

Characterization of the

internal structure snow and ice packs using 3-D SAR imaging at various scales

Laurent Ferro-Famil ⁽¹⁾ & Stefano Tebaldini ⁽²⁾

(1) IETR, University of Rennes 1, France(2) DEIB, Poitecnico di Milano, Italy

Laurent.Ferro-Famil@univ-rennes1.fr

Snowpack:

- dense and complex medium, made of several layers
- 1 layer \equiv several parameters: thickness, grain size, density, liquid water content ...
- Spatial and temporal variations

ET SNOWPACK STRUCTURE ESTIMATION FROM SAR

NIQUE AT DE TÉLÉCOMMUNICATIONS DE RENNE

Need for additional information !

SURFEX/CROCUS METEOROLOGICAL MODEL

- MeteoFrance meteorological model simulating the structure of snowpacks
- 1D snowpack temporal evolution model
- Operates without in-situ measurements (open loop), no in-situ measurements
- Very low spatial resolution

ISTITUT D'ÉLECTRONIQUE ET DE TÉLÉCOMMUNICATIONS DE RENNE

Provides a stable initial guess of the snowpack structure ⇒ inverse problem conditioning improvement

ASSIMILATION SCHEME

Snowpack structure estimation:

- resolution of an under-determined inverse problem (variational approach)
- solutions lie in the vicinity of SURFEX/Crocus predictions
- use of multi-temporal measurements: convergence of the estimation

ILLUSTRATION OF THE ASSIMILATION PROCESS

Temporal evolution of observed and simulated backscattering coefficients.

Application to TSX time series over the Argentière glacier

ASSIMILATION RESULTS

Temporal evolution of grain optical diameter, open loop (left) and assimilated (right).

Temporal evolution of snow density, open loop (left) and assimilated (right).

Multibaseline InSAR (MB-InSAR) tomography

Several mixed scatterers \rightarrow many across-track positions

Acquisition geometry

Measurements by a Ground based Synthetic Aperture Radar system, developed and implemented by the SAPHIR team at the University of Rennes 1

- Signal Tx and Rx: VNA
- Available frequency bands: 3 GHz to 20 GHz (C,X,Ku bands)
- Dynamic range \approx 90 dB
- Sealed in a metallic box when operating works under a snow fall
- $0 \quad Box + VNA = 40 \text{ Kg}$

- Accurate sensor motion along a 3 m rail
- Fully automated
- Resolutions: Az < 5cm, Rg = 3.75 cm, El=10 cm centimeters at X- and Ku bands
- Max swath $\approx 8 \text{ m}$

O 2D synthetic antenna: parallel vertical passes
 ⇒ 3D resolution capabilities

<u>11</u>

IETR GBSAR: 3 Multi-Baseline acquisition modes

1. Combining different Tx and Rx antennas (multistatic Radar)

Collecting parallel passes

IETR GBSAR: 3 Multi-Baseline acquisition modes

2. Varying the position w.r.t. the rail along the the VNA box

3. Varying rail height

Campaign at Col de Porte

- Carried out in December 2010 over a Meteo-France snowfield at Col de Porte (French Alps)
- Availability of in-situ data (Meteo-France/CEN)
 - Snow grain diameter
 - Liquid water content
 - Density

- Operated at X and Ku-Band
 - Total transmitted bandwidth = 8 GHz
 - Range resolution $\approx 2 \text{ cm}$
 - Azimuth resolution $\approx 2 \text{ cm}$

- 0 10 acquisitions: varying rail height
 - Cross range resolution $\approx 8 \text{ cm}$
 - Revisit time ≈ 20 minutes

Campaign at Col de Porte – In-situ data

Wide band imaging (8.2 GHz - 16.2 GHz)

Wide band imaging (8.2 GHz - 16.2 GHz)

Physical Interpretation

- **O** Observed thickness \approx 60 cm; Observed slope \approx 7 cm/m (rising)
 - **O** Strongest contribution from the bottom layer (buried ice/very dense snow)
 - **O** Upper snow layer: intermediate intensity

Terrain or ice ?

Digging of a T-shaped hole: terrain backscattering contribution

During digging the burried was deployed aside on the snow layer

Ice particles scattered during shoveling 40 Exposed ice sheets 35 30 25 20 Bare terrain 15 10

contributions from exposed ice sheets dominate those from the terrain by over 30 dB

The AlpSAR campaign

- AlpSAR ESA campaign, led by ENVEO, Austrian Alps, Feb. 2013
 Snowpit data, GPR, Airborne SAR, GBSAR
- Two sites:

- **0** GB-SAR operated at X and Ku-Band
 - Total transmitted bandwidth = 4 + 4 GHz
 - Range resolution \approx 4 cm
 - Azimuth resolution \approx 2 cm

- Multiple multistatic passes
 - Vertical resolution ≈ 10 cm (Ku-band), 15 cm (X-Band)

7

2

1

3

Remarks

- Neat imaging
- 5 surfaces
- Strongest returns are associated with the two bottom layers

z [m]

z [m]

0

Normalized intensity – Ku-Band [dB]

4

y [m]

5

6

 $\begin{array}{c} 0.5 \\ 0 \\ -0.5 \\ -1 \\ -1.5 \\ -2 \\ 0 \end{array} \begin{array}{c} 0 \\ 1 \end{array} \begin{array}{c} 2 \\ 2 \end{array} \begin{array}{c} 3 \\ 3 \end{array} \begin{array}{c} 4 \\ y \\ y \\ y \\ y \\ y \\ y \end{array} \begin{array}{c} 1 \\ 1 \end{array} \begin{array}{c} 0 \\ 1 \end{array} \begin{array}{c} 0 \\ 1 \end{array} \begin{array}{c} 0 \\ 1 \\ 1 \end{array} \begin{array}{c} 0 \\ 1 \end{array} \begin{array}{c} 0 \\ 1 \end{array} \begin{array}{c} 0 \\ 1 \\ 1 \end{array} \begin{array}{c} 0 \\ 1 \\ 1 \end{array} \begin{array}{c} 0 \\ 1 \end{array} \begin{array}{c} 0 \\ 1 \\ 1 \end{array} \begin{array}{c} 0 \\ 1 \end{array} \begin{array}{c} 0 \\ 1 \\ 1 \end{array} \begin{array}{c} 0 \\ 0 \end{array} \end{array} \begin{array}{c} 0 \\ 0 \end{array} \end{array} \begin{array}{c} 0 \\ 0 \end{array} \begin{array}{c} 0 \\ 0 \end{array} \end{array} \begin{array}{c} 0 \\ 0 \end{array} \end{array} \begin{array}{c} 0 \\ 0 \end{array} \begin{array}{c} 0 \\ 0 \end{array} \end{array} \begin{array}{c} 0 \\ 0 \end{array} \end{array} \begin{array}{c} 0 \end{array} \begin{array}{c} 0 \\ 0 \end{array} \end{array} \begin{array}{c} 0 \\ \end{array} \end{array} \begin{array}{c} 0 \end{array} \end{array} \begin{array}{c} 0 \\ \end{array} \end{array} \begin{array}{c} 0 \end{array} \end{array} \begin{array}{c} 0 \\ \end{array} \end{array} \end{array} \begin{array}{c} 0 \end{array} \end{array} \begin{array}{c} 0 \end{array} \end{array} \begin{array}{c} 0 \\ \end{array} \end{array} \end{array} \begin{array}{c} 0 \end{array} \end{array} \end{array} \end{array} \begin{array}{c} 0 \end{array} \end{array} \end{array} \end{array} \begin{array}{c} 0 \end{array} \end{array} \end{array} \end{array} \end{array} \end{array} \begin{array}{c} 0 \end{array} \end{array} \end{array} \end{array} \end{array} \end{array} \end{array} \end{array} \end{array} \begin{array}{c} 0 \end{array} \end{array}$

Snowpit data: snowpack thickness = 140 cm

Effect of propagation velocity

UIT THE ARCTIC UNIVERSITÉ DE CONSTITUTE DE NORWAY UNIVERSITÉ DE CONSTITUTE DE NORWAY

Localization in the **(y,z)** plane:

i) delay (T), converted into a distance based on the knowledge of propagation velocity ii) wave direction on the receiving array, that provides the incidence angle

Effect of propagation velocity

Remarks

- Neat imaging
- 5 surfaces
- Strongest returns are associated with the two bottom layers

Apparent surface heights for v = c/1.25

Snowpit data:

snowpack thickness = 140 cm

Snowpit data:

for v = c/1.25

Remarks

٠

•

5 surfaces

snowpack thickness = 140 cm

Leutasch – X- and Ku-Band

Remarks

- Neat imaging
- 4 surfaces
- Weak returns from the snow/air interface
- Strongest returns are associated with the bottom layers (X-Band) or middle (Ku-Band) layer

Apparent surface heights for v = c/1.5

Snowpit data:

snowpack thickness = 70 cm

Refractive index estimation

 $\left\| \vec{\nabla} \mathbf{d}(\vec{r}, \vec{r_{a}}) \right\|^{2} = n^{2}(\vec{r})$

Iterative procedure for estimation of refractive indices:

- Assumption : horizontal snow layers with horizontal snow slabs;
- Main idea : choose refractive indices for the identified layers to make the appearance of the detected interfaces horizontal on the final tomogram;
- Iterative procedure :

Step 4

• Distance computatio

Connection to in-situ data: Leutasch

- O Dominant scattering from bottom layers
- Results are largely independent on the incidence angle

Leutasch Ku Normalized intensity [dB] - teta-depth

40

45

teta [deg]

50

55

 Retrieved vertical structure consistent with snowpack hand-hardness from snow-pit measurement

	SNOW CO	VER PROFI	LE Obs	B Elder			Profile	Туре	C	ther Pr	ofile					
	ALPSAR 20	12/13	Obs	32 Bowk	er		No		1							
	Leutasch G	bSAR 1	DR				Surface	e Rough	ness		- Smoo	oth				
	Date 20/0)2/2013	Tim	ie 14:17	,		Penetra	ation	Foot	S	iki					
nce	Location L						Air Temp 0.0			iurface	Temp	-2.0	ເຶ			
	H.A.S.L.	W	Wind Loading			Sky Cond D Broken Clouds with thin cloud/overcast										
	Aspect N/A HS 74 HSW 219			0° Incline 0° ρ 297 R			Precip No Precipitation									
							Wind	Mode	North Ea	h East						
	Lat N46.22.49 L			.ong E011.09.48			Notable)	Photo							
	R T -20 -18	K -16 -14 -1	2 -10 -8	P -6	1F -4 -2	4F F 0	Ηθ	F	E	R	HW ₽ Cor	nments	S			
	Hand Hardnes	is l			1		100									
							00									
- 100 B							80	/						0		
						10	70	_/ + .	/ 0.1-2		5 94 deco	omposing nev	/ SNOW	0		
64							60		+ 0.2-1		82 early 248 atmo	/ facets and f	ew S	0		
14		_					50	8	0.3-1		26 376 poly	clusters, wel	bonded	0		
1000	1.4						40	0	.5-1.5		23 376 mos	tly round, few	old facets	0		
2 B (1)							30		.5-1.5		4 380 ice le	ens, well bon	ded	0		
6 2	16	-					20	8	0.5-2		22 370 poly	clusters		0		
	1						10	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	0.5-3	+	42 350 ^{few}	old facets, we	ell bonded	0		
and the second								/@	0.5-2		16 400 ice le	ens / crust		U		
		K		P	1F 4	4F F		Hand H	lardness	o—0 (Snow Te	emperatur	es			

-0.2

0

0.6

0.8

30

35

Connection to in-situ data: Rotmoos

Dominant scatter 0

0

0.5

1

1.5

30

depth [m]

- 0 Results are large
- \odot Retrieved vertical hand-hardness fro

attering trom h	offom lavers														
	SNOW COVE	Obs Elder			Profile Type Other Profile										
argely independ	aent on the in	icidence angle	Rotmoostal G	Obs2 Bowker			No		1	I					
			Enter Title 2 h	DR			Surfac	e Roug	hness	Smooth					
rtical structure	Date 23/02	ime 16:55			Penetration Foot Ski										
ss from snow-r	Location Rotmoostal					Air Temp -15.0 C° Surface Temp -12.0 C									
	nt meusurem		H.A.S.L.	Metres	Wind	l Loading		Sky Co	ond \oplus	Overcas	st				
			Aspect N/A		0°	Incline	0°	Precip	No F	Precipitation					
			HS 137	HSW 397	ρ 29	0 R		Wind	N/A				N/A		
			Lat N4	50.43	Lona	F011 01 15		Notabl		Photo					
			R op 40	K In	40.0	P 1	4FF		-			HW,		e	
Datmaga Ku Narm	olizad intonaity [dD1 toto donth	I -20 -18 -	16 -14 -12 -	10 -8	-6 -4 -2	0		· F	· E			Jomments	3 	
Rotinioos ku Norri		db] - lela-deplin						150						_	
								140						U	
			4400					130	+	/ .1-1		18 110 c	decomposing, few f	acets 0	
			1000	9				120				25		0)
			- Charles					110		.2-1		225	vell developped fac	ets)
			200	-				100	•	.3-1		124 295			
				14	<u>۹</u>			90				24		ō)
			and sold	1				80		• .4-2	+	305 P	boorly bonded, mixe	d forms)
			100	13				70		• .5-2	_/-	362 n	nixed forms, more t	acets	1
		the second second				- Q	_	60		.5-3		350	aistro all bandad a		
		114	1.14	<u></u>				50		.5-3		355 n	ounding, some mel	ting	
	- and a	Contraction of the second	1500	10				40	8	©© 1-2.5		355 fr	acets		
and the second second	Conceptibles	AND COLORED		200		e e		30	8	©© 1-2.5		355 fr	acets	neitea v	
				10				20	<u> </u>	.5-4		14 ta 350 s	acets, skeiteon dep some striations	th hoar o	
				10				10	$\neg \land$	1-4		44 fa 317 n	acets, skelteon dep many striations	th hoar 0	
	and the second second		11.1				<u>م</u>			00		4400 d	discontinuous stron	g ice lay	
	-	- and the second	and	19 - A		P 1F	4FF		Hand	Hardness	00;	Snow	Temperatures	;	
		1. 1. 1. 1.	R. J. J.												
05	10	45 51	0												
30	40 tota [doc]	40 50	U	55											
	iela [ueg]														

UiT THE ARCTIC UNIVERSITY

OF NORWAY

UNIVERSITÉ

SAR Tomography over fjord ice

Data acquisition carried out in March 2013 at the Kattfjord, Tromsø, Norway

- Seasonal ice life of 3-4 months
- 0 Tomographic X-band measurements at VV and HV
- Temperature from -8° to -2°
- The fjord ice can be representative of low salinity sea ice (fresh water from surrounding mountains)
- 0 Dry snow cover on top
- Significant amount air bubbles within the ice layer
 - 0.5 mm to 7 mm diameter
 - Irregularly shaped
 - Randomly oriented

SAR Tomography over fjord ice

- Same tilt effect as snow-pack tomography
- 0 Corrected assuming

-0.5

-0.5

- refractive index of snow = 1.4
- refractive index of fjord ice = 1.7
- Normalized intensity is presented to highlight contrasts (interfaces)

UIT THE ARCTIC UNIVERSITY OF NORWAY

- Three clearly visible interfaces
 - 0 Air/snow
 - 0 Snow/ice
 - 0 Ice/seawater

SAR Tomography over fjord ice

0 VV & HV tomography

UIT THE ARCTIC UNIVERSITY OF NORWAY

- **0** Weaker air/snow and stronger snow/ice and ice/seawater scattering at HV than at VV
- \Rightarrow Mostly polarized contributions from regular spherical snow grains
- \Rightarrow Depolarized contributions from irregular air bubbles in the ice layer

Test site

Test site: Mittelbergferner, Austrian Alps

- 0 temperate glacier at the main ridge of the Alps in Tyrol
- 0 main test area is a flat plateau in the upper part of the glacier between 3000 and 3200 m

Field Works

Field activities

- 0 Setting up Corner Reflectors
- O Stratigraphy of winter snow pack
 Density / Hardness, ice layers, grain size
- 0 Transects of snow depth
- 0 GPR Measurements

GPR Equipment:

- 0 IDS dual-frequency 200/600 MHz
- O Total length of GPR profile: 18 km

SAR Acquisitions

SAR Equipment:

- 0 FMCW SAR by MetaSensing
- 0 Transmitted bandwidth: 150 MHz
- 0 Central frequency: 1275 MHz
- 0 Fully polarimetric
- O Spatial resolution ≤ 2 x 2 m (ground range, azimuth)

Aircraft

0 CASA C-212 operated by CGR

Flights:

- 0 Two flight directions
- 0 20+20 passes

Flight Trajectories

2D Focusing

2D Focusing via Time Domain Back

Projection on a reference DEM

- 0 Optimal motion compensation
- Common target wavenumbers in all passes
- Automatic coregistration at the reference elevation

3D Focusing

3D Focusing

TomoSAR Vertical Section – HH – North-East Heading

Physical Analysis – Lower Horizon

- O Clear signal from the ice/snow interface in co-polarized channels
- 0 Clear signal from down to 60 m beneath in all polarizations

Comparison to 600 MHz GPR Transects

- TomoSAR vs GPR comparison by sampling TomoSAR cubes along
 GPR transects
- 0 600 MHz GPR transects processed down to 25 m
- 0 TomoSAR transects processed down to 60 m

Comparison to 600 MHz GPR Transects

- TomoSAR vs GPR comparison by sampling TomoSAR cubes along
 GPR transects
- 0 600 MHz GPR transects processed down to 25 m
- 0 TomoSAR transects processed down to 60 m

Comparison to 200 MHz GPR Transects

Crevasses Firn area Firn area 200 MHz GPR - 140227 AF 0 depth [m] 20 40 Bedrock/ground reflection 1500 500 1000 2000 2500 0 distance TomoSAR - Direction 1 - HV 0 height w.r.t.lidar [m] -20 -40 -60 500 1500 0 1000 2000 2500 distance TomoSAR - Direction 2 - HV 0 height w.r.t.lidar [m] -20 -40 -60 1500 500 1000 2000 0 2500

Comparison to 200 MHz GPR Transects

distance

3D Polarimetry

(normalized) HH - red (normalized) HV – green (normalized) VV - blue

TomoSAR Image - Ice surface

TomoSAR Image - 25 m below the Ice surface

TomoSAR Image - 50 m below the Ice surface