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Snowpack:
- dense and complex medium, made of several layers 
- 1 layer º several parameters: thickness, grain size, density, liquid water content …
- Spatial and temporal variations

SNOWPACK PHYSICAL DESCRIPTIONSNOWPACK PHYSICAL DESCRIPTION
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Snowpack structure estimation from SAR data
º

Guess tens of parameters from a few measurements
Þ Highly badly conditioned inverse problem

Need for additional information !

SNOWPACK STRUCTURE ESTIMATION FROM SARSNOWPACK STRUCTURE ESTIMATION FROM SAR



  

- MeteoFrance meteorological model simulating the structure of snowpacks 
- 1D snowpack temporal evolution model
- Operates without in-situ measurements (open loop), no in-situ measurements
- Very low spatial resolution

Provides a stable initial guess of the snowpack structure
Þ inverse problem conditioning improvement

SURFEX/CROCUS METEOROLOGICAL MODELSURFEX/CROCUS METEOROLOGICAL MODEL



  

Snowpack structure estimation:
- resolution of an under-determined inverse problem (variational approach)
- solutions lie in the vicinity of SURFEX/Crocus predictions
- use of multi-temporal measurements: convergence of the estimation

ASSIMILATION SCHEMEASSIMILATION SCHEME



  

ILLUSTRATION OF THE ASSIMILATION PROCESSILLUSTRATION OF THE ASSIMILATION PROCESS

Application to 
TSX time series

over the 
Argentière glacier



  

  ASSIMILATION RESULTSASSIMILATION RESULTS



VHR 3-D imaging of snow packs

Several mixed scatterers → many across-track positions



Ground Based SAR

Measurements by a Ground based Synthetic Aperture Radar system, developed 
and implemented by the SAPHIR team at the University of Rennes 1

o Signal Tx and Rx: VNA
o Available frequency bands: 3 GHz to 20 

GHz (C,X,Ku bands) 
o Dynamic range ≈ 90 dB
o Sealed in a metallic box when operating  

works under a snow fall
o Box + VNA = 40 Kg



Ground Based SAR

o Accurate sensor motion  along a 3 m rail
o Fully automated
o Resolutions: Az < 5cm, Rg = 3.75 cm, El=10 cm centimeters at X- and Ku 

bands
o Max swath ≈ 8 m 
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Ground Based SAR

o 2D synthetic antenna: parallel vertical passes 
Þ 3D resolution capabilities 
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3D Imaging

Image Stack
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IETR GBSAR: 3 Multi-Baseline acquisition modes

1. Combining different Tx and Rx antennas (multistatic Radar)
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Equivalent to 6 virtual passes

Ground Based SAR
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IETR GBSAR: 3 Multi-Baseline acquisition modes

2. Varying the position w.r.t. the rail along the the VNA box 

3. Varying rail height

Collecting parallel passes



Campaign at Col de Porte

o Carried out in December 2010 over a Meteo-France snowfield at Col de 
Porte (French Alps)

o Operated at X and Ku-Band
• Total transmitted bandwidth = 8 GHz
• Range resolution ≈ 2 cm
• Azimuth resolution ≈ 2 cm 

o Availability of in-situ data 
(Meteo-France/CEN)

• Snow grain diameter
• Liquid water content 
• Density

o 10 acquisitions: varying rail height
• Cross range resolution ≈ 8 cm 
• Revisit time ≈ 20 minutes



o Snow layer depth: approx. 60 cm
o Vertical snow profile probing (Meteo-France)
o Snow pack structure:
     - Upper layer: low density of fresh snow
     - Middle layer : intermediate density, smaller grains
     - Lower layer:  high density and size, very compact snow/ice

Campaign at Col de Porte – In-situ data
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Wide band imaging (8.2 GHz – 16.2 GHz)
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Physical Interpretation
o  Observed thickness ≈ 60 cm; Observed slope  ≈ 7 cm/m (rising)

o  Strongest contribution from the bottom layer (buried ice/very dense snow)

o  Upper snow layer: intermediate intensity 
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Digging of a T-shaped hole: terrain backscattering contribution

During digging the burried  was deployed aside on the snow layer

Bare terrain

Exposed ice sheets

color scale = dB

Ice particles scattered during shoveling

Terrain or ice ?

contributions from exposed ice sheets 
dominate those from the terrain by 
over 30 dB 
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Multilooked Tomogram at Ku-Band (12.2. GHz – 16.2 GHz)

Smaller contributions from the upper snow 

layer at X-Band than at Ku-Band 

 Consistent with deeper penetration at 

X-Band 

Contributions from the ice-layer are 

present at both X-Band and Ku-Band

Grazing angles show higher returns at Ku-

Band than at X-Band

  Rough interface effects ?

Imaging at X – and Ku-Band



The AlpSAR campaign

o  AlpSAR ESA campaign, led by ENVEO,  Austrian Alps, Feb. 2013
• Snowpit data, GPR, Airborne SAR, GBSAR

o GB-SAR operated at X and Ku-Band
• Total transmitted bandwidth = 4 + 4 GHz
• Range resolution ≈ 4 cm
• Azimuth resolution ≈ 2 cm 

o Multiple multistatic passes
• Vertical resolution ≈ 10 cm (Ku-band), 15 

cm (X-Band) 

o Two sites:

Leutasch
o North of Innsbruck
o ≈ 1150 m a.s.l.
o 70 cm snowpack

Rotmoos valley
o Italian border
o ≈ 2300 m a.s.l. 
o 140 cm snowpack



Rotmoos – X-Band 
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snowpack thickness 
= 140 cm
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Effect of propagation velocity

Propagation in air

Propagation within the snowpack

Localization in the (y,z) plane:

 i) delay (τ), converted into a distance based on the knowledge of propagation velocity
 ii) wave direction on the receiving array, that provides the incidence angle
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Effect of propagation velocity

Real scenario
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Rotmoos – X- and Ku-Band
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Rotmoos – X- and Ku-Band
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Leutasch – X- and Ku-Band

y [m]

z 
[m

]

0 1 2 3 4 5 6 7
-1.5

-1

-0.5

0

0.5

y [m]

z 
[m

]

0 1 2 3 4 5 6 7
-1.5

-1

-0.5

0

0.5

n = 1

0 m

-0.31 m
-0.46 m

-0.70 m

n = 1.5

n = 1.5

n = 1.5

n = 1

0 m

-0.31 m
-0.46 m

-0.70 m

n = 1.5

n = 1.5

n = 1.5

Averaged vertical section – X-Band [dB]

Averaged vertical section – Ku-Band [dB]Apparent surface heights 
for v = c/1.5

Snowpit data:
snowpack thickness 
= 70 cm

Remarks
• Neat imaging
• 4 surfaces 
• Weak returns from the 

snow/air interface
• Strongest returns are 

associated with the 
bottom layers (X-
Band) or middle (Ku-
Band) layer

Normalized intensity is 
presented to highlight 
contrasts 



Iterative procedure for estimation of refractive indices:
o Assumption :  horizontal snow layers with horizontal snow slabs;
o Main idea : choose refractive indices for the identified layers to make the appearance of the detected interfaces 

horizontal on the final tomogram;
o Iterative procedure : 

o Distance computation : numerical resolution of the Eikonal Equation

Refractive index estimation



Connection to in-situ data: Leutasch

o Dominant scattering from bottom layers
o Results are largely independent on the incidence 

angle 

 Retrieved vertical structure consistent with    
snowpack hand-hardness from snow-pit 
measurement

Leutasch Ku Normalized intensity [dB] - teta-depth



Connection to in-situ data: Rotmoos
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o Dominant scattering from bottom layers
o Results are largely independent on the incidence angle 

 Retrieved vertical structure consistent with    snowpack 
hand-hardness from snow-pit measurement



o Seasonal ice – life of 3-4 months
o Tomographic X-band measurements at VV and HV
o Temperature from -8° to -2° 
o The fjord ice can be representative of low salinity sea ice (fresh water from 

surrounding mountains)
o Dry snow cover on top
o Significant amount air bubbles within the ice layer 

‒ 0.5 mm to 7 mm diameter
‒ Irregularly shaped
‒ Randomly oriented

 Data acquisition carried out in March 2013 at the Kattfjord, Tromsø, Norway

SAR Tomography over fjord ice



SAR Tomography over fjord ice

Air-snow

Snow-ice

Ice-seawater

Uncorrected 

 

Corrected

 

o Same tilt effect as snow-pack tomography
o Corrected assuming 

– refractive index of snow = 1.4
– refractive index of fjord ice = 1.7

o Normalized intensity is presented to highlight contrasts (interfaces)

o Three clearly visible interfaces
o Air/snow
o Snow/ice
o Ice/seawater

Intensity

 

Normalized intensity

 

Intensity

 

Normalized intensity

 



SAR Tomography over fjord ice

o VV & HV tomography

o Weaker air/snow and stronger snow/ice and ice/seawater scattering at HV than at VV
Þ Mostly polarized contributions from regular spherical snow grains
Þ Depolarized contributions from irregular air bubbles in the ice layer



Test site

Test site: Mittelbergferner, Austrian Alps 

o temperate glacier at the main ridge of the Alps in Tyrol

o main test area is a flat plateau in the upper part of the glacier between 3000 and 3200 m



Field Works

Field activities

o Setting up Corner Reflectors

o Stratigraphy of winter snow pack

Density / Hardness, ice layers, grain size

o Transects of snow depth 

o GPR Measurements

GPR Equipment:
o IDS dual-frequency 200/600 MHz
o Total length of GPR profile:  18 km



SAR Acquisitions

North-
South

South-
North

SAR Equipment:
o FMCW SAR by MetaSensing
o Transmitted bandwidth: 150 MHz
o Central frequency: 1275 MHz
o Fully polarimetric
o Spatial resolution ≤ 2 x 2 m (ground 

range, azimuth)

Flights:
o Two flight directions
o 20+20 passes

Aircraft
o CASA C-212 operated by CGR



Flight Trajectories

Strong trajectory perturbation caused by wind/ turbulence

o Max along track variation > 50 m

o No auto-piloting system

o Proximity to mountain peaks
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2D Focusing

2D Focusing via Time Domain Back 

Projection on a reference DEM

o Optimal motion compensation

o Common target wavenumbers in all 

passes

o Automatic coregistration at the 

reference elevation

HH – dir 1

HH – dir 2



3D Focusing

Lidar DTM

Lidar DTM
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Physical Analysis – Lower Horizon

o Clear signal from the ice/snow interface in co-polarized channels

o Clear signal from down to 60 m beneath in all polarizations 



Comparison to 600 MHz GPR Transects

o TomoSAR vs GPR comparison by sampling TomoSAR cubes along 

GPR transects

o 600 MHz GPR transects processed down to 25 m

o TomoSAR transects processed down to 60 m

600 MHz GPR - 140227 AH
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600 MHz GPR - 140227 AC
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Comparison to 600 MHz GPR Transects

Firn

transitions from ice to 

soaked firn

Direction 2
o TomoSAR vs GPR comparison by sampling TomoSAR cubes along 

GPR transects

o 600 MHz GPR transects processed down to 25 m

o TomoSAR transects processed down to 60 m



Comparison to 200 MHz GPR Transects

200 MHz GPR - 140227 AF
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Comparison to 200 MHz GPR Transects

200 MHz GPR - 140227 AF
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3D Polarimetry

TomoSAR Image  - Ice surface

TomoSAR Image  - 25 m below the Ice surface TomoSAR Image  - 50 m below the Ice surface

TomoSAR Illumination

(normalized) HH  - red 
(normalized) HV – green
(normalized) VV - blue
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