CHANGE DETECTION USING MULTISCALE SEGMENTATION AND KULLBACK-LEIBLER DIVERGENCE: APPLICATION ON ROAD DAMAGE EXTRACTION

Moslem Ouled Sghaier

July 22, 2015

École de technologie supérieure Montréal(Québec),Canada

Multitemp 2015 July 22-24 - Annecy, France

- Introduction
- Problematic and objectives
- Proposed methodology
- ► IS Experimentations
- ▶ IS Conclusion and perspectives

INTRODUCTION

⇒ Change detection occupies an important role in the extraction of useful information in remote sensing images:

Figure 1: Land use: The Niagara escarpment

Figure 2: Damage detection and assessment 3/22

Figure 3: Urban expansion

INTERVENTION CYCLE IN CASE OF MAJOR DISASTERS

PROBLEMATIC AND OBJECTIVES

Problems related to the change detection techniques:

Problems related to the change detection techniques:

1. How to choose the unit of analysis ?

Problems related to the change detection techniques:

1. How to choose the unit of analysis ?

2. How to choose the comparaison method ?

1. Achieve an optimal segmentation of the image as it influences on the change detection results.

- 1. Achieve an optimal segmentation of the image as it influences on the change detection results.
- 2. Perform a comparison method robust to noise.

- 1. Achieve an optimal segmentation of the image as it influences on the change detection results.
- 2. Perform a comparison method robust to noise.
- 3. Apply the proposed method on road damage detection.

PROPOSED METHODOLOGY

Multiscale segmentation

Multiscale segmentation

CHANGE DETECTION USING THE KLD

The regions supporting the same object from the two images are compared using the Kullback-Leibler divergence.

CHANGE DETECTION USING THE KLD

$$D_{KL}(P||Q) = \sum_{i} P(i) ln \frac{P(i)}{Q(i)}$$
(1)
$$S_{KL}(P||Q) = \frac{1}{2} (D_{KL}(P||Q) + D_{KL}(Q||P))$$
(2)

- The regions supporting the same object from the two images are compared using the Kullback-Leibler divergence.
- A symmetric version of the KLD is obtained by taking the mean value of both directions.

Preprocessing: (Selection of Area of Interest)

- Introduction to the Dempster-Shafer theory:
 - Frame of discernment:
 - $\Omega = \{w_1, w_2, \dots, w_c\}$
 - Power set: $2^{\Omega} = \{\emptyset, w_1, w_2, \{w_1, w_2\}, w_3, \{w_1, w_3\}, \{w_1, w_2, w_3\},, w_c\}$
 - \blacktriangleright A mass function m(.) is defined from 2^{Ω} to [0,1] as:

$$\sum_{A \subseteq 2^{\Omega}} m(A) = 1 \qquad m(\emptyset) = 0 \tag{3}$$

Two mass functions m₁ and m₂ can be combined using the Dempster's rule of combination:

$$m_{1\bigcirc 2}(A) = \sum_{B \cap C = A} m_1(B)m_2(C), \quad \forall A \subseteq \Omega$$
(4)
$$m_{1\oplus 2}(A) = \begin{cases} 0 & \text{if } A = \emptyset \\ \frac{m_{1\bigcirc 2}(A)}{1 - m_{1\bigcirc 2}(\emptyset)} & \text{else} \end{cases}$$

 Images classification using the Evidential K-nearest neighbor method (Denoeux, T 1995).

 Images classification using the Evidential K-nearest neighbor method (Denoeux, T 1995).

 Images classification using the Evidential K-nearest neighbor method (Denoeux, T 1995).

- Images classification using the Evidential K-nearest neighbor method (Denoeux, T 1995).
- Fuse mass functions from the two images using the Multidimensional Evidential Reasoning MDER (Zung-ga 2014).

- Images classification using the Evidential K-nearest neighbor method (Denoeux, T 1995).
- Fuse mass functions from the two images using the Multidimensional Evidential Reasoning MDER (Zung-ga 2014).

$$BetP(A) = \sum_{B \in 2^{\Omega}, B \neq \emptyset} \frac{|B \cap A|}{|B|} m(B)$$

- Images classification using the Evidential K-nearest neighbor method (Denoeux, T 1995).
- Fuse mass functions from the two images using the Multidimensional Evidential Reasoning MDER (Zung-ga 2014).
- Keep the most likely change using the maximum of the pignistic probability.

EXPERIMENTATIONS

► Benchmark:

	Port-au-Prince (Haiti)	Boumerdes (Algeria)
Event	earthquake	earthquake
Date	12 January 2010	21 May 2003
Satellite	Geoeye-1	Quickbird
Dimension	14000 imes 14000	28488×9732
Resolution	46 cm/1.84 m	60 cm/2.4 m
Bands	Panchromatic/Multispec.	Panchromatic/Multispec.

► Port-au-Prince site:

Figure 4: (a) Pre-disaster image Figure 5: (b) Post-disaster image

EXPERIMENTATIONS

Boumerdes site:

Figure 6: (a) Pre-disaster image 17/22

EXPERIMENTATIONS

Figure 8: Results on Port-au-Prince site

Figure 9: Results on Boumerdes site

Comparison with existing techniques:

Figure 10: (a) Image differencing Figure 11: (b) Multivariate alteration detector

	Detected Changes	False Alarms
Our method	220	20
Image differencing	402	103
MAD	395	78

19/22

EXPERIMENTATIONS

Figure 10: (a) Input image

Figure 11: (b) Road damage detection

Roads damage detection results:

Data set	Haiti	Boumerdes
DCT based method	TP = 82 %	TP = 93 %
DST-based method	FP=18~%	FP=7~%
Knn based method	TP = 78 %	TP = 87 %
Knn-based method	FP=22~%	FP=13~%

CONCLUSION AND PERSPECTIVES

Conclusion:

A multiscale change detection technique is proposed.

∠ The wavelet transform is introduced to overcome the watershed segmentation algorithm limitations.

 $\not m$ The Dempster-Shafer theory is applied to classify segmented objects and to define the change nature.

Perspectives:

∠ Consider other features in the fusion phase.

 \bigstar Quantify the damage degree and identify passable roads.

QUESTIONS?

