

Development of a remote sensing based fast response system to support the crisis management after storm calamities in forests

Oliver Bauer, Department of Information Technologie, LWF Kathrin Einzmann, Institute of Surveying, Remote Sensing and Land Information (IVFL), BOKU Andreas Schmitt, German Remote Sensing Data Center, DLR Andreas Hirner, German Remote Sensing Data Center, DLR Rudolf Seitz, Department of Information Technologie, LWF

International workshop on the analysis of multitemporal remote sensing images July 22nd-24th 2015, Annecy, France

Bavarian State Institute of Forestry

BAYERISCHE **T** FORSTVERWALTUNG

Deutsches Zentrum für Luft- und Raumfahrt German Aerospace Center

Where are my windthrow areas?

Where are my windthrow areas?

How to organize my crisis management?

Where are my windthrow areas?

How to organize my crisis management?

MOTIVATION

Current practice after storm events...

- time-consuming search
- subjective and coarse estimation
- no centralized information
- lack of regular updated information

MOTIVATION

Current practice after storm events...

- time-consuming search
- subjective and coarse estimation
- no centralized information
- lack of regular updated information

...leads to

- delayed crisis management organization
- uncertainties in the timber markets
- economic losses
- subsequent biotic damages (e.g. bark beetle)

MOTIVATION

Current practice after storm events...

- time-consuming search
- subjective and coarse estimation
- no centralized information
- lack of regular updated information

...leads to

- delayed crisis management organization
- uncertainties in the timber markets
- economic losses
- subsequent biotic damages (e.g. bark beetle)

\rightarrow Need of a concept which works efficient and fast

"FastResponse"

"FastResponse"

Aim:

to establish a **process chain** in which **existing methods** and **available sensors** will be combined to a **operational, fast acting service**.

REQUIREMENTS

REQUIREMENTS

CONCEPT – PROCESS CHAIN

CONCEPT – PROCESS CHAIN

DATA – CHANGE DETECTION

Synthetic aperture radar (SAR)

- weather independent
- daylight independent

Sensors

- TerraSAR-X (X-Band)
- Sentinel-1 (C-Band)

\rightarrow Suitable for a fast estimation

DATA – CHANGE DETECTION

Synthetic aperture radar (SAR)

- weather independent
- daylight independent

Sensors

- TerraSAR-X (X-Band)
- Sentinel-1 (C-Band)
- \rightarrow Suitable for a fast estimation

Optical data

- vegetation identifying multispectral bands
- high spatial resolution

Sensors

- WorldView-2
- RapidEye
- Sentinel-2

\rightarrow Suitable for a detailed estimation

CONCEPT – PROCESS CHAIN

DATA – GIS-ANALYSIS

Geodata

- digital terrain models
- street network maps
- administrative maps

Forest maps

- timber volume estimation maps
- coniferous/broadleaf distribution

Methods

METHODS – CHANGE DETECTION

Synthetic aperture radar (SAR)

Differential Kennaugh elements¹

Joint image enhancement to achieve maximum radiometric accuracy with minimal loss of geometric resolution.

¹ Schmitt, Wendleder, Hinz (2015): The Kennaugh element framework for multi-scale, multi-polarized multi-temporal and multi-frequency SAR image preparation

METHODS – CHANGE DETECTION

Optical data:

- Pixel-based
 - Image differencing combining bands
 - Comparison of vegetation indices
- Object-based image analysis

TEST

TEST - OBJECTIVES

Change detection:

- Which results can be expected from the available sensors?
- Are the change detection (CD) methods reliable?
- What problems do occur?

TEST

- Monitoring a logging in a forest district of Flachgau (Austria)
- area: 100 km²
- 810 2.420 m a.s.l.
- 17th Sept. to 24th Oct. 2014
- predominantly coniferous
- simulated windthrow (ca. 2 ha)
- unknown location

Test – Data

SAR data

TerraSAR-X

	BEFORE logging	AFTER logging
date:	16 th Aug.	10 th Oct.
mode	HR spotlight	
polarisation	HH+VV	
incident angle:	50° (same orbit!)	
pixel spacing:	1.25m	

- preprocessing
 - Kennaugh element framework¹
- change detection method
 differential Kennaugh elements¹

Test – Data

Optical data

WorldView-2

	BEFORE logging	AFTER logging
date	19 th Jul.	19 th Oct.
sun elev.	61.47°	32.37°
bands	8 (multispektral)	
GSD	2m	

- preprocessing
 - atmospheric and geometric correction
 - image mosaicing
- change detection method
 - Image differencing

TSX

CD difference image

TSX

TSX

Logging area (manually mapped)

international worksnop on the analysis of multitemporal remote sensing images, July 22nd-24th, 2015, Annecy, France

WV2

scene BEFORE the logging (19th July)

WV2

scene BEFORE the logging (19th July)

scene AFTER the logging (19th Oct.)

WV2

Result of the WV2 change detection (manually mapped)

scene AFTER the logging (19th Oct.)

WV2

Result of the WV2 change detection (manually mapped)

Result of the WV2 change detection (manually mapped)

International workshop on the analysis of multitemporal remote sensing images, July 22nd-24th, 2015, Annecy, France

CONCLUSION

SAR

- + detection of the logging area (size + location) and six other changed areas
- fast and automised processing and analyzing
- + no modifications on CD method
- no automated classification yet
- errors due to (radar)shadowing

Processing time:

→ 20 min from raw data to difference image (100km²)

CONCLUSION

SAR

- + detection of the logging area (size + location) and six other changed areas
- fast and automised processing and analyzing
- + no modifications on CD method
- no automated classification yet
- errors due to (radar)shadowing
 Processing time:
- → 20 min from raw data to difference image (100km²)

Optical data

- + detection of the logging area
 (location) and six other changed areas
- + CD method worked
- underestimated area
- no automated classification yet
- errors due to shadowing, clouds and northerly slope

Processing time

→ 28 h from raw data to difference image (100km²)

- develop an automated classification process for the changed areas
- prepare to use the data from the ESA Sentinel-spacecraft-fleet
- performing the GIS-Analysis
- test our system on a real storm event (including an accuracy assessment)
- → Storm "Niklas" (31st March)

Thank you for your attention

Supported by:

Federal Ministry for Economic Affairs and Energy

on the basis of a decision by the German Bundestag **Questions?**

In cooperation with:

Universität für Bodenkultur Wien University of Natural Resources and Life Sciences, Vienna

Deutsches Zentrum für Luft- und Raumfahrt German Aerospace Center

Contact

Oliver Bauer Bavarian state institute of forestry (LWF) Department 1 – Information technology Hans-Carl-von-Carlowitz-Platz 1 85354 Freising Germany

phone.: +49 8161/ 71-4968 fax: +49 8161/ 71-4971 mobile: +49 173/ 86 38 597 e-mail: <u>oliver.bauer@lwf.bayern.de</u>

REFERENCES

Ermert J.; Dees M.; Koch B. (2012): Mapping of storm damages in forests using TerraSAR-X SAR image data. In: European Association of Remote Sensing Laboratories (Hg.): Special Interest Group "Temporal Analysis of Satellite Images". Mykonos, S. 145–152

Fransson, J. E.S.; Pantze, A.; Eriksson, L. E.B.; Soja, M. J.; Santoro, M. (2010): Mapping of wind-thrown forests using satellite SAR images. In: IGARSS 2010 - 2010 IEEE International Geoscience and Remote Sensing Symposium. IGARSS 2010. Honolulu, HI, USA, S. 1242–1245.

Hecheltjen, A.; Thonfeld, F.; Menz, G. (2014): Recent Advances in Remote Sensing Change Detection – A Review. In: Ioannis Manakos und Matthias Braun (Hg.): Land Use and Land Cover Mapping in Europe, Bd. 18. Dordrecht: Springer Netherlands (Remote Sensing and Digital Image Processing), S. 145–178.

Pantze, A.; Fransson, J. E.S.; Santoro, M. (2010): Forest change detection from L-band satellite SAR images using iterative histogram matching and thresholding together with data fusion. In: IGARSS 2010 - 2010 IEEE International Geoscience and Remote Sensing Symposium. IGARSS 2010. Honolulu, HI, USA, S. 1226–1229.

Schmitt, A., Wendleder, A., Hinz, S. (2015): The Kennaugh element framework for multi-scale, multi-polarized, multitemporal and multi-frequency SAR image preparation. ISPRS International Journal of Photogrammetry and Remote Sensing, 102, 122-139.

Steinmeier, C.; Schwarz, M.; Holecz, F.; Stebler, O.; Wagner, S.(2002): The evaluation of different sensors and techniques for the detection of storm damages in forests. In: IGARSS 2002 - IEEE International Geoscience and Remote Sensing Symposium, Bd. 3. IGARSS (3), S. 1774–1776.

