Spaceborne SAR data processing for snow and ice monitoring.



Why use satellites to monitor the evolution of the cryosphere?

1738 operational satellites in orbit around the Earth
including 380 imagers (from Union of Concerned Scientist




Why use radar satellites to monitor the evolution of the cryosphere?

TermaSARX [Astrium]

Greenland DLR Satellites (TerraSAR-X)
Cryosphere Advantages of SAR data:
_ (snow, firn, ice): o Interaction of electromagnetic waves
e High spatial and temporal with snow, ice... with high spatial
variation of snowpack. resolution (metric).
o Long period of polar night e Active sensor, "all-weather" ->
5 in Arctic and Antarctic regular data.
,), with rapid changes. o Coherent / polarized waves ->
e Various shape: iceberg, interferometry, polarimetry, change

sastruggi... detection.
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Permanent experimental site near Grenoble.

Since 2004, permanent experimental site near Grenoble: Argentiére glacier

@ Corners reflectors on ice and under snow
@ Ongoing GPS on glacier and on mountain hut.

@ Seismic sensors (accelerometers).
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Interactions of electromagnetic waves with snow

What is the snowpack?
@ Dense media composed of air, ice and sometimes of water

@ Multi-layer, stratified media

N o Each layer -> different physical properties (thickness, density, grain size, liquid
5 water content-LWC. . .).

@ Strong spatial and temporal variations in physical properties.




Interactions of electromagnetic waves with snow

Electromagnetic waves interact with the snowpack (ex. : X band, 3.1 cm).

@ The four main interaction mechanisms at X-band.

;&% 1 2 3 4! 4||
“ | Reflected wave |nciclont wave

5

? @ Theoretically the maximum penetration depth 6, can be calculated by the

equation :
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Interactions of electromagnetic waves with snow

Penetration depth (5;) in dry snow.
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4 o As the size of the snow gains increases, the depth of penetration decreases.

in X-band (3.1 cm) -> the penetration depth decreases.
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@ Diffusion losses for the same type of snow are greater in Ku-band (1.5 cm) than
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Radar backscattering model applied to snow

Use of a Dense Media Radiative Transfer DMRT (L. Ferro-Famil, S. Allain,

N. Longépé, X.V. Phan...)
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‘ Dense Medium Radiation Transfert Equation and boundary conditions ¢
=
Gaussian quadrature and eigenanalysis technique

Electromagnetic Backscattering Model (EBM)
Ot = Gact0y1 05 (air-snow, volume, ground; 12




Radar backscattering model applied to snow

Simulation: single-layer snowpack (X.V. Phan)

0 200 400 600 80 1000 % 200 400 600 800 1000
. SWE (mm) SWE (mm)

@ Incidence angle : 6y = 30°

@ Snow height = 30-400 cm

@ Snow density = 250 kg m >

%

1l

@ Optical grain size = 0.5-2 mm.

N )

-> Strong influence of grain size.
-> Significant ground contribution.
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Radar backscattering model applied to snow

SAR data assimilation algorithm (X.V. Phan).

Meteorological

wvariables

Physical model
of snowpack evolution

Meteorological
Data

. : x,
Stratigraphic profiles Guess Variables ™a
v
Electromagnetic Backscattering
Model (DMRT) H(x) = g,
i b
Multitemporal Y = Ogps . ¢
SAR acquisition: ‘ Minimization of cost }(—{ Adjoint model FH! ‘
TSX. CSK, function J v

Sentinel... N

no

Assimilated
variables x

1D-Var data assimilation §




Radar backscattering model applied to snow

Two-winter ground radar acquisitions at several frequencies, incidences and
polarizations, Snow Scat. Instrument (SSI)

Sodankyvla

' A Fréquences 9.2-17.8 GHz
2 Incidences 30°<0<60°
Polarisations | HH, HV, VH, VV

Backscattering measured at 10.2 GHz, and
14 GHz

. 30° angle

X-band VW 5
-+ Ku-band WV | N
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Radar backscattering model applied to snow

Sodankyla: stratigraphic snow profiles at several dates

Pits in the snow, allowing to mea-

sure:
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Radar backscattering model applied to snow

Assimilation -

- modification of measured profiles (6; = 30°).

© Assimilation Ku

© Assimilation X
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-> Convergence of this algorithm




Radar backscattering model applied to snow

Backscattering simulation from the modified incidence profiles at 6; = 30°.

SnowScat backscatter measurements, 40° incidence angle

— Ku-Band VV
— X-Band VV

O Simulation Ku ’

0O Simulation X

Backscattering simulation from
stratigraphic profiles previously modified
(30° incidence angle)

7 -25 1 i ' s H H i

i 11/2010 12/2010 01/2011 02/2011 03/2011 04/2011 05/2011
? Date (mm/yyyy)

~

-> Excellent agreement between simulations and measurements.
-> Validation of the radiative transfer model (DMRT).




Radar backscattering model applied to snow

Argentiére Glacier: time series of TerraSAR-X images (each 11 days)




Radar backscattering model applied to snow

Evolution of density and size of the snow grains in the snowpack without and with

imilation of TerraSAR-X radar data (Argentiére glacier, altitud
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SWE extraction from interferometric phase
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SWE extraction from interferometric phase

Can we directly extract the SWE with the interferometric phase?

Formula proposed by S. Leinss:

AD,(t, to)
a.k;(1.59 + 65/2)

ASWE(t,to): change in SWE between time periods tg et t
Ad(t,tg): difference in phase between time periods g et t (every 6 hours)
a: empirical coefficient (a=1)
- k; = 2T: wave vector (A wavelength)
' 9 incidence angle

ASWE(t, to) =

S. Leinss "Snow Water Equivalent of dry snow mesured by differential interferometry"”, IEEE

Journal of Selected Topics in Applied Earth Observatwns and Remote Senszng, august 2015 N

&
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SWE extraction from interferometric phase

SWE measured from Snow Scat. Instrument (SSI) data and derived from the

Leinss formula (M. Leclainche)

GWI: Gamma Water Instrument — SWE direct
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We can extract the SWE from the inteferometric phase with radar
measurements every 6 hours. &3



SWE extraction from interferometric phase

Is it possible to reconstruct the SWE from interferometric phase, in space and
time, from radar satellite data every 11 days (Sentinel-I revisit time)?

Main problem: during the 11 days, the phase is wrapping numerous
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SWE extraction from interferometric phase

Increase and/or stabilization of SWE

From measurement station, identify a SWE model to be able to predict the
number of wrapping phases:

o Input —— Temperature and precipitations
“ e Output — GWI
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SWE extraction from interferometric phase

Increase and/or stabilization of SWE - Identification

Identification on the first part of the winter (first 115 days) to find the rest of
the same winter.
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4
. The Auto Regressive model with eXternal inputs ARX(8,6,1) is the most

" relevant (rms = 9.44mm).

y(k) = —Ay(k — 1) + Bu(k — 1) + n(k)




SWE extraction from interferometric phase

Increase of SWE - unwrapping phase

" T T

@ SWE obtained with model and phase unwrapping (11 days)
+ SWE processed. f=10.2 GHz (6 hours)
GWI measurements

Interferogram every 11 days

“ Determing the number of phese wrappings v.‘“
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I

fﬁ" — It is possible to rebuild the SWE using SAR satellites data




SWE extraction from interferometric phase

Spatial reconstruction - Processing

On the same principle as the phase unwrapping from interferometric images.

ﬁ BEFORE PROCESSING PROCESSING AFTER PROCESSING
AD12 = 61 — 692 .
Point P1 where we know fb v Point P1 where we know |
601 and SWEL 012 601andSWEL | 8
AWEL = a.k;. (159 +05/2)

< Point P2 where we know ¢
only 502

SWE2 = SWE1 + ASWE12

Point P2 where we know i
602 and SWE2
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Conclusion

)

e Can we extract the characteristics of snowpack using the backscattering

radar?

Yes, we can with 2 models, an assimilation process and the
X-band satellite data.

Can we build the SWE using the interferometric phase (every 6 hours)?

This is possible with Leinss formula using the X-band and/or |
the C-band. I
Can we use the radar satellite Sentinel (C-band, 6 days) to directly obtain
the SWE?

Yes, we can, with an identification model, several measurement ‘;
stations of GWI and/or AWS and the interferogram calculated |
from C-band satellite data. g

30



Conclusion
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will help to save the Arctic icepack and.
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