

3D Displacement Retrieval on Glacial Areas by Airborne Multi-View Photogrammetry

JNIVERSITÉ

NT BLANC

Haixing HE¹, Flavien Vernier², Thierry Villemin¹, Estelle Ployon¹, Philip Deline¹, Umberto Morra di Cella³

1 – EDYTEM Laboratory, University of Savoie, France
2 – LISTIC Laboratory, University of Savoie, France
3 - ARPA Valle d'Aosta, Italy

3D Displacement Retrieval on Glacial Areas by Airborne Photogrammetry

01 Introduction

- Background
- Deformation survey by photogrammetry
- Proposition of new method

02 Study Area

- Presentation of the site
- Acquisition
- 03 Method & Results

04 Conclusion

- Advantages
- Perspectives

Terrestrial vs Aerial Photogrammetry

3D I Are

3D Displacement Retrieval on Glacial Areas by Airborne Photogrammetry

Terrestrial Photogrammetry

- > Tool: Digital Camera
- > Methods:
 - 1. Stereo
 - 2. Multi-view
- ➤ Limits:
 - 1. Light movement of camera
 - 2. Accessibility

Terrestrial vs Aerial Photogrammetry

3D Displacement Retrieval on Glacial Areas by Airborne Photogrammetry

Aerial Photogrammetry

- > Tools: Satellite, Plane, UAV
- Methods: Stereo, Multi-view
- > Limits:
 - 1. Weather (cloud, wind)
 - 2. Error on Z axe

Study Area - Miage Glacier

3D Displacement Retrieval on Glacial Areas by Airborne Photogrammetry

Miage Glacier

- The third largest Italian glacier.
- Flows on the SE side of the Mont Blanc massif

N

Miage maniperator hitheatre

Location

Amphitheatre

Acquisition

3D Displacement Retrieval on Glacial Areas by Airborne Photogrammetry

Q

Before drainage

After drainage

Acquisition

3D Displacement Retrieval on Glacial Areas by Airborne Photogrammetry

Tool

UAV: SenseFly Swinglet CAM Camera: Canon IXUS 125HS Onboard GPS

Strategy

	First Flight	Second Flight
Start time	10h47 am	8h22 am
Duration	18 mins	24 mins
Area coverd	0.36 km ²	0.36 km ²
Distance	14.0 km	14.1 km
Altitude	170 m	170 m
Resolution	5 cm/px	5 cm/px
Image Number	143	250

Forward overlap: 85% Side overlap: 80%

Method: 3D Modeling

3D Displacement Retrieval on Glacial Areas by Airborne Photogrammetry

Haixing HE – MultiTemp 2015

12 / 19

Method: 2D displacement calculation

3D Displacement Retrieval on Glacial Areas by Airborne Photogrammetry

Method: 3D displacement calculation

3D Displacement Retrieval on Glacial Areas by Airborne Photogrammetry

Advantage

3D Displacement Retrieval on Glacial Areas by Airborne Photogrammetry

Complete

3D displacement of "each" pixel

Widly applicable

Method can be used for all types of photogrammetry

Haixing HE – MultiTemp 2015

Perspective

3D Displacement Retrieval on Glacial Areas by Airborne Photogrammetry

Ground Control Points

Set ground control points on land

Existing 3D model

Extract GCPs from an existing 3D model

High precision UAV GPS

Increase the precision of embedded GPS on UAV

Improve the precision

Questions?

Thank you for your attention!

Results

3D Displacement Retrieval on Glacial Areas by Airborne Photogrammetry

Red arrows: Fixed area, less than 0.5m

Blue arrows: Mobile area, homogeneous, meet the direction of the movement

Fixed Area: blue, 3D displacements are closed to 0

Mobile Area: green~blue, between 3~5m

Haixing HE – MultiTemp 2015

15 / 19