| Introduction | The EM-EOF method | Numerical simulations | Application to alpine glaciers | Conclusion and perspectives | Références |
|--------------|-------------------|-----------------------|--------------------------------|-----------------------------|------------|
|              |                   |                       |                                |                             |            |
|              |                   |                       |                                |                             |            |

# A gap-filling method to reconstruct incomplete SAR displacement time series

#### Alexandre Hippert-Ferrer, Yajing Yan, Philippe Bolon

Tuesday, June 11th





| Introduction | The EM-EOF method | Numerical simulations | Application to alpine glaciers | Conclusion and perspectives | Références |
|--------------|-------------------|-----------------------|--------------------------------|-----------------------------|------------|
|              |                   |                       |                                |                             |            |
|              |                   |                       |                                |                             |            |

### Sommaire

#### 1 Introduction

- 2 The EM-EOF method
- 3 Numerical simulations
- 4 Application to alpine glaciers
- 5 Conclusion and perspectives

| Introduction | The EM-EOF method | Numerical simulations | Application to alpine glaciers | Conclusion and perspectives | Références |
|--------------|-------------------|-----------------------|--------------------------------|-----------------------------|------------|
| •0           |                   |                       |                                |                             |            |
|              |                   |                       |                                |                             |            |
|              |                   |                       |                                |                             |            |

# Introduction

- Missing data is a frequent issue in SAR-derived products in both space and time dimensions
- Causes : rapid surface changes, missing image, possible limitations of displacement extraction techniques.



Argentiere glacier, offset tracking of TerraSAR-X in Summer 2010 (Fallourd et al. 2011)



Interferogram over land area, Mexico (Isterre)

| Introduction | The EM-EOF method | Numerical simulations | Application to alpine glaciers | Conclusion and perspectives | Références |
|--------------|-------------------|-----------------------|--------------------------------|-----------------------------|------------|
| 00           |                   |                       |                                |                             |            |
|              |                   |                       |                                |                             |            |
|              |                   |                       |                                |                             |            |
|              |                   |                       |                                |                             |            |

# Motivation of the study

#### How can we manage the presence of **spatio-temporal** missing data in time series?

#### Develop a gap-filling method capable of handling :

- 1. Random gaps, correlated gaps in space and time
- 2. Displacement signal complexity : mixed low and high frequency patterns
- 3. Different noise behavior : random, correlated in space and time

| Introduction | The EM-EOF method<br>•00000 | Numerical simulations | Application to alpine glaciers | Conclusion and perspectives | Références |
|--------------|-----------------------------|-----------------------|--------------------------------|-----------------------------|------------|
|              |                             |                       |                                |                             |            |
| The EN       | I-FOF metho                 | nd                    |                                |                             |            |

- Based on empirical orthogonal functions (EOFs) : the data can be expressed in terms of EOF modes which describe a temporal or spatial variability
- Data can be interpolated by first initializing the missing values
- The EM principle is used : (1) first estimation of the data gaps with their expected value (Expectation step) and (2) minimization of the reconstruction error between reconstructed and initial data until convergence (Maximization step).

| Introduction | The EM-EOF method<br>○●○○○○ | Numerical simulations | Application to alpine glaciers | Conclusion and perspectives | Références |
|--------------|-----------------------------|-----------------------|--------------------------------|-----------------------------|------------|
|              |                             |                       |                                |                             |            |
| The EN       | I∕-EOF metho                | od : data             |                                |                             |            |

Let *X*(**s**, *t*) be a spatio-temporal field containing the values of *X* at position **s** and time *t*:

$$X = (\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n) = \begin{pmatrix} x_{11} & x_{12} & x_{13} & \cdots & x_{1n} \\ x_{21} & x_{22} & x_{23} & \cdots & x_{2n} \\ x_{31} & x_{32} & x_{33} & \cdots & x_{3n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ x_{p1} & x_{p2} & x_{p3} & \cdots & x_{pn} \end{pmatrix}$$

 $(x_{ij})_{1 \le i \le p, 1 \le j \le n}$  is the value at position  $\mathbf{s}_i$  and time  $t_j$  and may be missing.

Missing values are then initialized by an appropriate value (first guess).

| Introduction | The EM-EOF method | Numerical simulations | Application to alpine glaciers | Conclusion and perspectives | Références |
|--------------|-------------------|-----------------------|--------------------------------|-----------------------------|------------|
|              |                   |                       |                                |                             |            |
| The EM       | 1-EOF metho       | d                     |                                |                             |            |

The sample temporal covariance is first estimated :

$$\hat{C} = \frac{1}{p-1} (X - \mathbf{1}_{\mathbf{n}} \bar{X})^T (X - \mathbf{1}_{\mathbf{n}} \bar{X})$$

| Introduction | The EM-EOF method<br>00●000 | Numerical simulations | Application to alpine glaciers | Conclusion and perspectives | Références |
|--------------|-----------------------------|-----------------------|--------------------------------|-----------------------------|------------|
|              |                             |                       |                                |                             |            |
| The EN       | /I-EOF metho                | od                    |                                |                             |            |

The sample temporal covariance is first estimated :

$$\hat{C} = \frac{1}{p-1} (X - \mathbf{1}_{\mathbf{n}} \bar{X})^T (X - \mathbf{1}_{\mathbf{n}} \bar{X})$$

**EOFs**  $(\mathbf{u}_i)_{0 \le i \le n}$  are the solution of the eigenvalue problem :

 $\hat{C}U = \Lambda U$ 

| Introduction | The EM-EOF method | Numerical simulations | Application to alpine glaciers | Conclusion and perspectives | Références |
|--------------|-------------------|-----------------------|--------------------------------|-----------------------------|------------|
|              |                   |                       |                                |                             |            |
| The EN       | A-EOF metho       | bd                    |                                |                             |            |

The sample temporal covariance is first estimated :

$$\hat{C} = \frac{1}{p-1} (X - \mathbf{1}_{\mathbf{n}} \bar{X})^T (X - \mathbf{1}_{\mathbf{n}} \bar{X})$$

**EOFs**  $(\mathbf{u}_i)_{0 \le i \le n}$  are the solution of the eigenvalue problem :

 $\hat{C}U = \Lambda U$ 

EOFs can be used to express  $\hat{C}$  in terms of EOF modes :

$$\hat{C} = \lambda_1 \mathbf{u}_1 \mathbf{u}_1^T + \lambda_2 \mathbf{u}_2 \mathbf{u}_2^T + \dots + \lambda_n \mathbf{u}_n \mathbf{u}_n^T$$

| Introduction | The EM-EOF method<br>000●00 | Numerical simulations | Application to alpine glaciers | Conclusion and perspectives | Références |
|--------------|-----------------------------|-----------------------|--------------------------------|-----------------------------|------------|
|              |                             |                       |                                |                             |            |
| The FI       | I-FOF metho                 | bd                    |                                |                             |            |

■ X is reconstructed with M number of EOFs :

$$X' = \sum_{i=1}^n a_i \mathbf{u}_i^t o \hat{X} = \sum_{i=1}^{M \ll n} a_i \mathbf{u}_i^t$$

with  $a_i = X' \mathbf{u}_i$  are the Principal Components (PCs) of the anomaly field (X').

The first EOF modes capture the main temporal dynamical behavior of the signal whereas other modes represent various perturbations (Prébet et al. 2019).

| Introduction | The EM-EOF method<br>0000●0 | Numerical simulations | Application to alpine glaciers | Conclusion and perspectives | Références |
|--------------|-----------------------------|-----------------------|--------------------------------|-----------------------------|------------|
|              |                             |                       |                                |                             |            |
| Cross-       | validation                  |                       |                                |                             |            |

The reconstruction error is computed using a cross-validation root-mean-square error (cross-RMSE) :

$$E(k) = \left[\frac{1}{N}\sum_{k=1}^{N}|\hat{\mathcal{X}}_k - \mathcal{X}|^2\right]^{1/2}$$

The optimal number of EOF modes *M* minimizes E(k) :  $\arg \min_{M \in [1,n]} E(k)$ 

| Introduction | The EM-EOF method<br>00000● | Numerical simulations | Application to alpine glaciers | Conclusion and perspectives | Références |
|--------------|-----------------------------|-----------------------|--------------------------------|-----------------------------|------------|
|              |                             |                       |                                |                             |            |
| A 2-sta      | ge method                   |                       |                                |                             |            |



| Introduction | The EM-EOF method | Numerical simulations | Application to alpine glaciers | Conclusion and perspectives | Références |
|--------------|-------------------|-----------------------|--------------------------------|-----------------------------|------------|
|              |                   |                       |                                |                             |            |
| Numer        | ical simulatio    | ns : setup            |                                |                             |            |

|                                                                  | g(r,t)                                      | Order |  |  |
|------------------------------------------------------------------|---------------------------------------------|-------|--|--|
| $g_1$                                                            | (1 - 0.5r)t                                 | 1     |  |  |
| $g_2$                                                            | $g_1 + \sin(2\pi f_1 t) \cos(2\pi f_1 r)$   | 2     |  |  |
| $g_3$                                                            | $g_2 + 0.5\cos(2\pi f_2 t)\cos(2\pi f_3 r)$ | 3     |  |  |
| $g_4$                                                            | $g_3 + 0.1\sin(2\pi f_4 t)\cos(2\pi f_5 r)$ | 4     |  |  |
| TABLE $-f_1 = 0.25, f_2 = 0.75, f_3 = 2.5, f_4 = 1.25, f_5 = 5.$ |                                             |       |  |  |

| Introduction | The EM-EOF method | Numerical simulations | Application to alpine glaciers | Conclusion and perspectives | Références |
|--------------|-------------------|-----------------------|--------------------------------|-----------------------------|------------|
|              |                   |                       |                                |                             |            |
| Numer        | ical simulatio    | ns : setup            |                                |                             |            |

|                                                                   | g(r,t)                                      | Order |  |  |
|-------------------------------------------------------------------|---------------------------------------------|-------|--|--|
| $g_1$                                                             | (1 - 0.5r)t                                 | 1     |  |  |
| $g_2$                                                             | $g_1 + \sin(2\pi f_1 t) \cos(2\pi f_1 r)$   | 2     |  |  |
| <i>g</i> <sub>3</sub>                                             | $g_2 + 0.5\cos(2\pi f_2 t)\cos(2\pi f_3 r)$ | 3     |  |  |
| $g_4$                                                             | $g_3 + 0.1\sin(2\pi f_4 t)\cos(2\pi f_5 r)$ | 4     |  |  |
| TABLE $- f_1 = 0.25, f_2 = 0.75, f_3 = 2.5, f_4 = 1.25, f_5 = 5.$ |                                             |       |  |  |

**Type of noise : random** ( $\mathcal{N}(0, 1)$ ), spatially and spatio-temporally correlated

| Introduction | The EM-EOF method | Numerical simulations | Application to alpine glaciers | Conclusion and perspectives | Références |
|--------------|-------------------|-----------------------|--------------------------------|-----------------------------|------------|
|              |                   |                       |                                |                             |            |
| Numer        | ical simulatio    | ns : setup            |                                |                             |            |

|                                                                   | g(r,t)                                        | Order |  |  |
|-------------------------------------------------------------------|-----------------------------------------------|-------|--|--|
| $g_1$                                                             | (1 - 0.5r)t                                   | 1     |  |  |
| $g_2$                                                             | $g_1 + \sin(2\pi f_1 t) \cos(2\pi f_1 r)$     | 2     |  |  |
| <i>g</i> <sub>3</sub>                                             | $g_2 + 0.5\cos(2\pi f_2 t)\cos(2\pi f_3 r)$   | 3     |  |  |
| $g_4$                                                             | $g_3 + 0.1 \sin(2\pi f_4 t) \cos(2\pi f_5 r)$ | 4     |  |  |
| TABLE $- f_1 = 0.25, f_2 = 0.75, f_3 = 2.5, f_4 = 1.25, f_5 = 5.$ |                                               |       |  |  |

Type of noise : random (N(0, 1)), spatially and spatio-temporally correlated
Type of gaps : random, correlated

| Introduction | The EM-EOF method | Numerical simulations | Application to alpine glaciers | Conclusion and perspectives | Références |
|--------------|-------------------|-----------------------|--------------------------------|-----------------------------|------------|
|              |                   |                       |                                |                             |            |
| Numer        | ical simulatio    | ns : setup            |                                |                             |            |

|                                                            | g(r,t)                                        | Order |  |  |  |
|------------------------------------------------------------|-----------------------------------------------|-------|--|--|--|
| $g_1$                                                      | (1 - 0.5r)t                                   | 1     |  |  |  |
| $g_2$                                                      | $g_1 + \sin(2\pi f_1 t) \cos(2\pi f_1 r)$     | 2     |  |  |  |
| <i>g</i> <sub>3</sub>                                      | $g_2 + 0.5\cos(2\pi f_2 t)\cos(2\pi f_3 r)$   | 3     |  |  |  |
| $g_4$                                                      | $g_3 + 0.1 \sin(2\pi f_4 t) \cos(2\pi f_5 r)$ | 4     |  |  |  |
| TABLE = $f_{1} = 0.25$ fr = 0.75 fr = 2.5 fr = 1.25 fr = 5 |                                               |       |  |  |  |

**Type of noise** : random ( $\mathcal{N}(0, 1)$ ), spatially and spatio-temporally correlated

- Type of gaps : random, correlated
- SNR = [0.5,4.5]
- Gaps [0,80]%

| 00           | 000000            | 0000                  | 0000                           | 00                          |            |
|--------------|-------------------|-----------------------|--------------------------------|-----------------------------|------------|
| Introduction | The EM-EOF method | Numerical simulations | Application to alpine glaciers | Conclusion and perspectives | Références |

## Numerical simulations : 1st and 2nd order fields



SNR and % of gaps are fixed :

- SNR = 1.5
- 30% of gaps



signal order

0.0 0.5 1.0 1.5

**d**)

-1.0

1.0

-0.5 0.0

| Introduction | The EM-EOF method | Numerical simulations | Application to alpine glaciers | Conclusion and perspectives | Références |
|--------------|-------------------|-----------------------|--------------------------------|-----------------------------|------------|
|              |                   | 00000                 |                                |                             |            |
|              |                   |                       |                                |                             |            |

# Worst case scenarii

#### Correlated gaps :





Random gaps :





| Introduction | The EM-EOF method | Numerical simulations | Application to alpine glaciers | Conclusion and perspectives | Références |
|--------------|-------------------|-----------------------|--------------------------------|-----------------------------|------------|
|              |                   |                       |                                |                             |            |

## Error maps



- The method is more sensitive to SNR than the % of gaps
- Random gaps affect more the reconstruction than correlated gaps
- Initialization value affects the time of convergence but not the estimation of M

| Introduction | The EM-EOF method | Numerical simulations | Application to alpine glaciers | Conclusion and perspectives | Références |
|--------------|-------------------|-----------------------|--------------------------------|-----------------------------|------------|
| 00           | 000000            | 00000                 | ●000                           | 00                          |            |
|              |                   |                       |                                |                             |            |
|              |                   |                       |                                |                             |            |
| A 11         |                   |                       |                                |                             |            |

## Application to alpine glaciers

#### Areas of interest :



| Introduction | The EM-EOF method | Numerical simulations | Application to alpine glaciers | Conclusion and perspectives | Références |
|--------------|-------------------|-----------------------|--------------------------------|-----------------------------|------------|
|              |                   |                       |                                |                             |            |

# Gorner Glacier



incomplete SAR displacement time series, 2019, submitted.

- Number of EOF modes : 3
- Consistent pattern in missing data areas
- Missing interferogram is reconstructed by adding the temporal mean to the anomaly

| Introduction<br>00 | The EM-EOF method | Numerical simulations | Application to alpine glaciers | Conclusion and perspectives | Références |
|--------------------|-------------------|-----------------------|--------------------------------|-----------------------------|------------|
|                    |                   |                       |                                |                             |            |

# Miage Glacier



- Number of EOF modes : 2
- Discontinuities in the residuals due to phase jumps in the original interferogram
- Detection and correction of inconsistencies

| Introduction | The EM-EOF method | Numerical simulations | Application to alpine glaciers | Conclusion and perspectives | Références |
|--------------|-------------------|-----------------------|--------------------------------|-----------------------------|------------|
|              |                   |                       | 0000                           |                             |            |
|              |                   |                       |                                |                             |            |
|              |                   |                       |                                |                             |            |

# Argentière Glacier





- Very low SNR and strong correlated gaps in space and time
- Strong mixing between displacement signal and noise
- Global agreement between reconstructed and initial fields

| Introduction | The EM-EOF method | Numerical simulations | Application to alpine glaciers | Conclusion and perspectives<br>●O | Références |
|--------------|-------------------|-----------------------|--------------------------------|-----------------------------------|------------|
|              |                   |                       |                                |                                   |            |
| - ·          |                   |                       |                                |                                   |            |

# Conclusion

- EM-EOF is more sensitive to noise than gaps
- In the case of spatio-temporally correlated noise, the optimal number of EOF modes can be over-estimated
- Handling of complex cases :
  - missing interferograms
  - discontinuities due to phase jumps (due to coherence loss)
- Argentière case : limiting condition because of strong mixing between noise and displacement signal
- The method can help in increasing the effective size of a time series

| Introduction | The EM-EOF method | Numerical simulations | Application to alpine glaciers | Conclusion and perspectives | Références |
|--------------|-------------------|-----------------------|--------------------------------|-----------------------------|------------|
|              |                   |                       |                                |                             |            |
| Perspe       | ectives           |                       |                                |                             |            |

Instead of  $X = (\mathbf{x}_1, \mathbf{x}_2, \dots \mathbf{x}_n)$ , the spatio-temporal field is "augmented" by including a lag M:

$$\mathcal{X} = \begin{pmatrix} \mathbf{x}_1 & \mathbf{x}_2 & \cdots & \mathbf{x}_M \\ \vdots & \vdots & & \vdots \\ \mathbf{x}_{n-M+1} & \mathbf{x}_{n-M+2} & \cdots & \mathbf{x}_n \end{pmatrix}$$

with  $\mathbf{x}_{t} = (x_{t,1}, ..., x_{t,p})$ 

| Introduction | The EM-EOF method | Numerical simulations | Application to alpine glaciers | Conclusion and perspectives | Références |
|--------------|-------------------|-----------------------|--------------------------------|-----------------------------|------------|
|              |                   |                       |                                |                             |            |
| Perspe       | ectives           |                       |                                |                             |            |

Instead of  $X = (\mathbf{x}_1, \mathbf{x}_2, \dots \mathbf{x}_n)$ , the spatio-temporal field is "augmented" by including a lag M:

$$\mathcal{X} = \begin{pmatrix} \mathbf{x}_1 & \mathbf{x}_2 & \cdots & \mathbf{x}_M \\ \vdots & \vdots & & \vdots \\ \mathbf{x}_{n-M+1} & \mathbf{x}_{n-M+2} & \cdots & \mathbf{x}_n \end{pmatrix}$$

with  $\mathbf{x}_{t} = (x_{t,1}, \dots, x_{t,p})$ 

Wrapped interferogram (complex)

| Introduction | The EM-EOF method | Numerical simulations | Application to alpine glaciers | Conclusion and perspectives | Références |
|--------------|-------------------|-----------------------|--------------------------------|-----------------------------|------------|
|              |                   |                       |                                |                             |            |
| Perspe       | ectives           |                       |                                |                             |            |

Instead of  $X = (\mathbf{x}_1, \mathbf{x}_2, \dots \mathbf{x}_n)$ , the spatio-temporal field is "augmented" by including a lag M:

$$\mathcal{X} = \begin{pmatrix} \mathbf{x}_1 & \mathbf{x}_2 & \cdots & \mathbf{x}_M \\ \vdots & \vdots & & \vdots \\ \mathbf{x}_{n-M+1} & \mathbf{x}_{n-M+2} & \cdots & \mathbf{x}_n \end{pmatrix}$$

with  $\mathbf{x}_{t} = (x_{t,1}, ..., x_{t,p})$ 

- Wrapped interferogram (complex)
- We are producing augmented data : assimilation to a glacier flow model ?

| Introduction | The EM-EOF method | Numerical simulations | Application to alpine glaciers | Conclusion and perspectives | Références |
|--------------|-------------------|-----------------------|--------------------------------|-----------------------------|------------|
|              |                   |                       |                                |                             |            |
| Perspe       | ectives           |                       |                                |                             |            |

Instead of  $X = (\mathbf{x}_1, \mathbf{x}_2, \dots \mathbf{x}_n)$ , the spatio-temporal field is "augmented" by including a lag M:

$$\mathcal{X} = \begin{pmatrix} \mathbf{x}_1 & \mathbf{x}_2 & \cdots & \mathbf{x}_M \\ \vdots & \vdots & & \vdots \\ \mathbf{x}_{n-M+1} & \mathbf{x}_{n-M+2} & \cdots & \mathbf{x}_n \end{pmatrix}$$

with  $\mathbf{x}_{t} = (x_{t,1}, ..., x_{t,p})$ 

- Wrapped interferogram (complex)
- We are producing augmented data : assimilation to a glacier flow model ?
- Other sources of displacement : seismic, volcanoes

| Introduction | The EM-EOF method | Numerical simulations | Application to alpine glaciers | Conclusion and perspectives | Références |
|--------------|-------------------|-----------------------|--------------------------------|-----------------------------|------------|
|              |                   |                       |                                |                             |            |

# Thank you. Any question?



This work has been supported by the Programme National de Télédétection Spatiale (PNTS, http://www.insu.cnrs.fr/pnts), grant PNTS-2019-11, and by the SIRGA projet funded by Université Savoie Mont Blanc.

#### References :

- R. Fallourd, O. Harant, E. Trouvé and P. Bolon. "Monitoring temperate glacier displacement by multi-temporal TerraSAR-X images and continuous GPS measurements." J-STARS, 4: 372-386, 2011.
- [2] R. Prébet, Y. Yan, M. Jauvin and E. Trouvé. "A data-adaptive EOF based method for displacement signal retrieval from InSAR displacement measurement time series for decorrelating targets." TGRS, 2019 (Early access)
- [3] J. M. Beckers and M. Rixen. "EOF Calculation and Data Filling from Incomplete Oceanographic Datasets". J. Atmos. Oceanic Technol, 20(12): 1836-1856, 2003.