Maruyama (stochastic), Runge-Kutta
(deterministic) in MATLAB (R2010b)
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HHPFs comparison
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Figure: Direct HHPF
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Figure: Optimized HHPF

Upper figure: true solution in blue. Lower figure: absolute error vs time.
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(a) enKF Lorenz ’96model
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Figure: Estimation performance of the different filters; counterclockwise from the top left, the
enKF, the henKF and the HHPF. The blue curve in the top two plots of each figure represents
the true state trajectory while the red curve represents the estimated trajectory.
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Ns
Opt. HHPF Direct HHPF Homog. EnKF EnKF
time RMSE time RMSE time RMSE time RMSE

10 82 26.04 26 69.27 26 32.53 785 25.96

20 97 24.52 27 58.09 27 26.92 587 20.05

50 241 24.78 68 42.71 70 24.53 703 17.32

100 493 24.92 139 36.77 134 23.75 861 16.21
200 1153 24.71 375 35.37 369 23.58 1539 16.46

Table: Average computation times (in sec.) and RMSEs for different sample sizes. Data
recorded every 0.3 time units (6 ∆t ≈ error doubling time of 36 hrs real time).

The computational time of the schemes for the same level of RMSE (≈ 25):

EnKF (485 sec.) >> Opt.HHPF (97 sec.) ≥ Homog.EnKF (70 sec.)
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Conclusions: lower dimensional filters

We showed the efficient utilization of the low-dimensional models of the signal to
develop a low-dimensional nonlinear filtering equations (Zakai-type equation) that
determine the conditional law of the coarse-grained signal, Xt , of complex
systems, in multi-scale environments.

Developed the Homogenized Hybrid Particle Filter (HHPF) which combined the
results on reduced order nonlinear filtering with sequential Monte Carlo methods.
HHPF reduces the effective number of variables in the evaluation of the
conditional distribution needed in the Bayesian filter for data assimilation.

Numerical studies were presented to illustrate that in settings where the signal and
observation dynamics are nonlinear a suitably chosen HHPF scheme can
drastically outperform the regular particle filters.
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